Search published articles


Showing 2 results for balyani

Saeed Balyani , Mohammad Saligheh,
Volume 3, Issue 2 (5-2016)
Abstract

The results of this study indicated that the synoptic patterns that lead to heavy rainfall in 22 March 1996, 24 mar 1995 and 17 November 1994 in the northern portion of FARS province includes: the low pressure that located in eastern part of Mediterranean and Black sea and southern part of Caspian Sea that created by trough that located at the middle level of atmosphere. In addition to this low pressure, the bipolar pattern in of Saudi Arabia  having negative vorticity that lead to transporting moisture from (India ocean, Red sea, Arab sea, Persian gulf and Oman Sea )   and also to be alignment with east Mediterranean sea and black sea low pressure as ascending agent lead to precipitate of rainfall in mentioned days . and also we found that in 29feb 1996 as second patterns rainy day, a strong deep trough transporting moisture from Soudan region and east Mediterranean  low pressure, cause alignment of this atmospheric systems. In fifth patterns (21 mar 2001), existing an low pressure and positive vorticity center in east of Pakistan simultaneously with existing negative vorticity center in central part of Iran, lead to high pressure gradient which cause rainfall events in study area. The main founding of this study were that reveals the role of low pressure of east, north and south of Caspean sea in heavy rainfall events in study area.

Pre-warning of natural hazards events such as heavy rainfall has a significant effect in damage reducing. The analysis of synoptic-dynamic condition of atmospheric circulation patterns, has great importance in recognize affective agents in heavy rainfall events. Especially this heavy rainfall could lead to flash floods suddenly. This study's aim is to analysis and extraction of daily heavy Rainfall lead atmospheric patterns in northern portion of Persian gulf (Helle and Mond Subbasin).

The study area, Helle and Mond basins, with about 21,274, 47653 km2 area,respectively are located in the south of Iran. The Helle basin approximately is between 28° 20'N and 30° 10'N latitudes and between 50° E and 52° 20'E longitudes and Mond basin is between 27° 20' and 29° 55' latitudes and between 51° 15' and 30° 27'E longitudes.These basins are located in sides of a massive sources of moisture, Persian Gulf.

In this study we investigate the data of daily rainfall of 37 synoptic and meteorological station of study area during 1991 to 2011(20 years) to extraction the atmospheric patterns lead top heavy rainfall. In this study in order to archiving heavy rainfall days based on 95 percentile in study area, the data of sea level pressure, geopotantial high of 300 and 500 hp and also data of verticit and stream line and omega in the spatial framework of -10 to 100 longitude and 10 to 70 Latitude has been selected. Then we create the sea level pressure matrix as rainfall associated days, based on Lond method of Correlation to classify days.

Our founding indicated that the main synoptic systems that lead to heavy rainfall is related to low pressure in eastern Mediterranean  and southern part of Caspian sea. So that in detected rainfalls patterns shown that the transporting moisture from nearby sea by high pressure of Saudi Arabia by associating eastern Mediterranean low pressure and deep strong trough in east and southern part of Caspian sea  cause heavy rainfall events in study area. So that the low pressure located in eastern and southern portion of Caspian sea could affect the study area.


Said Balyani, Yones Khosravi, Alireza Abbasi Semnani,
Volume 3, Issue 4 (1-2017)
Abstract

Hazard is potential source of harm or a situation to create a damage. So identification of zones exposed to hazards is necessary for planning or land use planning. But this situation becomes more critical when they appear at the population centers. So applying the principle of passive defense based on environmental capabilities is unarmed action that caused the reduction of human resources vulnerability, buildings, equipment, documents and arteries of the country against the crisis by natural factors such as drought, flood, earthquake, etc. Considering the possible occurrence of such risks in population centers, ready to deal with what is known unpleasant and undesirable consequences is necessary. On this basis and given the importance of population centers in Helle and Mond basins, in this study, the authors tried to analyze the Rain hazards of drought and flood.

The study area,Helle and Mond basins, with about 21,274, 47653 km2 area, respectively are located in the south of Iran. The Helle basin approximately is between 28° 20'N and 30° 10'N latitudes and between 50° E and 52° 20'E longitudes and Mond basin is between 27° 20' and 29° 55' latitudes and between 51° 15' and 30° 27'E longitudes.These basins are located in sides of a massive sources of moisture, Persian Gulf.

In this study, data from 23meteorological and synoptic stationsstations, during aperiod of20 years (1992-2011)in northern region of the Persian Gulf (Mond and helle basins)were used to calculate Standardized Precipitation Index (SPI). The data were collected by the Iranian Meteorological data website (http://www.weather.ir). The SPI is primarily a tool for defining and monitoring drought events. This index may be computed with different time steps (e.g. 1 month, 3months, 24 months). The SPI is defined for each of the above time scales as the difference between monthly precipitation (xi) and the mean value ( ), divided by the standard deviation. To assess flood risk zones, the flood, annual evapotranspiration, cities and populations centers layers were collected in Helle and Mond basins position. The annual precipitations and the SPI maps were drawn by Geostatistics, Kriging. It also the flood and annual evapotranspiration layers were weighted by Euclidian distance method, separately. Finally, all layers are weighted by AHP and fuzzy-linear methods (descending and ascending linear function) into vulnerable layers. The final map of vulnerable areas with flood and drought high risk was drawn based on the algorithm of linear-Fuzzy in a raster format.

According to the results, eastern, north eastern and south eastern part of Mond basin had high annual precipitation. Based on this result, it said that these parts of study area were known the least dangerous areas of vulnerability. The results also showed that with passing of the western regions and going to the center of the study area the annual rainfall have been added over the years. Kazeron, Chenar Shahijan, Firouz Abad, Borm plains and some parts of Khane Zenyan and Dash Arzhan are cities located in this regions. Low latitude, Proximity to the warm waters of the Persian Gulf, low annual precipitation and high temperature causing evaporation and inappropriate environmental conditions in Boushehr province and some coastal cities such as Genaveh, Deilam, Boushehr, Baghan, Lar and Khonj. Accordingly, west, north west, south and south west regions in Helle basin were located in extreme vulnerability zone with a loss of annual rainfall for drinking and agricultural production and poor nutrition underground aquifers.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb