Showing 5 results for hamidi
Farhad Azizpour, Mohammed Saeed Hamidi, Jamshid Chabok,
Volume 2, Issue 4 (1-2016)
Abstract
Among the various environmental hazards, flood is the greatest and most important climate crisis which takes every year the lives of thousands people and impose severe damages on human society and environment. Today, it is clear that controlling all hazards, including floods is not possible. Suitable management can only minimize the damages. The literature on natural disasters management indicated that in the process of natural disaster management and their vulnerability mitigation, there are two dominant paradigm: technic-based approach and community-based approach.
Community-based approach welcome the local cooperation and participation in disaster management process and calls for strengthening local capacity through the participation of all individuals and groups at the local level. This approach is not only appropriate to provide solutions for disaster reduction, but build disaster preparedness. Because disaster preparedness planning requires special attention to local participation. In the geographic area of Bashar River Basin, due to the lack of suitable agricultural land and greater quantity of water for rice crop, villages have been built at rivers edge. So that, most of the houses and farms in the villages are located very close to the river. However, these locations are extremely vulnerable to flooding. This study reviews the status of local participation and its impact on reducing flood risks. Also, this research focuses on factors influencing local community trends and choices in the participation rate.
This study is applied research in terms of purpose and uses descriptive-analytical method. According to the nature of the study, data were collected through fieldwork and library research methods using observation, interview, questionnaire and evaluation card techniques. To understand different characteristics of community, Likert scale and one-sample t-test were used and measurement scale for data was ordinal. Also. The method of selective experimental approach based on profit was taken to evaluate the level of different trends in Community's financial participation for reducing detrimental effects of flood. To recognize the community awareness and perception toward flood risk and the probability of its occurrence in the future, the willingness level to participation and to explore the effective factors on villager’s decisions and to utilize modern management techniques the selective experimental approach based on evaluation card and logit model were employed.
The results of statistical analysis showed that in the study area, 86.5% of the community have experienced the damages caused by flooding and forecasted the likelihood of heightened chance of flooding in the future. Finding showed that although the people use traditional methods for managing flood, but they tend to employ modern methods such as dam building for reducing flood risk. This help them to increase the safety factor for their locations and farm lands. In spite of the fact that the villagers expressed the higher safety factor for new management methods such as (dam building, river broadening and preventing the destruction of forest and environment), but it seems that improper functioning, adverse consequences (environmental and socio-economic) of projects implementation (dam building) as well as the inability of villager's financial participation (high cost of this kind of methods), are barriers to using them for lowering the flood risks and damages.
The review of the possible role of some intervening variables to predict local communities' participation in decision-making processes showed that low-income, old age of the samples with high average (47.61) and education with lower average (3.16) are the most important factors influencing community decision making. The results of binominal logit model showed that the proposed variables is significant at the 5% level. If the offer price increase, the chance of residents' acceptance of participation will decrease and vice versa.
Taghi Tavousi, Mohsen Hamidianpour, Rashed Dahani,
Volume 4, Issue 3 (9-2017)
Abstract
Thunderstorms are one of the most important, abundant and severe atmospheric hazards. In addition to destroying a large amount of agricultural products and construction projects, cause many human casualties are annually in different parts of the world (Iran Pour and et al, 2015). This phenomenon is associated with severe storms, showery precipitation, hail (Puranik and Karekar, 2004), and thunder and lightning (Nath et al, 2009). These storms occur 50,000 times on a daily Basis. They account for 18,000,000 yearly (Ahrens, 2009). Extensive studies have been conducted in Iran and the world in this regard. For example, Wallace (1995) examined the abundance of lightning in the United States using 100 stations. He concluded that the greatest frequency of convectional showers occurs early in the night and at least at midnight. Sterling (2003) described the thunderstorms as a major dilemma for the United States in the twentieth century. The environmental and economic consequences of thunderstorms and their associated phenomena such as floods, hail and heavy precipitation are believed to be very ruinous on the US economy. Sistan and Baluchistan Province, Iran has annually been witnessing a variety of thunderstorms systems and associated precipitation. The province has suffered lots of damage resulted from the phenomena caused by thunderstorms. Therefore, this article aimed for a spatial analysis and the frequency of thunderstorm occurrences at different time scales. The article also examines the temporal variations and trends. The secondary questions outlined here are as follows: At what time of day do thunderstorms occur? How are thunderstorms recorded as various codes? Which one of these codes is the most commonly reported one? In terms of location, what are the stations with the greatest and least number of thunderstorms?
The area under study is Sistan and Baluchistan Province, Iran. With an area of almost 187,502 km2, the province is located in the southeastern part of Iran, on the Oman Sea coast and in the vicinity of Pakistan and Afghanistan. The province has 300 km water border with the Oman Sea in south, 1100 km land border with Pakistan and Afghanistan to the East, Khorasan Province to the North, and Kerman and Hormozgan to the West (Ebrahim Zadeh, 2009).
In this study, the frequency of thunderstorms was extracted based on 7 synoptic stations and the used of Presence Weather Codes. Temporal variations were then studied using the Man-Kendal and Sen's non-parametric tests. Finally, the relationship between the thunderstorms and ENSO was investigated. Meanwhile, spatial dispersion was also taken into account.
The results showed that thunderstorms have a peak region in southeast part with the center of the Saravan and Iranshahr stations and a minimum area in the Oman Sea coasts (Konarak and Chabahar). More precisely, Saravan Station scored the top with 567 thunders and lightning, while Konarak Station hit the lowest point with 96 in this 30-year period. In the maximum thunderstorm region, Saravan and Iranshahr are the main centers during different seasons so that the number of thunderstorms is higher in summer and fall in Iranshahr compared to Saravan. In winter and fall, such thunderstorms, caused by extra-tropical origin, are more in Saravan than Iranshahr Station.
The results of hourly investigations of thunderstorms showed that most of thunderstorms occur at noon and 3:00 p.m. Codes 13 and 17 were the most frequently reported codes with 605 and 571 occurrences, respectively, Codes 99 and 5 were the least. Monthly investigations showed that May and March had the highest number of thunderstorms (322 and 317, respectively), while September accounted for the least number (55). Quarterly investigations showed that spring had the highest number of thunderstorms (756) followed by winter (559). These thunderstorms are seen in spring more than other seasons because of the passage of extra-tropical air masses, which is abundant in the region under study. Summer, which is the Sub-tropical High pressure (STHP) season, had the least number of thunderstorms (340 occurrences of thunder and lightning). These thunderstorms mainly occur in Iranshahr and Saravan Stations, which was proven in the spatial analysis. The summer incidence increase of the thunderstorms is rooted in the Monsoon systems, preparing the ground for the phenomenon. The temporal variations at different monthly, quarterly, and yearly scales showed that no significant differences are found in thunderstorm trends. The phenomenon has experienced enormous fluctuations, likely to be associated with complex changes of macro-climate patterns. El Nino and the Lanino are likely to be the main factors affecting the ENSO's warm and cold phases. According to the results, almost 70% of thunderstorms are associated with the El Nino. In other words, more thunderstorms are expected during ENSO's warm phase.
Mr Mohamad Saeid Hamidi, Dr Abbas Alipuor, Mr Ehsan Alipuori,
Volume 7, Issue 1 (5-2020)
Abstract
The geographical location of Yazd province has greatly influenced the creation of spatial and climatic diversity and the provision of appropriate facilities for the formation of various natural and cultural attractions. Nevertheless, these areas need more attention in terms of the potential of tourism development for social sustainability. This research is done with the aim of spatial analysis of tourism capacity of desert areas and its role in social sustainability, and according to its nature, it is an applied type. The research method is descriptive-analytic. Documentary and field data are used to collect data. The data were analyzed quantitatively (one-sample T-test, Pearson test and AHP and Barda methods). The findings show that according to the experts' opinion, the effective indicators in identifying tourism capacities are distance from roads, distance from historical attractions, distance from residential centers, distance from natural attractions, type and soil suitability, distance from water resources , Elevation, direction of gradient, slope, land use and precipitation. The results show that 24 percent of the total area of the area has relatively good capacity and is located in the central, eastern and northeastern parts of the province. The most important criteria that have made these areas selected as optimal areas are the density of natural-ecological elements such as the existence of diverse deserts and deserts, geotops, glacier cirques, and historical-cultural elements such as traditional water reservoirs, markets, shrines and temples And so on. Also, 26% of the area has average power, which is mostly located in the east and northeast of the province. Finally, areas with inappropriate and relatively inappropriate power are found in parts of the eastern province of Karshra that occupy 51% of the total area of the zone. The results of measuring the social sustainability status of desert and desert areas based on indicators (population distribution, transport infrastructure, immigration status and deprivation rate) show that Yazd city has the highest ranking and Ardakan, Bafgh, Mehriz , Taft Meybod and Abarkuhh moderate sustainability, and finally Khatam, Saduj and Bahabad are among the unstable and less developed cities of Yazd province. The results of Pearson correlation coefficient showed that there is a significant relationship between tourism development and social sustainability in different regions of Yazd province at 99% level. This means that areas with demographic, demographic, and low levels of social sustainability have lower attraction and tourism capabilities than other Yazd province cities.
Mr Hossien Rahi Zehi, Dr Mahmood Khosravi, Dr Mohsen Hamidian Pour,
Volume 8, Issue 1 (5-2021)
Abstract
The Spatio-Temporal Variations of Aerosol Concentration Using Remote Sensing in Sistan and Baluchestan Province (2018 - 2000)
Abstract
Atmospheric particles play an important role in balancing the energy budget of the Earth's surface. The Sistan and Baluchestan province because of the specific geographical conditions during the year is witnessing the spread of dust particles caused by dust storms. This paper investigates the spatial changes of this phenomenon in the region to identify the association of dust accumulation and the reasons for these concentrations. In this study, the AOD Index data of the Aqua and Terra Modis Satellite Sensor (MODAL2_M_AER_OD) with 10 × 10 km spatial resolution were used. Then, by using statistical methods, a spatial analysis was done and the temporal and spatial changes trends at 95% and 99% significance level were performed using the nonparametric Mann-Kendall method. The results showed that the maximum concentration of aerosol in areas such as Zabol, Zahak, Hirmand, Hamoun, Iranshahr, Bampour, Jazmurian basin, Chabahar, and Konarak. On average, the highest variations in aerosol concentration were in the southern regions of the province include Dashtiari, Polan, and Chabahar, and the least in the northern part of Polan, Chabahar, Konark, and Bampour areas. The trend of changes was evaluated at two significant levels of 95 and 99%. The results of this section showed that the AOD had a positive and increasing trend in June, July, and August in the areas of Dalgan, Iranshahr, Bampour, Bazman, Mirjaveh, Nokabad, Zahedan, Nosratabad, Zaboli, Qasrqand, Irandegan, and Sib-va-Soran Plain and areas such as Korin, Zabol, Zahak, Sirkan (Bamposht), Hamoun have a negative and decreasing trend. The average changes in aerosol concentration in June, July, and August show a significant increase in the aerosol concentration from 2015 to 2018 up to 0.8.
Keywords: Environmental Changes, Dust, Environmental Hazards, Climate.
Mrs Halimeh Shahzaei, Dr Mohsen Hamidianpour, Dr Mahsa Farzaneh,
Volume 10, Issue 2 (9-2023)
Abstract
Spatial analysis of Iran's climate change from the point of view of sensible heat flux and latent heat flux by Bowen method
Halimeh Shahzaei; Ms.c student of Climatology, Departement of Physical Geography, University of Sistan and Baluchistan, Zahedan, Iran.
Mohsen Hamidianpour; Associate Professor, Departement of Physical Geography, University of Sistan and Baluchistan, Zahedan, Iran.
Mahsa Farzaneh; Ph.D Graduated. Climatology.
Abstract
Sensible heat flux and latent heat flux are among the variables that are closely related to temperature and humidity and show heat transfer on a surface. So, their changes can be considered related to changes in temperature and humidity. In this regard, the current research aims to analyze and reveal the climatic changes of Iran by examining the course of changes in sensible heat flux and latent heat and the ratio between the two. For this purpose, NCEP/NCAR reanalysis data including sensible and latent heat flux during the period 1948-2020 was used in Iran. Bowen coefficient was calculated from the ratio of these two heat fluxes. Interpolation methods were used for their spatio-temporal analysis. In addition, by using the non-parametric methods of Mann-Kendall and Shibsen, spatial and temporal changes were also investigated. The first part of the results showed that, spatially, the Bowen coefficient is a function of latitude and roughness. And in terms of time, the lowest value corresponds to the month of January and the highest value corresponds to the month of July. The results of the second part show that the Bowen coefficient has a positive trend over time. Its upward trend indicates an increase in the dryness coefficient of the country. So that this situation can be seen in the positive trend and increase in temperature.
Keywords: climate change, Bowen coefficient, global warming, spatio-temporal analysis.
. Autehr corespound:Email: mhamidianpour@gep.usb.ac.ir