Various community groups can play important role in disaster management. Countries with different segments of people directly participate in activities to reduce the risk. Therefore, regarding the role of women's participation in disaster management process and as a part of human society will have an important role in this process, identify and analyze the factors affecting women's presence is essential. However, the central role of women in families and communities remains unknown in most parts of the world specially in planning and managing the disaster. The purpose of this study is to identify and understand the different capabilities of women to participate actively in the cycle of disaster management and providing strategies for increasing women's participation in the prevention, preparedness, response and recovery of probable disasters. This study is an original and practical research. According to the theoretical research, a questionnaire was designed in four parts and it was completed through sampling. The sample population is women living in 22 districts of Tehran. This study implies that there is the low participation rate of women in disaster management among citizens of Tehran. To complete the data, proportional sampling was used and data were analyzed using factor analysis. Using this method, the data and the variables were summarized and the most effective factors were set in the partnership. These factors include disaster management, cultural factors and gender, fatalism, a feeling of power and confidence that the results of the factor analysis was performed using four dimensions. Based on tradition of social research and the findings of previous empirical research on women's participation in disaster management and the factors influencing voluntary participation, contextual condition of social variables (including socio-economic condition, occupation, marital status, number of children and age), as well as religious and fatalistic attitude would studied and evaluated the factors influencing the motivation and willingness to participate as a volunteer in the field of disaster management. The findings show that KMO value was equivalent to 0.74 in four factors of disaster management and the total values of the sector were defined 67.42% of total variance of the variables. KMO value in the sense of power and confidence variables was 0.72 and 65.27% of this segment can be explained by four factors the variability of the variables. In fatalism variable the KMO value was 0.599 and 59.56% of the four factors could explain the variability of variables. Finally, the KMO of socio-cultural norms was 0.71 and 70.52% of the variability of the variables was explained by five factors in this sector. Women cooperation alongside men play a major role in the use and implementation of policies and programs related to accidents. Thus, participation as one of the arguments in crisis management requires people involved in all processes related to the crisis management cycle. Since public participation opportunities and fields are different in societies and in different groups, so, to attract the participation in each group, identifying effective components is essential. Finally, after using factor analysis and extracting four factors, including knowledge of effective crisis management, cultural factors and gender, fatalism, a sense of power and self-confidence were classified. In general, most people do not do any activities in disaster management and their awareness and knowledge does not lead to disaster management needs. Thus, organizational barriers, structural, administrative and educational activities to promote social and cultural constraints are considering strategies promoting women's participation in disaster management cycle.
Frost is one of the sources of risk in agriculture which threatens the orchardists' performance and their security of products. The protection of cold-sensitive species of fruits against frost damage is an annual challenge in many growing regions of the world. Frost protection managerial behavior is the the first way to avoid or reduce the effects of frost damage to walnut trees. Application of active and passive methods of frost protection is effective under conditions of strong thermal inversions. However, most of studies on the adoption of managerial behaviors to environmental hazards usually ignore underlying psychological constructs that affect farmers’ decisions and behavior. Sepidan county is one the well-known regions of Fars province which is subjected to frost damage for its climatic nature. The amount of frost damage to walnut orchards of Komehr township, which is located in Northwest of Sepidan county is significantly substantial in recent years. The region is well-known for its walnuts and this product is the most important source of velliagers’ income. This research aims at investigating frost management behavior of walnut orchardists of Sepidan county, Fars province, Iran. The managerial behavior is composed of active and passive methods of protecting walnut trees to frost damage.
This applied study was based on descriptive correlational method. Data collection tools were structured questionnaires. The sample of this survey study was consisted of 90 orchardists of Komehr township. The sample orchardists were selected based on their vulnerability against frost. Structured questionnaires were used to collect information from a random sample of walnut orchardists that were interviewed. Face validity was confirmed by a panel of experts. And the reliability was confirmed by conducting a pilot study in Bardzard region. The calculated Cronbach’s alpha for the measures of the instrument were 0.53-0.82. Statistical package for social science (SPSS) in WINDOWS context was used for analyzing data. Coefficient of variation and cluster analysis was the most important analysis methods applied in this research.
Results revealed that active methods of frost protection includes burning fuel, tires etc., were the most common methods of controlling frost in walnut gardens. While using energy intensive practices (heaters, sprinklers) were shown the lowest rate of interest. However, orchardists' "perceived effectiveness", "perceived ease of use" and "perceived usefulness" of their active and passie controlling behavior was investigated. As it was shown by the results, orchardists' perception of effectiveness of the method of controlling frosts was in a low position. On the other words, they were not belived in the effectiveness of the methods. This was whilst, orchardists belived in ease of using the active and passive measures of controlling frost. They were noted that these methods had the potential of controlling damage to their gardens. Performing frost controlling methods was not easily applicable and garden's context was known as the most important barrier to performing the frost controlling behavior. To better understand orchardists' profile regarding to their frost protection behavior, cluter analysis was used. By means of this method, orchardists were categorized to two clusters: orchardists with convergent behavior with respect of frost protection protocol and divergent ones. Convergent group of orchardists (n=23, 25.5 %) were those who invested more on their gardens, used crop insurance supports, and more importantly they used lower levels of chemical products (poisons, fertilizers, etc.) on their gardens. On the other hand, divergent system of gardening regarding to frost protection pointed to the system of negative orientation towards rational thinking and behavior of gardening protection. These group of orchardist (n=67, 74.5%) were those who were performed eclologically dangerous methods of gardening regarding to use of pesticides, fertilizers and other chemical inputs. Low level of orientation towards crop insurance organizations and investment for the gardens were the most differtation factors for this group. However, results shed light on the difference of these two groups of orchardists regarding to their percievd effectiveness, ease of use and usefulness of frost protection methods. As it was shown by the results, frost protection- conevergent group of crchardists was significantly different from their divergent counterparts regarding their frost protection behavior and perception of ease of use and usefulness of frost protection methods. The aforementioned group of orchardists perceived frost protection methods easy to perform. From their viewpoints, these methods were useful in increasing crop yield, promoting its quality and controlling damge.
Human communities are affected by hazards, disasters and catastrophic events throughout history, including natural disasters (such as: earthquakes, hurricanes, floods, tornadoes) man-made disasters (such as: nuclear accidents, explosions, socio or political crisis, economic disturbances). Therefore, catastrophic events can have human or natural causes. These conditions show that human communities not only ever been stable, but they are continuously unstable and are exposed to disarranging events. Godschalk knows resiliency an important goal for two reasons. “First, because the vulnerability of technological and social systems cannot be predicted completely, resilience –the ability to accommodate change gracefully and without catastrophic failure- is critical in times of disaster. If we knew exactly when, where, and how disasters would occur in the future, we could engineer our systems to resist them. Since hazard planners must cope with uncertainty, it is necessary to design communities that can cope effectively with contingencies. Second, people and property should fare better in resilient communities struck by disasters than in less flexible and adaptive places faced with uncommon stress. In resilient communities, fewer building should collapse. Fewer power outages should occur. Fewer households and business should be put at risk. Fewer deaths and injuries should occur. Fewer communications and coordination breakdowns should take placeStructural analysis is first of all a tool of structuring the ideas. It gives the possibility to describe a system with the help of a matrix connecting all its components. By studying these relations, the method gives the possibility to reveal the variables essential to the evolution of the system. It is possible to use it alone (as a helps for reflection and/or decision making), or as part of a more complex forecasting activity. This method has 3 phases. Phase 1: considering the variables: The first stage consists in considering all the variables characterizing the studied system (external as well as internal variables); it is good at this point to be the most comprehensive possible and not to exclude, a priori, any possible path of research. Phase 2: description of the relations between the variables: In a systemic vision, a variable doesn’t exist other than as part of the relational web with the other variables. Also, structural analysis allows to connect the variables in a two-entries table (direct relations). Phase 3: identification of the key variables: This last phase consists in identifying the key variables; first, by a direct classification (easy to realize), then by an indirect classification. Direct classification: The total of the connections in a row indicates the importance of the influence of a variable on the whole system (level of direct motricity). The total in a column indicates the degree of dependence of a variable (level of direct dependence). Indirect classification: One detects the hidden variables thanks to a program of matrix multiplication applied to an indirect classification. The structural analysis method seeks to highlight key variables, hidden or not, in order to ask the right questions and encourage participants to think about counter-intuitive aspects or behavior within the system. The direct influences of each variable on the set of other variables are illustrated in matrix form. Each element of the matrix represents an influence (0 = no direct relationship of influence on the two variables considered; 1 = a direct relationship of influence). We also took into account the level of influence between two variables. The following convention was used: 1 = low relationship; 2 = average; 3 = strong; P = potential relationship.. P levels were also given 0-3 ratings. By reading the matrix, we can classify the variables by their -level of direct influence: importance of influence of a variable on the whole system, obtained through the total of links created per line; - level of direct dependence: degree of dependence of a variable, obtained by the total of links created per column. The direct and indirect influences of the variable represent the system the most realistically. Highlighted are the determining factors (main determinants) of the situation under investigation. The input variables and result or output variables help participants understand the organization and structuring of the system under the microscopeBased on the results of direct influence matrix, social, economic and institutional variables are effectiveness in comparison to others. They have a great impact on system but physical variable effectiveness is much less than its impact. Among of mentioned variables, institutional variable had a significant numerical difference. Indirect cross-impact matrix showed significant differences in the institutional and social variables compared to other variables in the effectiveness and affected. The results indicate the high impact of these two variables on the system. In other words, institutional and social variables were influential factors in their community resilience. According to the results of direct influence matrix, strategic and key factors are including participation, assistance and interactions from social variables, readiness from intuitional variable and in indirect influence matrix; these factors are including participation, social identity, assistance and interactions from social variables and readiness from intuitional variable. Distribution of factors in axis influences of direct and indirect suggests that this system is unstable.
Developing urbanization and changing hydrological conditions of natural streams increases the flooding risk. This study tries to do flood hazard zoning in the Ilam city and determine the critical area of the urban regions against flooding by using AHP method and GIS environment. For this purpose, the parameters of the curve number, height, distance from the river, geology, land use, population, slope, soil, building density, worn texture buildings and accumulated flow as effective parameters in flooding hazard in Ilam city selected and of these parameters weighted by using Expert Choice software. The result of the Expert Choice software is transferred to the environment of GIS software and flood hazard map of study area prepared. Results of the study and flood hazard map show that areas with very low-risk, low risk, intermediate-risk, high-risk and very high-risk form the 0.8%, 8.5%, 49.6%, 32.54% and 8.56% of the of Ilam city area, respectively. Also, the central area of the city has the highest risk and the probability of occurrence of the flood due to the high density of population and residential areas in this area and its proximity to the seasonal rivers and old part of the city. Therefore, by examining the results of Expert Choice software, it is possible to identify the most effective factors in the occurrence of flood risk and prioritize them to address management solutions to eliminate or mitigate the effects of these factors.
Page 1 from 1 |
© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts
Designed & Developed by : Yektaweb