Search published articles


Showing 5 results for mohamadi

Jalal Karami , Aminah Mohamadi, Mohammad Sharifikia,
Volume 3, Issue 2 (5-2016)
Abstract

Resilience are concepts that are finding increasing currency in several fields of research as well as in various policy and practitioner communities engaged in global environmental change science, climate change, sustainability science, disaster risk-reduction and famine interventions (Vogel, et.al, 2007). Where the risk is a probability of damage, injury, liability, loss, or any other negative occurrence that is caused by external or internal vulnerabilities, and that may be avoided through preemptive action (Benson, et.al, 2004). Among natural disasters, earthquakes, due to the unpredictable nature of these events, are one of the most destructive. Iran is one of the most earthquake-prone countries in the world that its cities most affected by this phenomenon. Among the cities of Iran, Tehran, as the country's first metropolis, due to dense population, poor physical development, structural density, and lack of standards, is potentially facing a serious threat. The purpose of this study is to investigate the spatial flexibility of Tehran over the region 12 after the earthquake incidence.

The present study is dealt with the data preparing and analysis using geospatial methods. The several geospatial data such as Peak Ground Acceleration (AGA) map, urban structure, infrastructure and population collected from Tehran Disaster Management Center were provided and analysis based some GIS known algorithms. In other to urban spatial resilience zonation the AHP (analytical Hierarchy Process) was implemented to generation risk map. Finally OWA (Ordered Weighted Average) method was implemented in order to Production spatial flexibility map of earthquake incidence over the District 12 of Tehran. AHP model uses of priorities straight experts, but OWA provides of control the level of compensation and risk-taking in a decision. Using the conceptual of fuzzy quantifier with OWA makes the qualitative data analysis enter to decision.

    According to flexibility of the final map with fuzzy operator (All) equivalent to the operator MIN, the worst result Was obtained and resulting the highest risk and lowest flexibility respectively (Districts Nos. 2,12,7,8 and 11).By taking all the criteria of a criterion without compensation by other criteria as "non-risk" is obtained .

Map obtained with fuzzy operator (Half) has the high potential to provide suitable options,  because in addition to integration criteria the importance of each parameter based on the weight given to the criteria are considered. In this map Districts Nos.2.6 and 8 (Baharestan, Emamzadeyahya and Sanglajedarkhangah) respectively were most Risk to earthquakes and therefore less flexibility to the earthquake. The map obtained with the fuzzy operator "Atleast one" is equivalent to MAX operator districts Nos. 2,12,7 and 8 (Baharestan ,DarvazehGhar of Shush,Abshardardar and Sanglajedarkhangah)  respectively were most Risk to earthquakes and therefore less flexibility to the earthquake.

The fuzzy conceptual map quantifier showed that districts Nos. 2 and 12 (Baharestan and DarvazehGhar of Shush) were most vulnerable and therefore less flexibility to the earthquake as final results.


Gholam Hassan Jafari, Hazhir Mohamadi,
Volume 6, Issue 3 (9-2019)
Abstract

The consequence of human activities caused destructive and irreversible problems to the original state in the few past decades that has attracted the attention of all walks of life. The sinkholes are one of the mentioned effects in different parts of the planet such as Iran, Hamadan and especially have been happened in Kaboudarahang-Famenin plain. Researchers believe that the most important consequences of the indiscriminate withdrawal of groundwater and illegal wells and the activities of Shahid Mofatteh thermal power plant change the parameters of soil caused appearance sinkholes in that area. All of the geological information, faults, hydrological, elevation, slope, aspect, and land use investigated by topographical geological maps, also digital elevation models and Google Earth image processes used for the study on the extraction and sinkholes due to the numbers and distribution of wells were assigned in GIS software. The results show that the level of groundwater, geology, land use and height of the range are the most effective factors in the creation of sinkholes; but the efficiency of surrounding factors and in somewhere farther from the sinkholes. The construction of Ekbatan dam on the most important river as the main water provider of understudy plains, the development of Hamadan city and changing the surrounding land use in Bahar county to agricultural, prevent from reaching water to the Kabodarahang and Famenin plains as a former and increasing the water demand in downstream is caused numerous sinkholes that was provided with favorable conditions than before (the dissolution of limestone).


Saeid Jahanbakhsh Asl, Behruz Sari Sarraf, Hosein Asakereh, Soheila Shirmohamadi,
Volume 7, Issue 1 (5-2020)
Abstract

The study of temporal - spatial changes of high extreme rainfalls in west of Iran (1965-2016)
 
 Extended Abstract
Introduction                                   
Rainfall is one of the appropriate weather parameters not only in describing weather condition in one specific area but also is in estimating potential impacts of climate change in the environment and in many economic and social systems. Some studies show that during half a century weather patterns by more and severe raining events and by changes in scheduling and rain status has been changed. From 1960s with its much slope, the abundance and severity of extreme rainfalls throughout the world has increased and it is expected to continue the increase until the end of the current century. So understanding the behavior of extreme events is one of the main aspects of climate change and the increase of information about heavy rains has utmost importance for society, especially for the population who lives in areas with increased flood risk.
According to above mentioned cases and abnormal behavior and irregular rainfalls in Iran and its high variability from one hand and Iran's west region ability to heaviness and extension of rainfalls on the other hand, the necessity of understanding and study of temporal and spatial dangerous rainfalls is recognized. Among extreme rainfall characteristics, the portion of such rainfalls in total rain production is studied less.   Due to the experiments carried out, the increase of annual rainfall in Iran happens through heavy rainfalls. Therefore heavy rainfall portions out of total annual rainfalls can be defined as an index of crisis. The increase of this index implies the heavy floods in rainy years and severe drought and drought years.
 
Data and Method
Iran's west region including East and West Azerbaijan provinces, Zanjan, Kurdistan, Kermanshah, Hamadan, Lorestan, and Ilam consists of about 14 percent of Iran's total area. The height of this region includes a domain of 100 to about 4000 meters. Zagros mountain ranges are the most important characteristic of west of Iran, which are drawn from north-west to south-east.
In this research, we used network data from interpolation daily rainfall observation of 823 meteorology stations from January 1st up to December 31st, 2016 by using Kriging interpolation method and by separating 6×6 km spatial. The results formed matrix interpolation process by dimension of 18993×6410. This matrix has the rain status of 6410 points of west of Iran for every day rainfall (18993). Extreme rain falls are identified in terms of threshold of 95 percentile in each point and each day of year. The rainfall of each day and each pixel is compared to that related pixel and corresponding to that day and those days which their rainfalls rates were equal to or larger than threshold were identified for studying extreme rain fall portion in total yearly rainfall, the total of equal rainfalls and more than 95 percentile is calculated for each year and each of pixel and, it is divided to total of the same pixel rainfalls in that year.
We used the least squarely error for understanding temporal- spatial behavior of regression.
 
Results and Discussion
The average extreme rain falls in west of Iran is under the influence of their roughness and placement and also synoptic rainfall. The proof of this claim identifies through placement of average extreme rainfall over altitudes of region. By increasing geographical latitude in Iran's western provinces, it is decreased both of total extreme rainfalls and portion of such rainfall out of total yearly rainfall. Total extreme rainfall trend shows a frequency in a domain with 16 mm in each year. The negative trend of total rainfall with the area of 74.72 percent consists of three quarters of Iran's west.
The narrow strip of the west of Kurdistan and south-west of west Azerbaijan have the highest amount of positive trend which is meaningful in certainty level of 95 percent.
The study of process showed the ratio of extreme rainfalls portion to total yearly rainfall, which is increasing about 60.7 percent of west area of this country extreme rainfalls in total yearly rainfall and the greatest part of this area is located in southern half of the studied area.
The negative trend also is located in northern half and they have consisted of 39.29 percent of studied area of these, only in 29.81 percent of region, the trend ratio of extreme rainfalls to total yearly rainfalls are meaningful in certainty level of 95 percent.
Keywords: Extreme Rainfalls, Trend, 95 Percentile, Rainfall Portion, west of Iran.
 
Gholamreza Mohamadi, Dr Reza Borna, Dr Farideh Asadian,
Volume 7, Issue 3 (11-2020)
Abstract

In the present study, the spatial-temporal analysis of the Arctic vortex and its role in the occurrence of heavy precipitation days in the Ghare-Su basin have been investigated. For this purpose, firstly, with the 95% percentile method, heavy precipitation days of the basin were extracted. Then, considering the pervasiveness condition, 79 days of heavy and pervasive precipitation days determined during the1979–2015. In the following considering the contour representative of the polar vortex in the geopotential height of 500 hPa maps, elevation maps of 500 hPa, the vortex position identified on each of the heavy precipitation days based on its maximum extent on the synoptic zone. Synoptic analysis of the temporal and spatial of Arctic vortex during the selection of heavy and pervasive precipitation days shows that the 4 patterns can be identified within 79 days of heavy precipitation days. The position and concentration of the vortex patterns in each season have changed. So that the least penetration of the vortex is seen during the autumn and the most penetration in the winter. In all cases of the days of heavy and pervasive precipitation due to the locating the trough of the arctic vortex over the study region, which coincides with the settlement of the huge Rex and Omega blockings on  Europe. The highest correlation between the latitude of the vortex and the precipitation intensity is seen in the third pattern ( the Red Sea to the west of the Persian Gulf), which has the most vortex penetration in the region. In each of the vortex spatial locations, the location, length, and depth of the trough have also changed in each location. So that the best position and the most impact of vortex occurred in the third and fourth patterns where the troughs from vortex have the most depth and extension on adjacent water resources.

Nabi Mohamadi, Behrouz Sari Saraf, Hashen Rostamzadeh,
Volume 10, Issue 3 (9-2023)
Abstract

 Nowadays, due to global warming, drought and the occurrence of cold periods and heat stress, the study of climatic variables is very important. Therefore, in this research, the long-term forecast of temperature changes in northwest Iran in the base period (1985-2014) and three periods of the near future (2021-2050), the medium future (2051-2080) and the distant future (2100- 2081) was paid. For this purpose, 2 extreme temperature indices including Warm spells duration index (WSDI) and cold spells duration index (CSDI) and Maan-Kendall trend test were used to check the changes. To predict the changes of the profiles in the future period after evaluating 7 general circulation models (GCMs) from the sixth report model series (CMIP6) from two optimal models under three socio-economic forcing scenarios including SSP1-2.6, SSP3-7.0 and SSP5-8.5 was used. The spatial distribution of the trend of changes in the Warm spells duration index (WSDI) in the base period showed that its maximum core is located in the south and southwest of the region, and its amount decreases by moving towards the north and northeast. Spatial changes of the Cold spells duration index (CSDI) are characterized by its maximum cores in the western regions and around Lake Urmia and minimum cores in the central and northern regions of the study area. According to the results, the average Warm spells duration index (WSDI) and of the Cold spells duration index (CSDI) are equal to 5.53 and 3.80 days per year, respectively, and the maximum and minimum Warm spells duration index (WSDI) are 1.8 and 2.7 days, respectively Piranshahr and Parsabad stations and the maximum and minimum and the Cold spells duration index (CSDI) are also 5.7 and 1.32 days corresponding to Zarineh and Marivan stations. Examining the trend of changes also showed that in most stations, the WSDI index has an increasing trend, and this trend has become significant in some stations, but the CSDI index has a decreasing trend and is not significant in any of the stations. The evaluation of different models with different error measurement indices also showed that MRI-ESM2-0 and MPI-ESM1-2-L models have the best performance in simulating temperature extreme in the studied area. The distribution of changes in the future period also showed that the WSDI will increase in most stations and based on all three scenarios, especially the SSP5-8.5 scenario, but the CSDI trend will decrease in most stations and based on the SSP3-7.0 and SSP5-8.5 scenarios will be significant.

 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb