Drought is the most important natural disaster, due to its widespread and comprehensive short and long term consequences. Several meteorological drought indices have been offered to determine the features. These indices are generally calculated based on one or more climatic elements. Due to ease of calculation and use of available precipitation data, SPI index usually was calculated for any desired time scale and it’s known as one of the most appropriate indices for drought analysis, especially analysis of location. In connection time changes, most studies were largely based on an analysis of trends and changes in environment but today special attention is to the variability and spatial autocorrelation. In this study we tried to analyze drought zones in the North West of Iran, using the approach spatial analysis functions of spatial statistics and detecting spatial autocorrelation relationship, due to repeated droughts in North West of Iran and the involvement of this area in the natural disaster.
In this study, the study area is North West of Iran which includes the provinces of Ardebil, West Azerbaijan and East Azerbaijan. In this study, the 20-year average total monthly precipitation data (1995-2014) was used for 23 stations in the North West of Iran. In this study, to study SPI drought index, the annual precipitation data of considered stations were used. According to the statistical gaps in some studied meteorological stations, first considered statistics were completed. The correlation between the stations and linear regression model were used to reconstruct the statistical errors. Stations annual precipitation data for each month, were entered into Excel file for the under consideration separately and then these files were entered into Minitab software environment and the correlation between them was obtained to rebuild the statistical gaps. Using SPI values drought and wet period’s region were identified and zoning drought was done using ordinary kriging interpolation method with a variogram Gaussian model with the lowest RMS error. Using appropriate variogram, cells with dimensions of 5×5km were extended to perform spatial analysis on the study area. With the establishment of spatial data in ARC GIS10.3 environment, Geostatistic Analyze redundant was used to Interpolation analysis Space and Global Moran's autocorrelation in GIS software and GeoDa was used to reveal the spatial relationships of variables.
The results showed that most studied stations are relatively well wet and this shows the accuracy of the results of the SPI index. Validation results of the various models revealed that Ordinary Kriging interpolation method with a variogram Gaussian model best explains the spatial distribution of drought in North West of Iran. So, using the above method the stations data interpolation related to SPI index in North West of Iran was done. The results showed that Moran index values for the analysis of results of standardized precipitation index (SPI) in all studied years, is more than 0.95. Since Moran’s obtained values are positive close to 1, it can be concluded that drought, in the North West of Iran during the statistical period has high spatial autocorrelation cluster pattern of 90, 95 and 99 percent. Results also showed that in all the years of study, Moran's global index is more than 0.95 percent. This type of distributed data suggests that spatial distribution patterns of drought in North West of Iran changes in multiple scales and distances from one distance to another and from scale to another and this result shows special space differences in different distances and scales in this region of the country. Results also showed that drought in North West of Iran in 2008 is composed of two parts: Moderate drought in parts of West and North West region (stations of Maku, Khoy, Salmas, Urmia, naghadeh, Mahabad and Piranshahr) and severe drought in the southeastern part of the study area (stations: Sarab, Khalkhal, Takab, Tabriz and Mianeh). So the pattern of cluster drought in the North West of Iran in 2008 is on the first and fourth quarter. The results of this index showed that drought and rain periods are similar in the studied stations. The results of the application of Moran's index about identifying spatial distribution of drought patterns showed that The values of the different years during the period, have a positive a positive coefficient close to 1 (Moran's I> 0.959344) and this shows that the spatial distribution of drought is clustered. The results of the standard score Z values and the P-Value proved the clustering of spatial distribution of drought.
The results of the analysis of G public value, In order to ensure the existence of areas with clusters of high and low values showed that The stations of Maku, Khoy, Salmas, Urmia, naghadeh, Mahabad, Piranshahr and Parsabad follow the moderate drought pattern in the region and are significant at the 0.99 level. Jolfa station also has a mild drought of 0.95 percent confidence level and for Sardasht station is significant in 0.90 percent. High drought pattern in Sarab, Khalkhal, Takab, Tabriz and Mianeh stations was significant in 0.99 percent level and also for Ardabil, Sahand and Maragheh stations very high drought pattern was significant in 0.95 percent level and for Meshkinshahr and Ahar high drought pattern is significant in 0.90 percent. By detection of clusters of drought and rain in the North West of Iran using Moran’s spatial analysis technique and G general statistics a full recognition of the drought affected areas in this region can be obtained and take the necessary measures in its management
Investigating the effect of desert micro-organisms on vegetative traits and yield of grapevine in Shiraz
Extended Abstract
Introduction
Mineral aerosols as a pollution of atmosphere has become a global concern with environmental impacts on human, Vegetable and transportation system. Plants exposed to aerosol exhibit morphological and physiological changes. Dust particles is one of the aerosols in the atmosphere which deposits on the leaf of plants can alter their available light of photosynthesis. This interferes with gas exchange of CO2 between the leaf and air of environment, and the reduction of leaf stomatal conductance. Finally reduction the yield of plants. Grapevines Vitis vinifera. Askari, are grown extensively in the Shiraz city. The period from March to July coincides with extensive shoot and fruit which these processes depend on environment conditions. Any stress reducing fruit set and leaf characterizes, will negatively affect grapevine productivity. Thus, the objective of this study was to examine the effects of dust deposits on grapevine leaves and to estimate the impact on vegetative traits and yield of grapevine.
Method
Experiments were implemented on 36 grapevines V.vinifera L. cv. Askari in the form of RCBD with drip irrigation during 2017-2018 from late March to July when the buds grow until the harvest. Treatments included: T1) artificial dust sprayed on canopy of vine by a manually operated duster, T2) washing canopy of vines using well water in the field after spraying artificial dust, and T3) control. Artificial dust particles were collected from uncultivated areas of Azadegan plain in Khuzestan province. To provide suitable fine particles, the soil was grinded, milled and sieved using a mesh size of 200 opening per inches. The physical and chemical tests were performed using an X-ray diffraction device. A dust chamber and a dust generator were constructed to simulate dust. A mechanical apparatus consisted of a 50-cm pipe and a ventilation fan was also used. The chamber was made of a plastic sheet with 2×2×1.5 m dimensions. To evaluate chlorophylls a and b concentration, used by spectrophotometer in wavelengths of 647 nm and 663 nm. Single Leaf Area Index (LAI) was calculated by image processing method Win-Area-Ut_10 system. The sugar content of grapes was determined by measuring the Refrectometer BME center index of their juice sugar. Also measured the RWC, fruit set percentage, Length of Branch Leaf Dry Weight and Yield.
Results
The mean of particle size was 10.6 μm and the chemical composition of these particles included Silicon Oxide, Sodium Sulfate, Na = 6.14 mg/L, K = 10.73 mg/L, Ca = 23.9 meq/L and Mg = 3.5 meq/L. Chlorophyll a and b content decreased by dust particles treatment in the throughout the phonological stages of grapevine and had a significantly different as compared to washing and control treatments. RWC was reduced in the dust treatment as compared to the washing and control treatment (P < 0.05). The maximum of Leaf Area Index (131 cm2) was obtained in the control and the minimum (86 cm2) was obtained in the dust treatment. The maximum percentage of fruit set was obtained in the washing treatment (24%). but, the lowest fruit set trait (18%) was found in the dust treatment. The highest TSS (22.7 %) was observed in the washing treatment and the lowest TSS (18.1%) was seen in the dust treatment. The difference among the numbers of berries among treatments was significant (P < 0.05). The highest and the lowest numbers of berries were observed in the washing treatment (87 berries per bunch) and the dust treatment (49 berries per bunch). The heaviest bunch was observed in the washing treatment (158.7 g), while the lightest bunch weight (100 g) was observed in the dust treatment which had significantly difference with control and washing treatments. The highest yield (22.5 kg/vine) was observed in the washing treatment and the lowest yield (7.9 kg/vine) was observed in the dust treatment, whereas control produced 19.5 kg/vine averagely.
Conclusion
It was found that dust accumulation on the surface of leaf grapevine Askari induces some physiological changes such as a reduction of photosynthetic pigments, relative water content and leaf area. Deposition of dust particles on flower of grape led to decrease of reproductive trait, but washing vine by water led to improvement of production. As a result, washing of vine also increased grape production as compared to the control treatment. According to the results, dust particles reduced fruit set by deposition on flower and they were identified as an environmental stress on grapevine. More importantly, the results revealed that yield of grapevine was adversely affected by dust deposits over a short interval of time during the fruit set. Therefore, the fruit set stage, in which the fruit is formed, was recognized as the most important stage in plant production. It was also found that removal of dust particles from the plant leaves by washing methods can reduce the effects of dust particles.
Keywords: Dust, Chlorophyll, Fruit, Sugar, Shiraz.
Page 1 from 1 |
© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts
Designed & Developed by : Yektaweb