Neda Kazemi, Maryam Sharifzadeh,
Volume 3, Issue 1 (4-2016)
Abstract
Frost is one of the sources of risk in agriculture which threatens the orchardists' performance and their security of products. The protection of cold-sensitive species of fruits against frost damage is an annual challenge in many growing regions of the world. Frost protection managerial behavior is the the first way to avoid or reduce the effects of frost damage to walnut trees. Application of active and passive methods of frost protection is effective under conditions of strong thermal inversions. However, most of studies on the adoption of managerial behaviors to environmental hazards usually ignore underlying psychological constructs that affect farmers’ decisions and behavior. Sepidan county is one the well-known regions of Fars province which is subjected to frost damage for its climatic nature. The amount of frost damage to walnut orchards of Komehr township, which is located in Northwest of Sepidan county is significantly substantial in recent years. The region is well-known for its walnuts and this product is the most important source of velliagers’ income. This research aims at investigating frost management behavior of walnut orchardists of Sepidan county, Fars province, Iran. The managerial behavior is composed of active and passive methods of protecting walnut trees to frost damage.
This applied study was based on descriptive correlational method. Data collection tools were structured questionnaires. The sample of this survey study was consisted of 90 orchardists of Komehr township. The sample orchardists were selected based on their vulnerability against frost. Structured questionnaires were used to collect information from a random sample of walnut orchardists that were interviewed. Face validity was confirmed by a panel of experts. And the reliability was confirmed by conducting a pilot study in Bardzard region. The calculated Cronbach’s alpha for the measures of the instrument were 0.53-0.82. Statistical package for social science (SPSS) in WINDOWS context was used for analyzing data. Coefficient of variation and cluster analysis was the most important analysis methods applied in this research.
Results revealed that active methods of frost protection includes burning fuel, tires etc., were the most common methods of controlling frost in walnut gardens. While using energy intensive practices (heaters, sprinklers) were shown the lowest rate of interest. However, orchardists' "perceived effectiveness", "perceived ease of use" and "perceived usefulness" of their active and passie controlling behavior was investigated. As it was shown by the results, orchardists' perception of effectiveness of the method of controlling frosts was in a low position. On the other words, they were not belived in the effectiveness of the methods. This was whilst, orchardists belived in ease of using the active and passive measures of controlling frost. They were noted that these methods had the potential of controlling damage to their gardens. Performing frost controlling methods was not easily applicable and garden's context was known as the most important barrier to performing the frost controlling behavior. To better understand orchardists' profile regarding to their frost protection behavior, cluter analysis was used. By means of this method, orchardists were categorized to two clusters: orchardists with convergent behavior with respect of frost protection protocol and divergent ones. Convergent group of orchardists (n=23, 25.5 %) were those who invested more on their gardens, used crop insurance supports, and more importantly they used lower levels of chemical products (poisons, fertilizers, etc.) on their gardens. On the other hand, divergent system of gardening regarding to frost protection pointed to the system of negative orientation towards rational thinking and behavior of gardening protection. These group of orchardist (n=67, 74.5%) were those who were performed eclologically dangerous methods of gardening regarding to use of pesticides, fertilizers and other chemical inputs. Low level of orientation towards crop insurance organizations and investment for the gardens were the most differtation factors for this group. However, results shed light on the difference of these two groups of orchardists regarding to their percievd effectiveness, ease of use and usefulness of frost protection methods. As it was shown by the results, frost protection- conevergent group of crchardists was significantly different from their divergent counterparts regarding their frost protection behavior and perception of ease of use and usefulness of frost protection methods. The aforementioned group of orchardists perceived frost protection methods easy to perform. From their viewpoints, these methods were useful in increasing crop yield, promoting its quality and controlling damge.
Zeinabe Sharifi, Mehdi Nooripour, Maryam Sharifzadeh,
Volume 4, Issue 2 (7-2017)
Abstract
Sustainable livelihoods approach as one of the new sustainable rural development approaches is one way of thinking and attempting to achieve development which arose in the late 1980s with the aim of progress and poverty alleviation in rural communities (Sojasi Ghidari et al.,2016).
Five critical concepts to understand sustainable livelihoods framework include the concept of vulnerability, livelihood assets, transforming structures and processes, livelihood strategies and livelihood outcomes (Motiee Langroodi et al,2012). According to the sustainable livelihoods framework, vulnerability is one of the fundamental concepts based on the vulnerability context (Forouzani et al.,2017). The vulnerability context forms the people's external environment. It comprises shocks (such as human, livestock or crop health shocks; natural hazards, like floods or earthquakes; economic shocks; conflicts in form of national or international wars) trends (such as demographic trends; resource trends; trends in governance), and seasonality (such as seasonality of prices, products or employment opportunities) and represents the part of the framework that is outside stakeholder’s control (Kollmair and Gamper, .(2002
Various research explored the factors influencing vulnerability and its dimensions and less research investigated to assess the vulnerability of rural households. Therefore, the purpose of this study is to investigate rural households' vulnerability in the Central District of Dena County. Accordingly, this research is to answer the following questions:
- What is the status of rural households' vulnerability to shocks?
- What is the status of rural households' vulnerability to trends?
- What is the status of rural households' vulnerability to seasonality?
The research method is applied in terms of purpose and non-experimental survey in terms of data collection. The statistical population of the study consisted of 2500 rural households in the Central District of Dena County, which according to Krejcie and Morgan table 300 households were selected using cluster random sampling.
The research tool for data collection was a structured and research-made questionnaire. Face validity was used in order to determine the validity of the questionnaire and the face validity of the research tool was confirmed by a panel of experts. A pre-test study was carried out in order to determine the reliability of the various sections of the questionnaire, Cronbach's alpha was calculated and reliability of the questionnaire was confirmed.
Vulnerability was measured using 20 questions and in three sections including shocks (8 items), trends (6 items) and seasonality (6 items) with a three-point Likert scale (low, medium and high) and SPSS software was used to analyze data.
The results of calculated vulnerability showed that the rural households had the most vulnerability to shocks including "causing damage to crops due to frost", "causing damage to crops due to drought" and "plant pests and diseases". In contrast, rural households had the lowest vulnerability to shocks including "family fights and ethnic conflict", "animal disease" and "illness of family members".
The respondents had the most vulnerability to the trends including "the rise in food prices and other life necessities" and "the rise in the price of energy carriers such as diesel, gasoline, etc.". In contrast, the respondents had the least vulnerability in trends including "gradual air pollution" and "increase in households' population".
The respondents had the most vulnerability to the seasonality including "lack of funds and capital in low working seasons" and "fluctuations in the prices of agricultural products". In contrast, the respondents had the least vulnerability to seasonality including "the impossibility of growing crops in different seasons" and "decrease and increase in the amount of agricultural production in different seasons".
The results showed that generally respondents’ vulnerability to shocks, trends and seasonality and the total vulnerability was at a medium level for the majority of the respondents (over 40%), at a high level for about 25 percent of the respondents, at a very high level for about 15 percent of the respondents and at a very low level for only about 10 percent of the respondents. Therefore, it could be concluded that more than half of the respondents' vulnerabilities was at a low and medium level.
Furthermore, in two groups with low and medium vulnerability, the average vulnerability to shocks, trends and seasonality are almost the same, whereas in two groups with high and very high vulnerability, the most vulnerability referred to seasonality, trends and shocks, respectively.
According to the research findings, the following suggestions are offered in order to reduce the vulnerability of rural households.
In order to reduce the vulnerability of rural households to shocks including "causing damage to crops due to frost", "causing damage to crops due to drought" and "plant pests and diseases", it is suggested that educational courses are held by the relevant organizations such as Agriculture Jihad in order to get familiar with ways to deal with damages caused by frost, drought and plant pests and disease. In addition, the use of heating system before the frost, the use of drought resistant varieties, the use of such techniques as land fallowing in order to reduce the need for water, the use of integrated pests management are offered as well in order to reduce the vulnerability of rural households.
Considering that the respondents had the most vulnerability to the trends including "the rise in food prices and other life necessities" and "the rise in the price of energy carriers such as diesel, gasoline, etc.", the rise in food prices as well as energy carriers in rural areas should be cautiously.
Founding loan fund in order to give loan and credit to households in low working seasons as well as determining a guaranteed price for agricultural products by the relevant authorities to reduce the volatility of agricultural prices are recommended.
Changiz Seravani, Gholamhossein Abdollahzadeh, Mohammad Sharif Sharifzadeh, Khalil Ghorbani,
Volume 8, Issue 2 (9-2021)
Abstract
Zoning map Vulnerability of Flood Spreading areas
(Case study: Musian Flood spreading station in Ilam province)
Introduction
One of the flood plain hazards is a change in the pattern of surface flows due to natural factors or human activities. Changes in the stream pattern are the changes that occur due to the surface stream patterns in terms of the shape of the drains, drainage form and quantitative morphological indices of the basin. These changes ,by formation of flood, submersibility, erosion, longitudinal and transverse displacements of rivers and streams, environmental degradation, etc., have a great deal of risk and harm to residents of the land adjacent to the watersheds, including the demolition of residential buildings, valuable agriculture lands, facilities, river structures, buildings and relation routes, etc. There are several watersheds in the Musian Plain Basin that regularly change the direction of surface streams and, while displacing large volumes of sediments of erosion-sensitive structures, degrades crops, rural dwellings, connection paths, facilities, Irrigation canals obstruction, water supply and a lot of financial and physical damage to the residents of the region. Therefore, in order to solve these problems, in 1997, the Dehloran flood spreading plan was carried out at a level of 5000 hectares from the Basin of Musian Plain. Although some of the changes in the dynamics of the region, such as stream pattern, flood control, supllying groundwater aquifers, etc., have been caused by the implementation of this plan, but the problem of the concentration of watersheds behind the embankments composed of sensitive formations ,and the release of these areas will have many financial and even physical losses. Therefore, with the implementation of this research, it is attempted to identify the domain and risks that threaten the lowlands and to identify the appropriate measures to prevent them from happening with the zoning and inspection of the vulnerable areas of the Musain Plain.
Methodology
This study was conducted in five stages to prepare a vulnerability map of the flood spreading area of Mosian plain. First, the implementation phases of the flood distribution plan were separated. In the second stage, information layers of effective factors in changing the flow pattern and concentration of surface currents behind the flood spreading structures were prepared. These layers included elevation, slope, and direction classes, which were prepared based on the Digital Elevation Model (DEM) extracted from the 1: 50,000 topographic maps of the Armed Forces Geographical Organization, as well as the layers of geological formations and land use changes. The lands were prepared based on the maps of the Geological Survey of Iran and the processing of Landsat satellite images of eight OLI sensors in 2013, respectively, by the method of determining educational samples. In the third stage, each class of effective factors in changing the flow pattern (mentioned layers) was given a score based on the range of zero to 10. The basis of the scores of the classes of each factor was according to the number of classes and the average of the total classes of that factor. The fourth stage in the GIS environment was created by combining the weight layers created, the vulnerability layer of the study area (quantitative map of vulnerability areas) of the basin. Then, by analyzing the vulnerability layer (filtering), the pixels and small units were removed or merged into larger units. The last (fifth) step was to classify the quantitative layer and then extract the qualitative map of the vulnerability zoning according to the range of scores based on the five very low, low, medium, severe and very severe classes. A summary of the research steps is shown in the form of a diagram.
Results and Discussion
The results showed that the most important threat and danger factor is the concentration of waterways behind erosion-sensitive embankments. Also, the study area in terms of vulnerability includes three classes with medium risk, high and very high and covers 16, 62 and 22% of the area, respectively. Flood and upland Spreading areas, risk areas and lowland lands are the most vulnerable parts of the basin in terms of floods and sedimentary deposits.
Conclusion
Based on the results obtained by combining the information layersof the factors influencing the stream pattern change, the zoning map of vulnerable areas of the region was created in 5 classes. Except for very few and very small classes that are not present in the region, there are other cases at the basin level:
Medium class:Includes about 16% of the basin. The existing watersheds in this part are ranked 1th class, and some of them are entering the rivers of Dojraj and Chiqab in the eastern and western parts. The formations of this part are often Bakhtyari and limitedly Aghajari. The floors have a height of 100 to 400 meters and the gradient is from 0-2 percent to 20 percent.
Medium class: About 62% of the basin level. The watersheds that flow in this section are in 1to 5 class. The formations of this part are often alluvial and bakhtiari of lahbori sections. It has a height of less than 100 meters to 300 meters and a gradient of 2-0 percent to 20 percent.
very intense: it covers about 22% of the basin's surface. The existing watersheds are of of class 2 and 3. The formations of this part are often alluvial and bakhtiari of lahbori sections. They have height classes of 100 to 300 meters and the gradient is 5-2 percent and is limited to 5 to 10 percent in the slopes.
Keywords: Vulnerability, Aquifer, zoning, Satellite imagery, Environmental hazards, Musian