Showing 193 results for Si
Phd Bohloul Alijani, Phd Mohammad Hosein Naserzadeh, Phd Hasan Ghazi, Mohammad Mohammadi,
Volume 8, Issue 4 (1-2021)
Abstract
Combat readiness in military units indicates the ability of the unit to perform military missions. To conduct research and extract weather threats in the southeastern region, data from 19 synoptic stations with a statistical period of 22 years were used and to prioritize weather threats, combat readiness criteria were used. Dust storms, heat stress, heavy rainfall and sultry conditions were identified as the most important weather threats affecting combat readiness in the region. Based on the hierarchical analysis of dust storms, the most important and effective threat to the combat readiness of military units was identified, the incompatibility rate was calculated and its value was less than 0.1, so pairwise comparison, weighting and prioritization of threats were confirmed. The zoning map of each weather threats was prepared in GIS software and finally, using the weight of each weather threats, it was obtained by combining the zoning maps of the identified threats and using fuzzy hierarchical analysis, a comprehensive map of weather threats was prepared. Zabol and Zahak synoptic stations in spring, the whole region in summer, Saravan station in autumn and Iranshahr, Saravan, Minab and Kahnooj stations in winter are the worst places for military units and also in autumn the lowest frequency of hazards in the region. We witnessed and based on weather maps, this season was recognized as the best season for the deployment and operation of military units in the region.
Omid Ashkriz, Fatemeh Falahati, Amir Garakani,
Volume 8, Issue 4 (1-2021)
Abstract
The growth of settlements and the increase of human activities in the floodplains, especially the banks of rivers and flood-prone places, have increased the amount of capital caused by this risk. Therefore, it is very important to determine the extent of the watershed in order to increase risk reduction planning, preparedness and response and reopening of this risk. The present study uses the common pattern of the machine and the classification of Sentinel 2 images to produce land cover maps, in order to construct sandy areas and determine land issues affected by the flood of March 2018 in Aqqla city. Also, in order to check and increase the accuracy of the algorithms, three software indices of vegetation cover (NDVI), water areas (MNDWI) and built-up land (NDBI) were used using images. The different sets of setting of each algorithm were evaluated by cross-validation method in order to determine their effect on the accuracy of the results and prevent the optimistic acquisition of spatial correlation from the training and test samples. The results show that the combination of different indices in order to increase the overall accuracy of the algorithms and to produce land cover maps, the forest algorithm is used with an accuracy of 83.08% due to the use of the collection method of higher accuracy and generalizability than compared to. Other algorithms of support vector machine and neural network with accuracy of 79.11% and 75.44% of attention respectively. After determining the most accurate algorithm, the map of flood zones was produced using the forest algorithm in two classes of irrigated and non-irrigated lands, and the overall accuracy of the algorithm in the most optimal models and by combining vegetation indices (MNDWI) was 93.40%. Then, with overlapping maps of land cover and flood plains, the surface of built-up land, agricultural land and green space covered by flood was 4.2008 and 41.0772 square kilometers, respectively.
Tahmineh Chehre Ara,
Volume 9, Issue 1 (5-2022)
Abstract
Investigating the role of atmospheric circulation patterns in the severe air pollution in Esfahan
Introduction
The atmosphere is a dynamic system in which a large number of physical and chemical processes occur simultaneously. Studying the dynamics and transmission of pollutants in the atmosphere using atmospheric patterns is one of the important topics in this field. Atmospheric patterns simulate the occurrence of different processes within the atmosphere and their interactions. Using an atmospheric model also requires comparing the results of the model with field and laboratory experiments. This helps in understanding the occurrence of chemical and physical processes in the atmosphere as well as evaluating the implementation of a suitable model. Laboratory measurements provide valuable information while at the same time visualizing and describing atmospheric properties and atmospheric composition at specific time and space intervals. An atmospheric model provides a complete picture of the evolution of spatial and temporal variations in atmospheric pollutants at different altitudes. Understanding atmospheric dynamics can be understanded by combining measurements and integrated modeling with using synoptic systems in periods with pollutated air. Therefore, in this study, it has been attempted to analyze the atmospheric factors that cause severe pollution in Esfahan and the relationship and mechanism of the atmosphere at the time of occurrence of this phenomenon.
Data and methods
In this study, three datasets including pollution data recorded at air pollution stations, digital atmospheric data and high atmospheric stations were used. The air pollution data are from three stations of Laleh Square, Azadi and Bozorgmehr which were obtained from Esfahan General Environmental Protection Office. The pollutants include carbon monoxide, nitrogen dioxide, sulfur dioxide, ozone and suspended particulate matter (PM10), which have been prepared and processed daily for a 12-year statistical period (1995-2005). To study atmospheric conditions were used re-analyzed data from the National Center for Environmental Prediction (NCEP / NCAR) include sea level pressure, geopotential height, vertical velocity (Omega), wind orbital components (U), and meridian wind ( V) was used for different levels of atmosphere.
The above atmospheric data were obtained from the University of Wyoming site for the study days, including air temperature, dew point temperature, wind direction and intensity, and atmospheric stability and instability conditions (based on skew-t curves). In this study, a Lagrangian model with the capability of tracking particle backward in different levels of atmosphere called HYSPLIT was used to investigate the days associated with severe pollution.
Results and discussion
The results show that the highly pollutated days of the city of Esfahan can be explained by the four synoptic patterns. The occurrence of days with extremely severe pollution in Esfahan, rather than being rooted in local factors, is due to the interaction of local conditions with atmospheric circulation at the regional scale. In other words, the city of Esfahan will only experience extremely polluted days when the atmospheric circulation of the atmosphere provides conditions for increased concentrations of pollutants.
The main causes of the occurrence of days associated with maximum contamination can be attributed to Subtropical high latitude and its progression to higher latitudes. This circulation system contributes to the occurrence of highly polluted days on most days, either directly or in combination with other atmospheric systems.
The role of local factors such as the formation of inversion layer and the increase of atmospheric thickness due to the dominance of high pressure systems in the region can also be considered to exacerbate the conditions.
The use of suspended particle backward models and the study of atmospheric thermodynamic relationships have provided a deeper and more accurate understanding of the mechanisms dominating the occurrence of pollutants in Esfahan.
The results of this method showed that the occurrence of highly polluted days in the city of Esfahan can not be attributed to urban pollutants such as industrial factories of automobiles and so the influx of particulate matter from different areas has caused higher intensity pollution.
Conclusion
The results showed that four factors and patterns prevailed in the middle of the atmosphere at the time of the most severe days pollution in Esfahan. The results of the PSI values in each pattern showed respectively from pattern of one to four, is 221, 238.6, 203 and 281.
The synoptic conditions can be attributed to the presence of tropical high pressure, which is accompanied by a layer of temperature inversion in the lower levels of the atmosphere and the middle troposphere.
Strength of negative vorticity above 700 hPa and continued surface convergence to this altitude have made the nature of the summer atmosphere clearly observed in the pollution event in the city, which has been enhanced by strong anomalies.
On the other hand, the output of the HYSPLIT model showed that the occurrence of highly polluted days in the city of Esfahan could not be detected in urban pollutants such as automobile industrial plants and. But, the influx of particulate matter from different areas has made the pollution more intense, and the influx of dust particles has exacerbated this hazard.
Keywords: Air Pollution, PSI Index, Atmospheric Regional Circulation Patterns, HYSPLIT Model, Esfahan
Dr Hassan Lashkari, Dr Zainab Mohammadi,
Volume 9, Issue 1 (5-2022)
Abstract
Synoptic analysis of the changes trend of the share of systems due to the Sudan low
In the cold period of the Persian Gulf coast during 1976-2017
Introduction
In the Ethiopian-Sudan range forms the low pressure system without front in the cold and transition seasons that is affecting the climate of the adjacent regions by crossing the Red sea. Based on the evidence in the context of Iran, studying Sudan low was first begun by Olfat in 1968. Olfat refers to low pressures which are formed in northeastern Africa and the Red Sea and then pass Saudi Arabia and the Persian Gulf, enter Iran, and finally, cause rainfall. The most comprehensive research specifically examining Sudan low, was the work carried out by the Lashkari in 1996. While he studying the floods that occurred in southwestern of Iran, he was identified Sudan low by the most important cause of such flooding and he explained how they are formed, and how these low-pressure systems were deployed on the southwest of Iran.
Materials and methods
The study period with long-term variations was considered from 9.5 to 11 years based on solar cycles. Precipitation data for 13 synoptic stations are considered above 5 mm in south and southwestern Iran. With three criteria were determined for the days of rainfall caused by each type of atmospheric system. The visual analysis of high and low altitude cores and geopotential height at 1000 hPa pressure level (El-Fandy, 1950a; Lashkari, 1996; 2002) were considered based on the aim of the study. Accordingly, the approximate locations of activity centers, as well as the range of the formation and displacement of the Sudan system were initially identified based on the location of the formation of low and high-pressure cores. Then, the rainy days due to the Sudan system in January were separated from the precipitation of the other atmospheric system.
Results and discussion
According to the selected criteria in the forty-year statistical period, 507 precipitation systems were identified with different continuities that led to precipitation in the northern coast of the Persian Gulf. The pattern of independent Sudan low rainfall was responsible for 77% of the precipitation in the Persian Gulf. Decade frequency share of Sudan low was lower in the first decade (16%) compared to the next three decades. This system of rainfall was more activated during the second and third decades compared to the first decade. However, rainfall changes were not evident in the mid-decade. Independent Sudan low precipitation provide 25% and 27% of the cold season precipitation of the Persian Gulf during the second and third decades respectively. In accordance with the 24th solar cycle, at the end of the study period, the Sudan low was more effective on the Gulf coast than ever before. During this decade, 125 cases of Sudan low rainfall was recorded for the Persian Gulf. Thus, the frequency of Sudan low during the fourth decade was about 31%, which was higher than in the rest of the decade. Overall, the Sudan low rainfall was repeated 151 times for 2 days rainfall, during the statistical period studied. This Precipitation has increased over the last decades compared to other periods.
Conclusion
The severe variability of rainfall along the timing and location of the permanent Persian Gulf coasts can have a significant impact on the economic and agricultural behavior of the Gulf population in the three provinces of Ahwaz, Bushehr and Hormozgan.The purpose of this study was to evaluate the precipitation changes due to Sudan low in the Persian Gulf coastal region during the cold period. The results of this study showed that the role of integration patterns in influencing the precipitation of the Persian Gulf coast has decreased with the strengthening and further activation of the Sudan low system during the last two decades. That way, about 77percent of the region's rainfall is provided by independent Sudan low. At the end of the course (in accordance with 24th solar cycle activity) the Sudan low system was more active than before. Although the Sudan low activity was different at each station during the period studied, but in the historical passage incremental and decade's positive behavior of Sudan low was common to all stations. Evaluation of changes in rainfall duration shows that the pattern of precipitation with 2days duration is more frequent than the patterns of one to several days.
Keywords: Sudan low- Solar cycle- Persian Gulf.
Mrs Zeinab Shogrkhodaei, Dr. Amanollah Fathnia, Mr Vahid Razavi Termeh,
Volume 9, Issue 1 (5-2022)
Abstract
Study the Effects of Covid-19 on Air Pollutants by Using Sentinel-5 Satellite Images (Case Study: Metropolises of Tehran, Isfahan, and Mashhad)
Zeinab shogrkhodaei, PHD. Student of Climatology, Faculty of Literature and Humanities, Department of Geography, Razi University
Amanollah Fathnia*, Assistant Professor of Climatology, Faculty of Literature and Humanities, Department of Geography, Razi University
Vahid Razavi Termeh, PHD. Student of GIS, Faculty of Geodesy and Geomantic, K. N. Toosi University.
Introduction
One of the challenges facing the international community right now is Covid-19. This pandemic has caused a comprehensive change in behavior contrary to the usual routine, which can lead to changes in people's lifestyles (Briz-Redón et al., 2021). The prevalence of this disease has not only affected the economy and health, but also the environment (Sohrabi et al., 2020). Among the effects of Covid-19 on the environment are the effects on beaches, noise, surface and groundwater, municipal solid waste, and air quality (Zambrano-Monserrate et al., 2020). The restrictions applied during the Covid-19 era were accompanied by a reduction in greenhouse gas emissions by transport and industry, which affected air quality (Rybarczyk and Zalakeviciute, 2020). Air is a vital element for the survival of all living things, but human activities have caused the release of many harmful pollutants into the atmosphere and endangered human health (Ghorani-Azam et al., 2016). Among the causes of death, air pollution is the fourth leading cause of death in the world after tobacco (WHO, 2020a). Sulfur dioxide, nitrogen oxide, carbon monoxide, and ozone are some of the pollutants that cause short-term or long-term exposure to heart and lung disease (Briz-Redón et al., 2021). Human activities are one of the main sources of air pollutants, so their concentration is expected to decrease during the Covid-19 period (Ghahremanloo et al., 2021).
Materials and methods
In this study, the required data were the average monthly pollutants of sulfur dioxide, nitrogen dioxide, carbon monoxide and ozone before (20 February 2019 to 20 February 2020) and after (20 February 2020 to 20 February 2021) the prevalence of Covid-19 virus. For this purpose, Sentinel-5P satellite images were used to prepare the required data set. The case study included three metropolises of Tehran, Mashhad, and Isfahan. Google Earth Engine was used to access Sentinel-5P satellite images. The final output of the images for each pollutant was interpolated for better display and exposure in GIS software using the kriging method. Then, a T-test was used to compare the differences between the concentrations of contaminants before and after the outbreak of the Covid-19 virus and to evaluate the mean correlation. Based on this test, values that were p-value <0.05 were considered significant. This was considered as a change in the concentration of the contaminant before and after the Covid-19 virus (decreasing or increasing). Those pollutants with a p-value <0.05 were considered unchanged.
Results and Discussion
Analysis of the T-test showed that for pollutants such as sulfur dioxide, nitrogen dioxide, and carbon monoxide in all three metropolises, there was no significant change in their concentration before and after the outbreak of the Covid-19 virus. However, significant changes were observed for ozone pollutants. Also, its concentration trend in all three metropolises has been a decreasing trend. The main sources of emissions of nitrogen dioxide, carbon monoxide, sulfur dioxide, and ozone are related to human activities, including transportation and industry (Ghahremanloo et al., 2021; Cárcel-Carras et al., 2021). Pollutants such as carbon monoxide, nitrogen dioxide and sulfur dioxide are the primary pollutants; It means that they are emitted directly from sources, while ozone is a secondary pollutant and depends on complex and nonlinear atmospheric chemistry (Bekbulat et al., 2021). Given that the concentration of ozone surface decreases significantly with increasing concentration of nitrogen dioxide. When nitric oxide (NO) emissions are high enough, the NO released into the atmosphere converts a large portion of ozone to nitrogen dioxide (Hashim et al., 2021). In addition, in all three cities, when the concentration of nitrogen dioxide increased, we saw a decrease in the amount of ozone concentration. In addition, during the Covid-19 era, many industries that produced primary pollutants, including carbon monoxide, nitrogen dioxide, and sulfur dioxide, were not on the closure list or were telecommuted. Despite the decline in the performance of some activities, important sectors such as manufacturing plants, industrial and mining centers, agriculture, and public transportation have continued to operate even during severe restrictions. The mean difference between the concentrations of nitrogen dioxide before and after the outbreak of Covid-19 was positive. However, this average difference is small. However, the concentration of nitrogen dioxide is slightly increased, especially in cold seasons; Therefore, it can be said that ozone concentration has decreased.
Keywords: Covid-19, Air Pollutants, Remote Sensing, Sentinel-5.
Nader Shohani, Lotfali Kozegar Kalj, Sajad Darabi, Said Yousefi Babadi,
Volume 9, Issue 1 (5-2022)
Abstract
Pandemic Covid-19 (Corona); Tehran's resilience against it
Nader Shohani; Assistant Professor, Department of Geography and Urban Planning, Payame Noor University. Tehran Iran
Lotfali College Potter; Associate Professor, Department of Geography and Urban Planning, Shahid Beheshti University, Tehran, Iran
Sajjad Darabi; PhD Student, Department of Geography and Urban Planning, Shahid Beheshti University, Tehran, Iran
Saeed Yousefi Babadi; PhD student, Department of Geography and Urban Planning, Shahid Beheshti University, Tehran, Iran
Abstract
One of the dangers that has caused cities to face a serious crisis is the outbreak of Covid-19 disease. The corona pandemic has taken cities out of their normal routine. Therefore, cities seek to return to their past conditions and urban resilience as soon as possible. Research Method In this descriptive-analytical study, using field survey, four economic, social, managerial-institutional and infrastructural dimensions in the form of 29 items have examined the resilience of Tehran against Corona pandemic. In research, support and advocacy for affected businesses, insurance coverage, support for affected manufacturing sectors, are in the most unfavorable situation. The results obtained from the final table of Vikor technique show that the economic index with a score of 1 is the most important component of resilience against coronavirus, which is lower than other components of resilience. After that, the managerial-institutional component with a score of 0.94 and the infrastructure component with a score of 0.92 in the next ranks are the most important components of Tehran's resilience against coronavirus. The results show that the metropolis of Tehran is not in a favorable position in relation to the corona virus and is not resilient to selected indicators and the economic index has the most impact and the social index has the least impact on the resilience of Tehran.
Keywords: Urban Resilience, Covid 19, Pandemic, Tehran
Pandemic Covid-19 (Corona);
Tehran's resilience against it
Mehrdad Hadipour, Mahdye Heidari, Mohammadali Zahed, Seyedhosein Hoseini Lavasani,
Volume 9, Issue 1 (5-2022)
Abstract
Investigation of Construction Wastes Release in Roadside Using AHP
Introduction
Although construction waste is an integral part of municipal waste, due to the differences between this waste and waste and environmental issues, a suitable model should be designed for optimal productivity and acquisition of resources. The increasing volume of urban materials and rubbish, especially the rubbish from the destruction of their construction and worn-out urban textures, has created many problems in large cities, as well as environmental problems that have arisen due to unprincipled and unprofessional disposal of these materials. Has attracted these materials. Research shows that the amount of this waste is equal to 10 to 15% of the total materials used in construction operations. This amount is much higher than what is estimated by the estimators.
Data and research method
In Iran and other developing countries, construction and construction waste is a major part of municipal waste, which in addition to high costs for its disposal, also has adverse consequences on the environment. The volume of this garbage is so much that now this issue has become a social and environmental problem not only in Iran but also in developed countries due to the limitation of natural resources and preservation of national capital for future generations as well as environmental protection And it is necessary because with proper management and efficient planning and reducing the volume of construction waste, not only the waste of natural resources and national capital is prevented, but also additional and ancillary costs are reduced and it is economically beneficial.
In this study, first, the effective criteria in selecting the burial site in the study area are determined. These criteria are reviewed and used by various standards, including standards related to the Environmental Protection Organization, the Ministry of Interior and international standards, as well as by reviewing resources and studies on the process of locating landfills in the country and abroad and by examining the conditions of the region. The study and the influencing factors are compiled in the study area. The layers related to each criterion in the relevant table will be prepared, processed and converted from the relevant organizations. The method of this dissertation is applied-modeling in terms of purpose, because on the one hand, the concepts and rules related to the field of knowledge are carefully analyzed, and on the other hand, the relationships between these concepts and rules are evaluated and determined by experts. In this study, there is a need to use the decision theory method to evaluate and investigate the status of construction waste disposal along roads to increase trust and confidence in decision making.
The data analysis tools of this research are SPSS, Expert Choice and Matlab for conducting the research. In the research process, after data collection, the next step involves data analysis. Cronbach's alpha coefficient was used to evaluate the reliability of the localization tools of the research components. In order to describe the data, the mean and standard deviation of the research data have been used.
The four-step process of multi-criteria decision-making process and fuzzy logic calculations to investigate the dumping of construction debris along roadsides is as follows:
Step 1 - Modeling causal relationships based on similarity to the ideal solution
Step 2 - Parallel comparisons and determining the weight of causal relationships based on the evaluation of decision options between the criteria for assessing the status of construction debris on the sidewalks,
Step 3 - Prioritize Based on Causal Relationships Based on Evaluation of Decision Options
Step 4 - Fuzzy Prioritization and Final Analysis Investigation of Construction Waste Disposal Status
Result and Discussion
The most important results of the study of the dumping of construction debris along the roadsides are that,
1- The most important criterion in the cluster "Environmental factors of construction waste disposal" with code (A), "Soil pollution in the city" with code (AB) with fuzzy network weight of 0.096; And
2- The most important criteria in the cluster "Applications of GIS in urban management of construction debris disposal" with code (B), "Urban green space management" with code (BA) with fuzzy network weight equal to 0.191; And "Urban management related to health" with code (BB) with fuzzy network weight equal to 0.120; Were calculated. on the other hand,
3- The most important criterion in the cluster "Economic factors of construction waste disposal" with code (C), "Construction waste management training cost" with code (CD) with fuzzy network weight equal to 0.123; Prioritized,
conclusion
The results of the present study can be said that, after reviewing the theoretical foundations of the research and reviewing the research background, it was found that due to research gaps in the fields of economic factors of construction waste disposal, GIS applications in urban management, construction waste disposal, environmental factors, Utilization of a combined fuzzy multi-criteria decision-making methodology to investigate the status of construction debris dumping along roadsides; It is possible to realize the innovation of the present research in filling the mentioned research gaps.
Key words: Construction Debris, Civil Waste Management, Multi-Criteria Decision Making, Karaj.
Dr Fariba Esfandiari Darabad, Dr Raoof Mostafazadeh, Eng. Amir Hesam Pasban, Eng. Behrouz Behruoz Nezafat Takleh,
Volume 9, Issue 1 (5-2022)
Abstract
Soil erosion is one of the environmental problems that is a threat to natural resources, agriculture and the environment, and in this regard, assessing the temporal and spatial amount of soil erosion has an effective role in management, erosion control and watershed management. The main aim of this study was to estimate soil erosion in Amoqin watershed and its relationship with well-known vegetation-based and topographic-related indices. The meteorological data has been used to determine the rainfall erosivity. The rainfall erosivity index was calculated using the modified Fournier index during the 10-year available recorded rainfall data. The value of LS factor has been calculate using digital elevation model. Meanwhile, C and P factors were determined based on the utilization scheme and condition of the study area. Data were analyzed and processed using ArcMap 10.1, ENVI 5.3, and Excel software. In this study, RUSLE model was used to estimate soil erosion, in GIS environment. According to the results, the amount of factor R in Amoqin watershed varies from 12.32 to 50.52 MJ/ha/h per year. The variation of soil erodibility index (K) over the study area is between 0.25 to 0.42. The amount of LS factor varies between 0.19 and 0.38, which is more in high slopes, especially around the waterways and uplands of the study area. The variation of C factor was estimated to be around -0.18 to 0.4. In general, it can be said that the central part of Amoqin watershed has less C value due to the greater area of agricultural activities and the highest amount is related to western areas, especially southwest areas because existing the rangeland areas. Due to the lack of protective measures in the study area, the amount of factor P was considered as unity for the whole region. The base layers of RUSLE factors were obtained and overlayed in GIS to calculate the soil loss in tons per hectare per year. The map of annual soil loss indicate that the erosion amounts varies between 1.21 to 5.53 tons per hectare per year in different parts of the study area. According to the results, the vegetation factor with a coefficient of determination 0.47% had a significant correlation with soil loss. The stream power index with the coefficient of determination of % 0.07% had the lowest correlation with soil erosion values.
Dr. Mostafa Karimi, Norouzi Fahimeh, Dr. Mahnaz Jafari, Dr. Khoshakhlagh Faramarz, Dr. Shamsipour Aliakbar,
Volume 9, Issue 1 (5-2022)
Abstract
Vulnerability assessment of Miangaran wetland ecosystem
To support the proper management of ecosystems, vulnerability analysis of ecosystems is very important. Vulnerability analysis of ecosystems provides information about weaknesses and capacity of the studied ecosystem for recovery after damage. Considering the degradation status of Miangaran wetland, vulnerability evaluation of this wetland is one of the most important management methods in the region. For this purpose, in this study, after identifying and evaluating the threatening factors of Miangaran wetland, these factors were scored using evaluation matrices. Then, the interaction between these values and threatening factors was examined and the vulnerability of wetland values was obtained by multiplying the scores of all studied factors. Finally, management solutions were presented to deal with the most important threatening factors. According to the results, the most vulnerability is to the hydrological and ecological values of the wetland. The highest effects of threats on the ecological value are also on the birds of Miangaran wetland. The results of the evaluation of Miangaran Wetland show that this wetland has a high potential for ecosystem functions of the wetland. These functions have been neglected in the planning and managing of wetlands at the local, regional and national levels. As a result, ecosystem-based management is suggested as the best management approach. The management in these areas should take action to prevent the vulnerability of Miangaran wetland. Also, the vulnerability evaluation method used in this study can provide a good understanding of the relationship between wetland functions and the resulting services for the management of the ecosystem of Miangaran Wetland.
Key words: Miangaran wetland, ecosystem management, vulnerability assessment
Dr Ahmad Hosseini, Dr Emad Ashtarinezhad,
Volume 9, Issue 2 (9-2022)
Abstract
Predicting the average annual maximum wind speed in Sistan region using spatio-temporal regression method
: Abstract
The wind is a quantitative vector that moves from high-pressure centers to low-pressure centers and is measured by two factors, the direction of the wind, which originates from the north and increases in degrees clockwise, and the wind speed, which is the horizontal flow. Air is measured in units of time. The wind speed can move colloidal particles, including clay and silt, from the site of destruction to a distance of hundreds of kilometers. Studies show that most dust days occur in the eastern regions of the country so that in the range of 120-day winds in Sistan, the frequency of dust per year reaches more than 150 days. Moreover, the prediction of numerical values of maximum annual wind speed using the Spatio-temporal regression method was considered in this study. Error variance and alignment analysis using variance inflation index showed that numerical models of the Spatio-temporal regression of data could predict the Average maximum wind speed in the coming years. The results also show that regression Spatio-temporal until 2022 can predict wind speed.
The numerical model indicates that the lowest annual average wind speed from 2019 to 2022 is related to the Ghaen station. Its forecast trend shows that by 2022, the average annual wind speed will decrease. The highest annual average wind speed is related to Zabol station, in which the forecast trend of this station shows that the average annual wind speed will decrease by 2022.
Keywords: Spatio-temporal regression, Wind speed prediction, Sistan region
Eng. Ebrahim Asgari, Eng. Mahboobeh Noori, Dr Mohammadreza Rezaei, Dr Raoof Mostafazadeh,
Volume 9, Issue 2 (9-2022)
Abstract
Determining Strategies for Improving Environmental Resilience in Gharehshiran Watershed in Ardabil using SOAR Analysis Technique
Ebrahim Asgari - PhD Student of Watershed Science & Engineering, Yazd University, Yazd, Iran. Email: ebrahim.asgari90@yahoo.com
Mahboobeh Noori - PhD Student of Geography & Urban Planning, Yazd University, Yazd, Iran. Email: mnori@stu.yazd.ac.ir
MohammadReza Rezaei - Associate Professor of Geography and Urban Planning, Yazd University, Yazd, Iran. Email: mrezaei@yazd.ac.ir
Raoof Mostafazadeh - Associate Professor Department of Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. Email: raoofmostafazadeh@uma.ac.ir (Corresponding author)
Extended Abstract
Introduction: New approaches of crisis management have changed from the concepts of vulnerability to resilience and emphasize on strengthening the system's ability to deal with the risks of natural disasters. Therfore, the aim of this study was identifying the watershed capabilities of Qarahshiran and crisis management planning with emphasis on environmental resilience.
Methodology: The SOAR analytical technique and expert opinions of 52 experts were used to formulate the strategy, determine the strengths, opportunities, ideals and measurable results. The results of SOAR technique and crisis management prevention and preparedness strategies were compared with the environmental resilience of the field.
Results: Based on the results, reducing direct and indirect flood damage with 51.9% and low amount of soil erosion and water loss with 42.3%, were the most important results of the SOAR model. Out of 15 components of environmental resilience, the performance of 5 components was accepted as significant (α<0.05 confidence level). The evaluation of environmental resilience using one-sample t-test showed that the environmental dimension of resilience (2.67) with a significant level (α=0.003) has a significant that indicates high vulnerability and low resilience.
Conclusion: Considering site selection of watershed management structures, creating more opportunities and using the private sector potentials, and local NGOs will be useful in crisis management. Analysis of watershed resilience components in achieving integrated watershed management, proper knowledge of watershed function, possibility of self-regulation and recovery of balance and acceptance of adaptation to natural hazards, co-design of watershed residents, preparedness and coping with crisis can be more effective over the study area.
Key words: SOAR Model, Strategic Planning, Prevention and Preparedness, Resilience, Gharehshiran Watershed
Hamed Heidari, Darush Yarahmadi, Hamid Mirhashemi,
Volume 9, Issue 2 (9-2022)
Abstract
Revealing surface reflection forcings of land cover in Lorestan province using MODIS sensor products
Introduction
Human interventions in natural areas as a change in land use have led to a domino effect of anomalies and then environmental hazards. These extensive and cumulative changes in land cover and land use have manifested themselves in the form of anomalies such as the formation of severe runoff, soil erosion, the spread of desertification, and salinization of the soil. The main purpose of this study is to reveal the temperature inductions of the land cover structure of Lorestan province and to analyze the effect of land use changes on the temperature structure of the province. In this regard, the data of land cover classes of MCD12Q2 composite product and ground temperature of MOD11A2 product of MODIS sensor were used. Also, in order to detect the temperature inductions of each land cover during the hot and cold seasons, cross-analysis matrix (CTM) technique was used. The results showed that in general in Lorestan province 5 cover classes including: forest lands, pastures, agricultural lands, constructed lands and barren lands could be detected. The results of cross-matrix analysis showed that in hot and cold seasons, forest cover (IGBP code 5) with a temperature of 48 ° C and urban and residential land cover (IGBP code 13) with a temperature of 16 ° C as the hottest land use, respectively. They count. In addition, it was observed that the thermal inductions of land cover in the warm season are minimized and there is no significant difference between the temperature structure of land cover classes; But in the cold season, the thermal impulses of land cover are more pronounced. The results of analysis of variance test showed that in the cold period of the year, unlike the warm period of the year, different land cover classes; Significantly (Sig = 0.026) has created different thermal impressions in the province. Scheffe's post hoc analysis indicated that this was the difference between rangeland cover classes and billet up cover.
materials and Method
In this study, to reveal the relationship between land cover levels and different land use classes, cross-information matrix analysis was used in the ARC-GIS software platform. Since one of the main objectives of the study was to investigate and reveal the albedo inductions of land cover classes in Lorestan province, so the relationship between these two factors was investigated by cross-matrix analysis technique. In this regard, two sets of data were used. The first set of data was related to land cover classes of MODIS sensor composite product with a spatial resolution of 1 km and hierarchical data format (MCD
12(Q2 (MCD product) which was obtained from the database of this sensor
Conclusion
Land cover classes or perhaps it can be said that land use is one of the most important shapers and determinants of climate near the earth. In this study, it was observed that in general, 5 major land cover classes in the province are separable, among which rangeland and forest lands account for 85% of the total land cover of the province. On the other hand, it was seen in this study that the average spatial albedo of the province in spring, autumn and winter is about 0.2, which is very close to the global value of this component, but in winter the average value of this index in the province reaches 0.3, which can be increased Shows attention. The five land cover classes in the province had their own unique albido induction in winter, which was separable and distinct from each other, but in spring, summer and autumn, no significant distinction of albido induction of these land cover was revealed.
Keywords: Land cover changes, Land surface temperature, Cross-information analysis matrix, Lorestan province
Behrooz Mohseni, Kaka Shahedi, Seyyed Mohsen Manavi, Narjes Mahmoodi-Vanolya,
Volume 9, Issue 2 (9-2022)
Abstract
The sedimentation, sediment transport, erosion and sedimentation problems are important discussions in the planning of wisdom and macro watershed strategies and management of watershed basins. The sediment collection in lower areas causes regional damage, the destruction of the pathway of the waterways, the flow of water pollution, the accumulation of streams of sediment and reducing the capacity of reservoirs of dams and environmental bottlenecks. The sediment resulting from the watersheds erosion, in addition to soil loss and its degradation results in a decrease in water quality and endangers the useful life of dams due to the accumulation of deposits in their reservoirs. In this research, Spatiotemporal variations of suspended sediment load were investigated at three hydrometric stations of Sefidchah, Gelevard and Ablou located on the main channel of the Nakaroud Basin using sediment rating curves and linear regression model through applying MINITAB and EXCEL softwares. In order to determine the best model, determination coefficient (R2) was used. The results of this study showed that in seasonal variations of spring season in all three stations with a determination coefficient of at least 82% and a maximum of 89% as the most suitable model for estimating suspended sediment load among the models studied. In spatial studies, the Ablou station located at the outlet of the watershed has the highest determination coefficient (0.934) between sediment discharge and streamflow discharge.
Dr. Homayoun Motiee, Mrs. Saba Ahrari,
Volume 9, Issue 2 (9-2022)
Abstract
Glaciers are one of the most important water resources in the world, which are heavily affected by global warming and climate change. This paper investigates the effects of global warming on the changes in the snow cover level of the Takht Suleiman region located in Mazandaran province during the warm months of the year through the past three decades using remote sensing. For this purpose, the images from June to August of the Landsat-5 and 8 satellites in the period of 1990 to 2021, as well as the data of the air temperature product of the ERA5 sensor were processed on the Google Earth Engine. In this research, NDSI index (Normalized Snow Cover Surface Index) was used to detect snow covered surfaces and the Mann-Kendall test was used to evaluate the trend of the data. The results of the overall accuracy and Kappa coefficient in the Google Earth Engine system show an overall accuracy of 94% and a Kappa coefficient of 89% in 2021, which shows the high compatibility of this method with real data.
The results obtained during the investigated period show an increase of about 1.5 degrees in temperature during the last three decades at a significant level of 95%. The snow and ice cover of the Takht Suleiman region in June month decreased from 127 square kilometers( in 1990) with a decrease of 82% to 22 square kilometers( in 2021). The trend of changes in the level of snow cover in June was analyzed with the Mann-Kendall test, which shows a decreasing trend at a significance level between 80 and 90%. In general, these results indicate an increase in temperature and a decrease in the level of this glacier during the statistical period studied, and the continuation of the gradual depletion of the glaciers of this region in the future is a serious threat to the downstream water source and the surrounding environment.
Mr Loghman Khodakarami, Dr Saeid Pourmanafi, Dr Alireza Soffianian, Dr Ali Lotfi,
Volume 9, Issue 2 (9-2022)
Abstract
Space-based quantification of anthropogenic CO2 emissions in an urban area using “bottom-up” method
(Case study: Isfahan Metropolitan)
Abstract
Increasing consumption of fossil fuels in urban areas emits enormous amounts of greenhouse gases into the atmosphere. Therefore, the study of carbon dioxide (CO2) emissions from urban areas has become an important research topic. The main purpose of this study is space-based quantification of carbon dioxide emissions driving from fossil fuel combustion in different source sectors in Isfahan. To achieve it, in the present study, the "bottom-up" method was used to quantify the carbon dioxide gas emission based on its production sources sectors. In this method, the amount of emission was measured distinctly for different sources of energy consumption and consequently the spatial distribution map the CO2 emission was generated. The results of this study revealed that the total amount of carbon dioxide emissions driving from fossil fuels is 13855525 tons per year in Isfahan. Separately stationary sectors of power plant, housing and commercial and mobile sources including road and railroad and existing agricultural machinery were responsible for emitting 50.61, 21.78, 17.18, 4.92, 4.37, and 1.14% of CO2, respectively. In conclusion, through applying the bottom-up method and CO2 emission distribution mapping based on different source sectors, mitigation measures can be applied more efficiently in urban planning.
Key words: Greenhouse gas (GHG), Fossil fuel combustion, Mobile and stationary source of energy consumption, climate change, Mitigation strategies
Ms Paniz Ashrafi, Dr Behnod Barmayehvar, Dr Ehsan-Allah Eshtehardian,
Volume 9, Issue 2 (9-2022)
Abstract
Considering the increase in housing construction in developing societies such as Iran, it is necessary to address the issue of reducing construction accidents, especially in metropolises, and related safety measures with the help of emerging technologies. Therefore, the main goal of the current research is to investigate the use of Internet of Things to monitor and control high-risk points in order to reduce accidents and improve safety in the spaces of construction site in Tehran.
In this applied research, first, a library study was conducted regarding the concept and application of Internet of Things in the safety field of the construction industry. Then, high risk points and activities were identified. After that, in the field study phase, this list was corrected and completed by 52 competent building safety consultants. After that, ten semi-structured interviews were conducted with safety experts and knowledgebale in the field of IoT. Therefore, effective solutions based on Internet of Things were extracted to control and monitor high risk points. Also, in this regard, the current situation and required platforms were explained from the aspects of technology, organization, cost and outsourcing.
In fact, the main findings of this research, in the form of a conceptual model, show that paying attention to the stages of choosing the incident, choosing the desired point and activity, determining the appropriate solution for the determined situation (monitoring the amount of movement and health of the structure, monitoring the proximity of flammable materials with other materials, monitoring the proximity of people and machines and preventing the continuation of movement and determining the limits around the openings) and checking the required platforms (infrastructure, support, accreditation, culture, budget, employers and law), respectively, in order to design and implement IoT-based safety systems in the spaces of construction sites is vital.
Hassan Lashkari, Fahimeh Mohammadi,
Volume 9, Issue 3 (12-2022)
Abstract
Synoptic analysis of the changes trend of the share of systems due to the Sudan low
In the cold period of the Persian Gulf coast during 1976-2017
Introduction
In the Ethiopian-Sudan range forms the low pressure system without front in the cold and transition seasons that is affecting the climate of the adjacent regions by crossing the Red sea. Based on the evidence in the context of Iran, studying Sudan low was first begun by Olfat in 1968. Olfat refers to low pressures which are formed in northeastern Africa and the Red Sea and then pass Saudi Arabia and the Persian Gulf, enter Iran, and finally, cause rainfall. The most comprehensive research specifically examining Sudan low, was the work carried out by the Lashkari in 1996. While he studying the floods that occurred in southwestern of Iran, he was identified Sudan low by the most important cause of such flooding and he explained how they are formed, and how these low-pressure systems were deployed on the southwest of Iran.
Materials and methods
The study period with long-term variations was considered from 9.5 to 11 years based on solar cycles. Precipitation data for 13 synoptic stations are considered above 5 mm in south and southwestern Iran. With three criteria were determined for the days of rainfall caused by each type of atmospheric system. The visual analysis of high and low altitude cores and geopotential height at 1000 hPa pressure level (El-Fandy, 1950a; Lashkari, 1996; 2002) were considered based on the aim of the study. Accordingly, the approximate locations of activity centers, as well as the range of the formation and displacement of the Sudan system were initially identified based on the location of the formation of low and high-pressure cores. Then, the rainy days due to the Sudan system in January were separated from the precipitation of the other atmospheric system.
Results and discussion
According to the selected criteria in the forty-year statistical period, 507 precipitation systems were identified with different continuities that led to precipitation in the northern coast of the Persian Gulf. The pattern of independent Sudan low rainfall was responsible for 77% of the precipitation in the Persian Gulf. Decade frequency share of Sudan low was lower in the first decade (16%) compared to the next three decades. This system of rainfall was more activated during the second and third decades compared to the first decade. However, rainfall changes were not evident in the mid-decade. Independent Sudan low precipitation provide 25% and 27% of the cold season precipitation of the Persian Gulf during the second and third decades respectively. In accordance with the 24th solar cycle, at the end of the study period, the Sudan low was more effective on the Gulf coast than ever before. During this decade, 125 cases of Sudan low rainfall was recorded for the Persian Gulf. Thus, the frequency of Sudan low during the fourth decade was about 31%, which was higher than in the rest of the decade. Overall, the Sudan low rainfall was repeated 151 times for 2 days rainfall, during the statistical period studied. This Precipitation has increased over the last decades compared to other periods.
Conclusion
The severe variability of rainfall along the timing and location of the permanent Persian Gulf coasts can have a significant impact on the economic and agricultural behavior of the Gulf population in the three provinces of Ahwaz, Bushehr and Hormozgan.The purpose of this study was to evaluate the precipitation changes due to Sudan low in the Persian Gulf coastal region during the cold period. The results of this study showed that the role of integration patterns in influencing the precipitation of the Persian Gulf coast has decreased with the strengthening and further activation of the Sudan low system during the last two decades. That way, about 77percent of the region's rainfall is provided by independent Sudan low. At the end of the course (in accordance with 24th solar cycle activity) the Sudan low system was more active than before. Although the Sudan low activity was different at each station during the period studied, but in the historical passage incremental and decade's positive behavior of Sudan low was common to all stations. Evaluation of changes in rainfall duration shows that the pattern of precipitation with 2days duration is more frequent than the patterns of one to several days.
Keywords: Sudan low- Solar cycle- Persian Gulf.
Nasrin Nikandish,
Volume 9, Issue 3 (12-2022)
Abstract
The statistical and spatial analysis of extreme rainfall is considered as one of the components of the management tool to prevent or control the risks caused by this phenomenon. The purpose of this research is to statistically investigate and spatially analyze the extreme precipitations in the Kashan Plain.The extreme rainfall of Kashan synoptic station were statistically analyzed in the period of 1971-2022 AD and the water year of 1350-1351 to 1401-1400 for a total of 18618 days.Then six cases of widespread extreme rainfall were selected and analyzed with the rainfall data of 13 synoptic stations and 11 rain gauge stations using geostatistics and spatial analysis methods.The extreme rainfall zonation maps of Kashan plain were prepared using by variogram models and kriging method.The results showed that the frequency of heavy and super heavy rains in winter and very heavy rains in spring is more than other seasons.The very high correlation of annual rainfall with the total and frequency of extreme rainfall shows that the volume of annual rainfall is more affected by the concentration of rainfall in short periods of a few days than by the distribution of rainfall throughout the year.Therefore, it was found that extreme precipitation plays an important role in the total precipitation and surface runoff, and as a result, the water balance of the region.The zoning maps showed that the rainfall of April 8, 2020, which is concentrated on the western belt and the heights of the basin, causes the erosion of the heights and causes floods in the foothills and low-lying areas of the plain. Also, rains such as the rains of March 8, 2019, which are most concentrated in the central areas, have a high potential to cause flooding.
Mr. Hamidreza Parastesh, Dr. Khosro Ashrafi, Dr. Mohammad Ali Zahed,
Volume 9, Issue 3 (12-2022)
Abstract
Energy Information Administration (EIA). 2022. Natural gas explained. https://www.eia.gov/energyexplained/natural-gas/use-of-natural-gas.php#:~:text=The%20United%20States%20used%20about,of%20U.S.%20total%20energy%20consumption
Energy Information Administration (EIA). 2022. Natural Gas Consumption by End Use. https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_nus_a.html
IEA. 2020. Gas 2020. https://www.iea.org/reports/gas-2020/2021-2025-rebound-and-beyond
Cinq-Mars, TJ.; T. Kropotova, M. Morgunova, A. Tallipova, and S. Yunusov. 2020. Leak Detection and Repair in the Russian Federation and the United States: Possibilities for Convergence. Stanford US-Russia Forum Journal.
Weller, ZD.; DK. Yang, and JC. von Fischer. 2019. An open source algorithm to detect natural gas leaks from mobile methane survey data. PLoS One,14(2):e0212287.
SHAHEDI, AS.; MJ. ASSARIAN, O. KALATPOUR, E. ZAREI, and I. MOHAMMADFAM. 2016. Evaluation of consequence modeling of fire on methane storage tanks in a gas refinery.
Costello, KW. 2014. Lost and unaccounted-for gas: Challenges for public utility regulators. Util Policy,29:17–24.
Arpino, F.; M. Dell’Isola, G. Ficco, and P. Vigo. 2014. Unaccounted for gas in natural gas transmission networks: Prediction model and analysis of the solutions. Journal of Natural Gas Science and Engineering,17:58–70.
Weller, Z.D.; SP. Hamburg, and JC. von Fischer. 2020. A national estimate of methane leakage from pipeline mains in natural gas local distribution systems. Environmental science & technology, 54(14):8958-8967.
Meland, E.; NF. Thornhill, E. Lunde, and M. Rasmussen. 2012. Quantification of valve leakage rates. AIChE journal, 58(4):1181-1193.
Wagner, H. 2004. Innovative techniques to deal with leaking valves. Technical Papers of ISA, 454:105-117.
Kaewwaewnoi, W.; A. Prateepasen, and P. Kaewtrakulpong. 2010. Investigation of the relationship between internal fluid leakage through a valve and the acoustic emission generated from the leakage. Measurement, 43(2):274-282.
Zhu, SB.; ZL. Li, SM. Zhang, and HF. Zhang. 2019. Deep belief network-based internal valve leakage rate prediction approach. Measurement, 133:182-192.
Panahi, S.; A. Karimi, and R. Pourbabaki. 2020. Consequence modeling and analysis of explosion and fire hazards caused by methane emissions in a refinery in cold and hot seasons. Journal of Health in the Field.
Plant, G.; EA. Kort, C. Floerchinger, A. Gvakharia, I. Vimont, and C. Sweeney. 2019. Large fugitive methane emissions from urban centers along the US East Coast. Geophysical research letters, 46(14):8500–8507.
Akhondian, M.; S. MirHasanNia. 2017. Biodiversity of microalgae, a potential capacity in biological and environmental technologies. Journal of Human Environment and Health Promotion,41:39–70.
Defratyka, SM.; JD. Paris, C. Yver-Kwok, JM. Fernandez, P. Korben, and P. Bousquet. 2021. Mapping urban methane sources in Paris, France. Environmental Science & Technology,55(13):8583-8591.
Mohammadi Ashnani, M.; T. Miremadi, A. Danekar, M. Makhdoom Farkhonde, and V. Majed. 2020. The Policies of Learning Economy to Achieve Sustainable Development. Journal of Environmental Science and Technology,22(2):253–274.
Gioli, B.; P. Toscano, E. Lugato, A. Matese, F. Miglietta, A. Zaldei, and FP. Vaccari. 2012. Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environmental Pollution,164:125-131.
Moriizumi, J.; K. Nagamine, T. Iida, and Y. Ikebe. 1998. Carbon isotopic analysis of atmospheric methane in urban and suburban areas: fossil and non-fossil methane from local sources. Atmospheric Environment, 32(17):2947-2955.
Zazzeri, G.; D. Lowry, RE. Fisher, JL. France, M. Lanoisellé, CSB. Grimmond, and EG. Nisbet. 2017. Evaluating methane inventories by isotopic analysis in the London region. Scientific reports, 7(1):1-13.
Wever, JL.; GJL. Van Orizande, WB. Rademaker, and GJ. Van Schagen. 2002. Applicability of the Hi-Flow sampler in reducing methane emissions from a technical/economical point of view. Feasibility study; Toepasbaarheid Hi-Flow sampler bij reductie methaanemissie op technisch/economische gronden. Haalbaarheidsstudie.
Bacharach INC. 2015. Hi flowR sampler for natural gas leak rate measurement.
Connolly, JI.; RA. Robinson, and TD. Gardiner. 2019. Assessment of the Bacharach Hi Flow® Sampler characteristics and potential failure modes when measuring methane emissions. Measurement, 145:226–233.
Khorasan Razavi Gas Company. 2019. Determining the statistical population and sample size of field measurements to estimate normal emission inventory Greenhouse gases in the gas network of Khorasan Razavi province.
Estimation of methane gas leakage from Mashhad urban landfills and evaluation of economic and environmental effects
Abstract
This study, which was conducted in 8 urban gas areas of Mashhad; At first, descriptive statistics of the state of Mashhad urban gas regulators and different leakage modes were presented; In order to analyze the collected data and investigate the causes of leakage, the relationship between 5 variables and the amount of leakage from gas regulators was tested with the Statistical Package for the Social Sciences (SPSS) V.26 software; These 5 variables are: regulator equipment/connections, regulator operation age, regulator service type (domestic, industrial and commercial), urban area and different seasons of the year.
The results of the analysis showed that there was a significant difference between the type of equipment/connections and leakage. (P-Value = 0.0001). Also, a significant difference was observed among other variables of the research (the operation age of the regulator, the type of regulator service (domestic, industrial and commercial), the urban area and different seasons of the year) with the leakage rate (P-Value=0.0001); The pressure drop due to the greater demand of gas consumption in the winter season has reduced the amount of leakage compared to other seasons; The influence of the age of distribution network equipment/connections due to wear and tear and longer life will aggravate the amount of methane gas leakage; Also, the amount of leakage in commercial places had a significant difference with other types of uses; Being in an urban area has also increased the amount of methane gas leakage compared to other areas; The type and quality of equipment and connections as the main and influential factor in methane gas leakage should be considered by managers and officials in this field of work.
Keyword: Methane, Riser, Urban area, Environmental effects, Economy Effects, Gas, Emission
Mr Sayyed Mahmoud Hosseini Seddigh, Mr Masoud Jalali, Mr Hossein Asakereh,
Volume 9, Issue 3 (12-2022)
Abstract
The expansion of the pole toward the tropical belt is thought to be due to climate change caused by human activities, in particular the increase in greenhouse gases and land use change. The variability of the tropical belt width to higher latitudes indicates the expansion of the subtropical arid region, which indicates an increase in the frequency of drought in each hemisphere. In order to change the width of the tropical belt of the Northern Hemisphere in the middle offerings, indices of precipitation minus evaporation, wind vector orbital component, stream function, tropopause surface temperature, OLR, and SLP have been used. Findings showed that the expansion of tropical belt latitude with stream function to higher latitudes with 1° to 3° latitude and the effect of Hadley circulation subsidence has increased the amplitude of evaporation minus precipitation has shown that the fraction of precipitation minus evaporation 1° to 3° latitude geographically increased. The subtropical jet has increased the movement of the upper branches of troposphere from the Hadley circulation by 2° to 4° latitude, which can have a negative effect on transient humidification systems as well as on the amount of precipitation. The extension of the pole towards the tropical belt, which is a consequence of climate change and hazards, will lead to the displacement of the pole towards the tropical side of the river, thus providing dry tropical belts to the pole; Also, the long-wave radiation of the earth's output has increased by 1° to 2° latitude and has caused an increase in heat in the upper troposphere, which has increased the dryness and slightly reduced the clouds in the upper troposphere and also caused the tropical belt to expand to higher latitudes. Has been. In general, the research findings showed that most tropical belt indicators have been increasing since 1979.