Search published articles


Showing 193 results for Si

Fateme Emadoddin, Dr Ali Ahmadabadi, Seyed Morovat Eftekhari, Masumeh Asadi Gandomani,
Volume 10, Issue 3 (9-2023)
Abstract

Introduction: Land subsidence is one of the environmental hazards that threatens most countries today, including the majority of Iran's plains (Ranjabr and Jafari, 2010). Damages caused by subsidence can be direct or indirect. Infrastructural effects are direct and indirect effects of subsidence, but economic, social and environmental effects are indirect effects of subsidence (Bucx, et al., 2015). The environmental effects of subsidence are related to other effects of subsidence, including the infrastructural, economic and social effects of subsidence. The southwest plain of Tehran is considered one of the most important plains of Iran due to its large areas of residential, agricultural and industrial lands from various aspects, especially economic, political and social. The subsidence of the Tehran plain was first noticed by the measurements of the country's mapping organization in the 1370s. Since 2004, the responsibility of investigating this phenomenon in the plains of Tehran was entrusted to the Organization of Geology and Mineral Explorations of the country. Although several researches have been done in the field of subsidence factors, amount and zoning. In the field of estimation of subsidence and changes in water level, spatial correlation of subsidence with changes in water level and estimation of vulnerability due to subsidence according to the density of population, settlements and facilities in the southwestern plain of Tehran has not been done.
Methodology: In the current research, we will analyze and estimate the spatial regression of the subsidence phenomenon by InSAR technique with water level changes from 2005 to 2017, as well as the environmental effects of subsidence in the southwest plain of Tehran by using Quadratic analysis method (O’Sullivan and Unwin, 2010). The criteria map of the current research is overlapped using the ANP method (Ahmedabadi and Ghasemi, 2015) weighting and finally with the SAW method (Emaduddin et al., 2014) in the Arc GIS 10.8 software, and the vulnerability map due to land subsidence in the study area is prepared.
Results: The average subsidence in 12 years is about 9.9 cm per year. Average subsidence has occurred in four main zones. Maximum and minimum subsidence have been observed in B (near the Sabashahr) and D (in east of plain) zones respectively. The results of the interpolation of the depth of the underground water in the study area indicate that the general trend of increasing the depth from the south (10 meter) to the north (more than 90 meter) of the plain. The results of spatial correlation showed that there is a significant direct relationship between the spatial layer of the average subsidence rate of Tehran Plain and the spatial data of the underground water level, and the R value is equal to 0.61. The distribution map of the underground water depth of the study area in the form of Quadrat analysis shows that in the main part of the plain, the depth of underground water is at an average level. The general trend of changes in the level of underground water is decreasing from northwest to southeast and is in 5 levels. The distribution of the networks shows that the rivers have three linear trends from north and northwest to south; their dispersion is mostly in the center of the study area. The flood rate is higher in the central plain networks. In study area, there are important arterial roads such as Tehran-Qom highway, Tehran-Saveh highway and Tehran Azadegan highway. The southern and northeastern areas of the study area are urban settlements such as Islamshahr, the 18th and 19th districts of Tehran Municipality and other residential areas such as Sabashahr. The major part of the region has fertile soil and the occurrence of subsidence can have negative effects on the fertility and texture of the soil in the study area. The results of vulnerability analysis due to subsidence show that there are 5 vulnerability classes in the study area including very low, low, medium, high and very high.
Conclusions: All in all most of the study areas (central, northern and western networks) are in medium, high and very high vulnerability. About 14,600 hectares of the study area are in medium vulnerability. Which is continuous from the west to the east of the study area. Most of the urban infrastructures are moderately vulnerable to subsidence. About 17,000 hectares of the southwestern plain of Tehran are very vulnerable. That more than half of the area of ​​this area is covered by settlements and urban infrastructures. Therefore, the phenomenon of subsidence causes irreparable damage to the settlements and infrastructures in the southwest plain.

 

Nazanin Salimi , Marzban Faramarzi, Dr Mohsen Tavakoli, Dr Hasan Fathizad,
Volume 10, Issue 3 (9-2023)
Abstract

In recent years, groundwater discharge is more than recharge, resulting in a drop-down in groundwater levels. Rangeland and forest are considered the main recharge areas of groundwater, while the most uses of these resources are done in agricultural areas. The main goal of this research is to use machine learning algorithms including random forest and Shannon's entropy function to model groundwater resources in a semi-arid rangeland in western Iran. Therefore, the layers of slope degree, slope aspect, elevation, distance from the fault, the shape of the slope, distance from the waterway, distance from the road, rainfall, lithology, and land use were prepared. After determining the weight of the parameters using Shannon's entropy function and then determining their classes, the final map of the areas with the potential of groundwater resources was modeled from the combination of the weight of the parameters and their classes. In addition, R 3.5.1 software and the randomForest package were used to run the random forest (RF) model. In this research, k-fold cross-validation was used to validate the models. Moreover, the statistical indices of MAE, RMSE, and R2 were used to evaluate the efficiency of the RF model and Shannon's entropy for finding the potential of underground water resources. The results showed that the RF model with accuracy (RMSE: 3.41, MAE: 2.85, R² = 0.825) has higher accuracy than Shannon's entropy model with accuracy (R² = 0.727, RMSE: 4.36, MAE: 3.34). The findings of the random forest model showed that most of the studied area has medium potential (26954.2 ha) and a very small area (205.61 ha) has no groundwater potential. On the other hand, the results of Shannon's entropy model showed that most of the studied area has medium potential (24633.05 ha) and a very small area (1502.1 ha) has no groundwater potential.

Parastou Darouei , Parviz Zeaiean, Farhad Azizpour, Vahid Riahi,
Volume 10, Issue 3 (9-2023)
Abstract

Introduction
Agricultural activities, as a foundation of growth and development and part of the rural development process, guarantee the economic life of many villages in the country. However, in recent years, other products' water scarcity and resource limitations have affected these activities. This issue has severely challenged the sustainability and life of rural settlements.
In this regard, organizing and developing an optimal cropping pattern is necessary to achieve the goals of sustainable agricultural and rural development in Iran. To achieve this goal, the cultivation of crops must be commensurate with the capabilities of production resources, especially water resources.
Therefore, determining the appropriate spatial distribution of agricultural lands for the cultivation of various crops is one of the primary foundations for implementing optimal cropping pattern. Accordingly, the present study seeks to identify suitable spatial zoning for wheat and barley cultivation as the main crops in agricultural lands in traditional Lenjanat regions, which are exposed to a growing water crisis.

Data and Methodology
According to the main purpose of the research, the data obtained from spatial distribution maps of current cropping patterns and spatial distribution of suitable lands for crop cultivation.
This study prepared the suitability maps of the major agricultural products at a distance of 10 km on both sides of Zayandeh Rud River in Lenjanat region using multi-criteria decision-making methods.
Thus, the agronomic-ecological needs of the two major crops in the area (wheat and barley) were determined, and a standard map for each crop was classified using ArcGIS software. Then, the digital layers were combined by allocating the weight obtained from the Analytical Hierarchy Process and the Simple Additive Weighting method. Finally, talent assessment and land zoning was performed in four categories from unsuitable to very suitable for cultivating wheat and barley crops. Using the analytical hierarchy process method and experts' opinions led to high accuracy results.

Results and Discussion
The results of the land suitability map showed that 90.6% of the agricultural lands in the study area are very suitable and relatively suitable for the cultivation of the wheat crop. The northern and eastern regions, located in Falavarjan county and the north part of Mobarakeh county, are the most suitable areas for wheat cultivation. As we move from the north and east to the west of the study area, the capability areas for wheat cultivation decrease. Limiting factors in these areas are unsuitable soil texture, low temperature, shallow soil, high slope, low rainfall and drainage.
As for barley cultivation, a large part of the area, equal to 30635.3 hectares (more than 91%), is very suitable and relatively suitable. In these areas, in the northern and eastern parts of Lenjanat, unsuitable soil texture, shallow soil, high slope and low drainage are the most critical limiting factors for barley cultivation.
A comparison of "spatial distribution of land suitability" with "spatial distribution of cropping pattern" shows that the crops in this study (wheat and barley) have been cultivated in a suitable area in terms of the ecological potential of lands.

Conclusion
The results of this evaluation can be used in the spatial distribution of the optimal cropping pattern to select a suitable cultivation site for these two crops and other existing and alternative crops.
Wheat and barley are the major crops usually used in planning optimal cropping patterns, regardless of the economic issues. Considering suitable spatial distribution for wheat and barley, they should be distributed in such a way with the slightest difference compared to the current cropping pattern. On the other hand, a large area of the Lenjanat region is suitable for cultivating wheat and barley. In addition, an agricultural unit may have different capacities for other crops, so it is necessary to pay attention to the ecological potential of other crops. Wheat and barley should be cultivated in lands which are unsuitable or semi-suitable for other crops.
Accordingly, it is necessary to provide spatial zoning of existing and alternative crops in the Lenjanat area with fewer water requirements and higher economic benefits to be introduced in the optimal cropping pattern.
In this study, only agronomic-ecological criteria and needs with available data were examined due to data limitations in assessing crop suitability. Therefore, completing land suitability maps by considering more evaluation criteria such as evapotranspiration and the amount of water available is recommended.
Also, to have a "spatial distribution of the optimal cropping pattern", paying attention to the ecological potential of the lands, also considering other criteria and priorities such as natural, socio-cultural, economic and political criteria is necessary. So, we can develop a cropping pattern that provides a basis for desirable space dynamics.

Zynab Dolatshahi, Mehry Akbari, Bohloul Alijani, Darioush Yarahmadi, Meysam Toulabi Nejad,
Volume 10, Issue 3 (9-2023)
Abstract

This study was aimed at examining the types of inversion and their severity using the thermodynamic indices of the atmosphere such as SI, LI, KI and TT at Bandar Abbas Station for 2010-2020. In this study, Radioosvand data at the Bandar Abbas Station was obtained and used from the University of Wioming for the last 11 years (3.5 local) during the last 11 years (2010 to 2020). The results of the analysis showed that the average number of inversion phenomenon in Bandar Abbas was 501 cases per year, as in some days several types of inversion were observed at different altitude. Of these inversion, about 31.6 % are related to radiation temperature inversion, 4.3 % front, and another 64.1 % for subsidence inversion. Due to the air session underneath, the share of subsidence inversions is more than other types of inversion. In the meantime, the most severe inversion of subsidence was 1354 and the weakest inversions were with 29 cases and fronts. In general, the long -term average intensity coefficient of inversion of Bandar Abbas station with a coefficient of 0.062 indicates that the intensity of the city's inversion is mostly extremely severe, which can be very destructive effects both environmentally and physical health in the city's residents. Bandar Abbas follow. The correlation between the inversion elements also showed that by reducing the thickness of the inversion layer, the intensity of temperature inversion also increased.
 

Javad Sadidi, Hassan Ahmadi, . Ramin Rezae Shahabi, Amir Pishva, Omid Kheyri, Godratallah Nooraie,
Volume 10, Issue 3 (9-2023)
Abstract

The pervasiveness of the concept of vulnerability in various dimensions has led to the emergence of the theory of vulnerability in the spatial sciences. According to the theory of vulnerability, in any given space, there is a coefficient of vulnerability, while the levels and amplitude of safety are not evenly distributed on the surface of that space. Residential use is one of the most important and main uses in the urban land use system, and safety management and attention to its defense requirements are very important due to the high population density in large cities. The present study is in the field of assessing the vulnerability of residential uses against external threats with a passive urban defense approach in District 10 of Tehran, which was conducted in the form of spatial studies and by implementing an analytical model in three steps. First, the principles and requirements of passive defense were identified and classified into three groups of structural, demographic and spatial parameters, and using the questionnaire and expert survey tools, the priorities of passive defense principles in relation to residential spaces were determined. Then, based on the network analysis process, the weight of each criterion was determined and the weight of the ANP model was applied to the spatial layers of the region in ArcGIS software. The results of the model showed that in terms of structural indicators, more than 78% of residential units in the region are in the group of structures with high vulnerability and in terms of demographic indicators, in 88% of residential units in case of external threats, the level of vulnerability is high. In terms of spatial indicators, more than 92% of residential spaces are adjacent to several incompatible uses and have the highest vulnerability. In general, the results of overlapping layers showed that more than 86% of residential units in the area are located in vulnerable zones and the vulnerability of residential units in these zones is very high.

Hossein Hataminejad, Alireza Sadeghi,
Volume 10, Issue 3 (9-2023)
Abstract

Measuring urban resilience can help develop appropriate strategies and policies for cities facing unexpected shocks and their consequences. Since urban resilience is a complex concept and difficult to operationalize, developing a technique or method to actualize this concept is a major milestone in understanding the factors and interactions that help create and maintain resilience. Tehran's metropolis has a high concentration of industries, government organizations, services, and facilities, which makes its management very complicated when a natural disaster occurs. Previous conditions or inherent socio-economic characteristics show that Tehran is not immune from flood forces. In fact, it is important to measure resilience against urban disasters for areas located on rivers in Tehran due to its inherent characteristics and spatial-temporal changes of floods in the region. This research focuses on measuring the resilience of the areas located on the rivers of Tehran. The measurement approach is based on creating a composite index based on six dimensions of social, economic, institutional, infrastructure, social capital, and environmental resilience against floods. This research has been done by developing a mixed multi-criteria decision-making method. The AHP model has been used for prioritizing the selected indicators and the TOPSIS model has been used to rank the areas located on the rivers of Tehran city based on their resilience levels. The results show that region 22 is the most resilient region, while regions 4, 5, and 14 have the lowest resilience levels. The findings of this research can help urban planning organizations such as Tehran Research Planning Center to integrate disaster resilience in urban planning and change from reactive plans to preventive urban adaptive strategies such as risk-sensitive urban land use planning.

Tajdin Karami, Ali Shamaei, Fateme Mohebi,
Volume 10, Issue 4 (12-2023)
Abstract

Abstract
Ecological resilience is a concept that implies the reversibility of ecological structures and functions against the shocks experienced. The northern zone of Tehran, as the most important ecological support of this city, has undergone many land-use changes in recent decades. The present study has analyzed the role of land-use change in the ecological resilience of green infrastructure (as one of the pillars of ecological structure) in District 1 of Tehran Municipality. This study is an applied one in terms of purpose and is considered a descriptive-analytical one in terms of the method used. In this study Landsat satellite data (1976-2021) were used to detect the changes of interest, and landscape metrics were used to analyze the ecological resilience conditions. Based on the results of this study period, the Number of Patches (NP) has significantly increased and the Class Area (CA) has decreased during the period covered by this study. These changes indicate the fragmentation process and loss of structural cohesion of the green patches. The measurement results for the connectivity metrics (ENN and GYRATE) also showed a small connectivity between the green patches in the area. In addition, the results for CONTAG (Contagion Landscape metrics) measure indicated that, due to low connectivity, the transmission rate is low. Therefore, it can be said that the green infrastructure of the region has lost its structural cohesion in the face of land-use change, and as a result, the expected ecological functions and services have also failed. According to the results, the green infrastructure of the study area is vulnerable to land-use changes and their ecological resilience has been significantly reduced.

 
Majid Ramezani Mehrian,
Volume 10, Issue 4 (12-2023)
Abstract

Population growth and urbanization are two primary factors in increasing the risk of flooding in urban areas. Along with the increasing urbanization in many cities, changes in land use have led to an increase in the volume of surface runoff and a change in the flood regimes of rivers. Therefore, urban flooding is one of the risks that directly and indirectly have harmful effects. It has entered various cities in Iran. Since resilience thought provides a comprehensive understanding of the conditions by combining different components, it can be fruitful in creating urban flood risk management tools. To be able to effectively use the concept of resilience in the process of decision-making and management of urban floods, it is necessary to measure and evaluate the city's resilience against flood risk. Despite this, the measurement of resilience in urban environments against floods faces a serious challenge due to the lack of transparency in the field of methodological approaches. Therefore, this study aims to clarify the approaches and methods with a systematic review and meta-analysis of the studies conducted in the field of assessing the resilience of urban environments against floods. According to the findings of the research, the methods of assessing the resilience of urban environments against floods are divided into three categories: quantitative, semi-quantitative, and qualitative. Qualitative methods have less diversity than quantitative methods and often include interviewing methods and theoretical conceptual frameworks. The majority of evaluation methods in this field are quantitative and semi-quantitative methods, which can be placed in two widely used categories, i.e. simulation-based methods and indexing-based methods. In the simulation-based approach, hydrological modeling and flood simulation are generally used. Methods based on indexing have been developed in different ways, but they generally follow the same principles and can be used to analyze the resilience of other types of risks in geographic areas.
 

Mehran Maghsoudi, Elham Heidary,
Volume 10, Issue 4 (12-2023)
Abstract

Geological diversity has created a new branch of the tourism industry called geotourism , where geological and geomorphological features are explored . The main focus of geotourism on geological elements includes two items, form and process . There is a set of geological forms and processes in places , which are called geosites . This has given rise to a new branch of tourism called geotourism , which examines places that have the ability to attract tourists and management aspects that can help the local community for economic development. In the first stage , it is very important to know the abilities and characteristics of the studied area . Scientific, tourism and educational evaluation of geosites in the region is the basis for optimal exploitation and sustainable development. In recent years, more attention has been paid to the Garmsar region, which has led to the development of geotourism. The impact of tourists and mines that have been created by humans, the Tastkan caves that have changed the strength of the salt caves, and also the role of natural factors, have all led to the environment's reaction
Dr Ali Zangiabadi, Mr Fazllollah Karimi Ghotbabadi,
Volume 10, Issue 4 (12-2023)
Abstract

Economic resilience to natural disasters, which is actually how economic capacities affect disasters, is one of the issues that must be considered in any society. It is noteworthy that the type of attitude towards economic resilience and how to analyze it on the one hand, plays a key role in how to recognize the current situation resilience and its causes, and on the other hand also affects policies and measures to reduce risk and how to deal with it. The purpose of this study is to rank the economic resilience of new urban Habitations in the ​​Isfahan Metropolitan against earthquake risk. Due to the studied components and the nature of the subject, the approach of this research is "descriptive-analytical". The statistical population of this study includes 6 new urban Habitations of Shahin shahr, Majlesi, Sepahan shahr, Fooladshahr, Baharestan and Shahid Keshvari. This research is applied in terms of purpose and in the research literature section, information has been collected through the library method. According to the results obtained from ASI in this study, the new urban Habitations of Baharestan, Majlesi, Fooladshahr, Shahid Keshvari, Sepahan Shahr and Shahin Shahr have the first to sixth ranks in terms of economic resilience to earthquake risk, respectively. In order to reduce the adverse effects of earthquake risk, pay attention to the economic capacity of the studied Habitations and reduce the economic risk factors in each community, economic resilience should be considered to avoid financial losses caused by these possible accidents.
 
Mrs Ziba Yousefi, Dr Hossein Jahantigh, Dr Farhad Zolfaghari,
Volume 10, Issue 4 (12-2023)
Abstract

 Investigation and monitoring of desertification in arid and semi-arid regions is a major concern for societies and governments due to its increasing rate. It is essential to identify areas at risk of desertification to manage and control this phenomenon in the shortest possible time and at minimum cost. The objective of this study is to create a map of desertification intensity in the MoradAbad plain of Saravan using the Albedo-NDVI model, which is based on remote sensing. Two Albedo and NDVI indicators were extracted from Landsat 8 satellite images in Erdas Imaging software after necessary corrections. A linear regression was formed between the two indicators by selecting 200 pixels corresponding to each indicator. Based on the slope coefficient of the line obtained from linear regression, the equation for determining the intensity of desertification was obtained. A map of the intensity of desertification was prepared based on Jenks’ natural refractive index. To evaluate the accuracy of the model, a clutter matrix was formed between 100 corresponding points. The results of linear regression between NDVI and Albedo indices showed that these two indices have a high negative correlation with each other (R = -0.85). The results of the desertification severity classification based on this model showed that 35% of the area is in the very severe class and only 5% of the area is without degradation. The model’s accuracy value was obtained with a kappa coefficient equal to 0.58, indicating good accuracy of the model.
 
Dr Mohammad Rahmani, Dr ّfarhan Ahmadi Mirghaed, Dr Sareh Mollaaghajanzadeh,
Volume 11, Issue 1 (5-2024)
Abstract

This study aimed to assess the habitat quality of the Tajan watershed in northern Iran through land use changes from 1992 to 2052 and to investigate its relationship with landscape metrics, including number of patches (NP), patch density (PD), edge density (ED), largest patch index (LPI), landscape shape index (LSI), and splitting index (SPLIT). Landsat 8 and 4 images were processed to produce land use maps for 1992, 2022, and 2052 using maximum likelihood, cross-combination, and CA-Markov methods in ENVI and TerrSet software. Habitat quality was also assessed using InVEST in three scenarios based on the land use maps. Relationships were analyzed using least squares regression and Spearman's correlation test. The results showed that from 1992 to 2052, forest and agricultural areas had the most decreasing (-82,460 hectares) and increasing (76,392 hectares) changes, respectively. Habitats in the central part of the watershed had higher quality than those in the northern and southern parts. The relationship between habitat quality and land use changes is significant and inverse (-0.95
 

Dr Mehdi Safari Namivandi,
Volume 11, Issue 1 (5-2024)
Abstract

Geotourism is one of the important pillars of tourism, which plays an important role in the economic and social development of regions, and this issue is doubly important in border regions. Considering that one of the ways to create security in the border zone is the economic development of the region, therefore, the development of geotourism in the border zone of the country is important. Considering the importance of the issue, in this research, the effects of geotourism development in creating sustainable security in Marivan city have been analyzed. In this research, the 30-meter height digital model of SRTM, the results of interviews and library studies have been used as research data. The most important research tools are ArcGIS, Expert Choice and SPSS. Also, in this research, Comanescu models, AHP and SWOT model were used. According to the intended goals, this research has been carried out in several stages, in the first stage to identify and evaluate geosites, in the second stage to analyze the effects of geotourism development on the goals of sustainable development and regional security, and in the third stage to identify effective factors. The development of geotourism has been discussed. The evaluation results of the identified geosites based on the Comanescu model have shown that the geosites of Marivan city have a high potential for the development of geotourism, which can be paid attention to with economic development, environmental development, infrastructure development and finally, it should be associated with the stable security of the region. Also, the results of the SWOT model have shown that the existence of rare geosites with a weight of 0.08, the lack of long-term development plans with a weight of 0.08, the creation of stable security in the region with a weight of 0.091, and the seasonality of employment with Weight 0.058, respectively, are considered as the most important strengths, weaknesses, opportunities and threats of geotourism development in Marivan city.
 

Khabat Derafshi,
Volume 11, Issue 1 (5-2024)
Abstract

Coastal areas are constantly changing physically and ecologically, depending on natural and human factors. The natural causes of coastline changes are assessed in three ways: short-term changes including the effects of up and down currents, long-term changes including climate change, periodic storms and waves, and accidental changes including sudden natural events. Today, coastal tourism is considered as one of the important factors in the development of coastal areas. In this regard, the Caspian Sea, with many tourist attractions such as lush forests, accessible foothills and mountains, historical monuments and appropriate welfare facilities, benefits from the sea and beaches. The coastal area of Babolsar City, due to its many facilities and capabilities to attract tourists, much of which is due to natural and environmental attractions, every year, hosts a large number of tourists who come to this area to take advantage of its facilities and attractions, including the beautiful beach and very beautiful forests. This coastal area because its dynamic nature, is exposed to permanent erosion and variability due to processes such as river, wind, tectonic, wave and tide and marine transgression-regression in the area causes the destruction of coastal facilities and recreational places. Therefore, any planning to change the land use and construction in this coastal area should be considered in terms of the sea water fluctuation impacts on the shoreline position. Coastal environmental degradation as a result of Caspian Sea water level fluctuation are very probable and human behaviors in non-optimal choice of the land use locate intensify these losses. Coastal tourism, as one of the coastal land uses is heavily influenced by fluctuations in sea level in both marine transgression-regression statuses.
 
Fahimeh Pourfarrashzadeh, Fariba Beyghipour Motlagh, Mortaza Gharachorlu,
Volume 11, Issue 1 (5-2024)
Abstract

This study aimed to systematically explain the potential of the landslide occurrence to provide a prediction model of the possibility of this phenomenon in the Yamchi catchment in Ardebil province. In this regard, both approaches of discrete and continuous variables were used by means of overlay and logistic regression, respectively. Independent variables included elevation, slope, aspect, lithology, annual rainfall, roughness, general curvature, topographic wetness index, vegetation index, distance to fault, distance to stream and distance to road. The results, firstly, revealed the areas with high landslide potential by the matching layers of independent variables with the landslide layer in the geographical information system (GIS). These areas were in the middle elevation, high slopes, northern slope, high roughness, erodible formations, high rainfall, medium vegetation, surroundings of faults and rivers. Secondly, the results of the logistics regression model by providing a prediction equation of probability of landslide occurrence showed that the resulting model with pseudo r2 and ROC 0.22 and 0.86, respectively, had good power and efficiency to predict landslide through the catchment. In addition, the resulting beta coefficients for independent variables indicated that the importance of the variables was as follows: vegetation index distance to road, rain, lithology, distance to fault, elevation, topographic wetness index, roughness index, aspect, slope, and distance to river. In the end, the need to pay serious attention to the supporting and protection of vegetation cover of the mid -range and upstream of the catchment was determined because of unstable geomorphic conditions of these areas.
 
Dr Saeed Jahanbakhsh Asl, Dr Yagob Dinpashoh, Phd Student Asma Azadeh Garebagh,
Volume 11, Issue 2 (8-2024)
Abstract

Evapotranspiration is one of the main elements of hydrologic cycle. Accurate determination of reference crop potential evapotranspiration (ET0) is crucial in efficient use of water in irrigation practices. ET0 can be measured directly by lysimeters or estimated indirectly by many different empirical methods. Direct measurement is cumbersome, needs for more time and costly. Therefore, many investigators used empirical methods instead of direct measurements to estimate ET0. Nowadays, the FAO-56 Penman Monteith (PMF56) method is known a bench mark for comparing the other empirical methods. For example, in the works of Zare Abyaneh et al. (2016), Biazar et al. (2019), Dinpashoh et al. (2021) and Dinpashoh et al. (2011) PMF56 method was used to estimate ET0 and comparing the outputs of other empirical methods. Many researchers analyzed trends in ET0 time series in different sites around the Earth. Among them it can be referred to the works of Sabziparvar et al. (2008), Babamiri & Dinpashoh (2015), Dinpashoh et al. (2021), Dinpashoh  (2026) and Tabari et al. (2013). ET0 can be affected by many different climatic factors such as maximum air temperature (Tmax), minimum air temperature (Tmin), relative humidity (RH), wind speed, and actual sunshine hours. Factor analysis (FA) is a multivariate method that reduces data dimensionality. In general, climatic variables have high correlation with each other. On the other hand, these variables affect ET0. The FA can be used to reduce data dimensionality in which correlated variables converted to few uncorrelated factors.
 
Shamsollah Asgari, Kourosh Shirani,
Volume 11, Issue 2 (8-2024)
Abstract

Gully erosion is one of the advanced forms of soil erosion, which needs to be analyzed and identified in order to protect the soil. In this research, according to the complex system of factors influencing the creation of ditch erosion, 23 factors were analyzed in the two famous Dempster-Schiffer models and the entropy model, and using Google Earth images and field visits, 331 ditch points were identified, recorded, and a ditch distribution map was prepared. Spatial data of gully erosion distribution were divided into two random training (70%) and experimental (30%) groups. In this research, two indicators of tolerance coefficient and variance inflation factor were used to check the collinearity test, and as a result, two indicators of waterway density and relative humidity index were removed and 21 factors were used in the modeling process. The output results of the layers, weighting and classification and integration in two Dempster-Schiffer and entropy models are the extraction of the zoning map of the gully's erodibility sensitivity. and 30% of the calibration and validation of the models, the area under the ROC system performance characteristic curve and the area under the AUC diagram of the Dempster-Schiffer model with an explanation factor of 0.934 and the maximum entropy model with an explanation factor of 0.936, both models have an acceptable percentage of the area under the curve were that this issue shows the high performance of both models in the region. Among other results of statistical analysis, the prioritization of the impact of 21 factors in causing ditch erosion in the region was determined. The scientific results of the research can be promoted and taught, and from the practical point of view, the relevant executive body to control ditch erosion can take the necessary measures using the results of this research.
 
Mousa Kamanroudi Kojouri, Habibolah Fashi, Sgahla Barati Sadeh,
Volume 11, Issue 2 (8-2024)
Abstract

Developing roads and constructing new highway are urban policices contributing to solve transportation problems in cities. These projects often being passed through urban fabrics, so it is nessessery to buy and demolish buildings from their owners including individuals or governmental and public institutions to imply the projects. However, acquiring land is not an easy task and completing these projects may hit with long-term delays. This paper aimed to analyze the impacts of delaying in constructing Shoosh Highway in Tehran. The investigated impacts originate from land acquisition problems. The research data was obtained from many sources including documents and research reports, a survey, and interviews with Tehran Municipality managers. The One Sample T-Test in SPSS software was performed to analyze the data obtained form the survey. Findings indicate that the residents are often dissatisfied with the project because since the beginning of the project, social security decreased a lot and people are less likely to respect citizens' rights than before, recreational sites are often demolished, the value of residential buildings slowed down significantly, living costs incresed, and businesses were stagnant. In conclusion, if urban highways are not contributing to proper planning and site selection, they will disrupt the physical, social, and economic structures of urban neighborhoods and cause to many environmental problemes including air pollution. To avoid these adverse outcomes, it should be thought in advance about sufficient financial resources and possible practical methods to acquire land for projects. These consequences are reduced by studying and managing the risk of projects.
 
Kaveh Mohammadpour, , Gona Ahmadi,
Volume 11, Issue 2 (8-2024)
Abstract

Abstract
Dust storm is a complex process that it was affected by relation between earth-atmophere system and point of veiw climatologist and meteorologist that they assessing atmospheric and climatic change, in general of world veiw, monitoring from dust cover is a need structures.
The western region of Iran is the study area. The data used in this study are divided into two categories: ground-based observations in 27 synoptic stations extracted from the Iran’s Meteorological Organization during period (1998-2010) and satellite MODIS images during the first to fourth days of July 2008. Finally, the aim has analyzed using Arc GIS and ENVI softwares and NDDI index.
According to results, interpolated map for the number of dusty days during the study period over the western half of Iran showed that extent of case study have not a equal system aspect quantity of occuring from dust phenomenon and how is it trend. The number of dust days increase from north toward south and sites located in northen proprotion of studied area have experienced a lower dust events. While, maximum hotspots are occuring over southwestern sites such as: Ahvaz, Ilam, Boushehr and Shiraz. Therefore, principle offspring of dust input has been out of country boundaries and arrived far way area. On based resultes obtined on satellite images using NDDI index also idicate that maximun of intense cover dust is observed over Fars, Ilam, Boushehr and Ahvaz provinces on the first, second, thrid and forth of July. But, the lowest rate of index situated in extent far such as: Eastern Azarbayjan, Western Azarbayjan provinces. Thus, parts located on the north of the study area experienced less dusty days and the maximum dust core was located in the southwestern (mostly ahvaz). The long-term result was consistent with the use of NDDI index and the daily average of NDDI index in the whole study area indicated the hotspot areas (Ilam, Ahvaz, Omidieh, Bushehr and Shiraz) during the first to fourth days July 2008. However, in the region has reduced the level of dust cover when a wet and cloudy synoptic system pass over the central and northwestern parts of the study area.
Mrs Samaneh Riahi, Dr Amir Safari, Dr Seyed Musa Hisseini, Dr Ali Ahmadabadi,
Volume 11, Issue 2 (8-2024)
Abstract

In order to plan, manage and exploit water and land resources, awareness of the spatial variability of resources, as well as understanding the response behavior of the watershed in order to model physical processes, has an identical significant role. Due to its location in arid and semi-arid areas, special climatic and geomorphological conditions, Qom-Roud basin is prone to flash floods. Due to the lack of hydrometric and topographical data with high accuracy in the basin, the use of hydraulic models does not lead to accurate results of the hydraulic characteristics of floods. In such a situation, the methods based on the geomorphological features of the basin can be advantageous. In this article, Variable flood stage method (VFS) method is used, which combines the hydraulic characteristics of the river with the geomorphic characteristics of the basin in order to estimate the water depth in the river caused by floods with different return periods. The water depth was investigated for different return periods of two, five, ten, twenty-five, fifty and hundred years. In each period, the highest water depth was in the parts near the outlet and the lowest water depth was in the upstream parts of the river. The research illustrations there is a direct relationship between the depth of water and the area of the sub-basin. The results of this research can be used for basins without hydrometric and topographic statistics with high accuracy in order to estimate the peak speed and flood depth.
 

Page 9 from 10     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb