Search published articles


Showing 105 results for Ran

Mr Dana Rostami, Dr Seyed Asaad Hosseini,
Volume 5, Issue 3 (12-2018)
Abstract

 Dust is one of the environmental hazards and atmospheric phenomena familiar to residents of the southern and southeastern parts of the country. Which each year causes a lot of damages to various sectors such as environment, agriculture, health, transportation, facilities, and so on. Therefore, in this research, we investigated and identified the sources of dust in the area, the intensity and frequency of dust, its governing patterns and dust-free areas during the 30-year statistical period (1984-1984). The research method is a combination of statistical, synoptic and remote sensing analysis. The data used include the hourly data of 22 synoptic stations (8 times per 24 hours), CDC1 data up to 2006, and then GDAS data, temperature, wind direction and wind speed, geopotential height at different levels. In selecting the studied days, it was tried to select the selected samples with a duration of three days and more, the spatial expansion of at least 4 stations with horizontal vision less than 1000 meters. For this purpose, were used the characteristics of the 11.3 and 12-micrometric wavelengths of the wavelengths were used to visualize the dust on the MODIS images from the ENVI 5.2 software environment, to track the wind direction from the GDAS data in the HYSPLIT software environment and to study the maps of various atmospheric levels from Temperature, wind speed, wind speed and geopotential heights were used from GRADS software and weather data stations. The annual frequency of the occurrence of days with dusty phenomena in the study area showed that during the statistical period of 1984-2013, a total of 11616 days with dust was recorded with the 06 code for south and southeast of Iran at the stations study. Most days with the dust event at Zabol Station with 1136 days and the lowest occurrence occurred at Bandar Abbas Station with 171 days during the studied period. In general, the annual survey of the data shows that the phenomenon of dust in the stations study in the past has been high and very high; however, in recent years, it has been expanding more and more than the past, and has been growing. The results of the monthly and seasonal surveys showed that the summer and the months of June, July, August and May are the most frequent and most frequent, with a peak of 1000 meters, respectively, and December have the lowest dust incidence and Zabul and Zahedan station

Zahra Hejazizadeh, Meysam Toulabi Nejad, Zahra Zarei Chaghabalaki, Behzad Amraeei,
Volume 5, Issue 4 (3-2019)
Abstract

This research was conducted to identify the dust storms in the Midwest of Iran from June 16 to 19, 2015. To investigate the synoptic conditions of the causes of this phenomenon, the ECMWF has an array of 0.125 degrees, including geopotential, omega, and sea level pressure, orbital and meridian components of the wind, specific humidity Soil moisture was applied to a depth of 10 cm. Similarly, for the purpose of routing the source of dust particles, the model of the Minimum Meteorological Parameters (HYSPLIT) Marv was used. The results of this study showed that in Lorestan province, non-ditches created by low-pressure thermal springs and high-altitude movements in Saudi Arabia caused the convergence and sucking of flows to the west of the country, as well as the establishment of a low-pressure cut at the middle levels of the atmosphere in the east of the Caspian. In the event of this risk, it has been effective. According to the average soil moisture from the surface of the earth to a depth of 10 cm in days with dust hazards, the moisture content of dust particles in the dust was less than 15%, due to the flow of streams from these fields without sufficient moisture, fine particles the soil is easily directed towards the study. A survey of Hysplit tracking maps shows that two general paths for the transfer of dust to the studied region can be detected. 1-Northwest - Southwest At an altitude of 1500 meters: passing through the dust nuclei formed in the northwest of Iraq and east of Syria, carry out the transfer of dust to the west-west of Iran. As these currents have been able to transfer dust to the southwest of Iran, this path can be considered the main route of dust dispersion to the region. 2- The western-eastern route at an altitude of 500 to 1000 meters: is the source of particles of this route inside the country (around Hurralazim) that entered the West of Iran and greatly reduced the horizontal visibility, which is the main source of dust on June 18 and 19. The investigation of the path of dust particles in the walnut shows that these particles were initially transferred to lower levels by low-pressure systems in the Midwest of Iran and then pulled in three directions on the ground.

Sir Vahid Safarian Zengir, Sir Behroz Sobhani,
Volume 5, Issue 4 (3-2019)
Abstract

Introduction
Changes, although low in temperature, change the occurrence of extreme phenomena such as droughts, heavy rainfall and storms (Varshavian et al., 2011: 169). Reducing the daily temperature variation has led to a reduction in the frequency of occurrence of temperature minima, especially in winter (Schiffinger et al., 2003, p. 51-41).
Material and method
The purpose of the present study was to investigate and predict the risk of monthly rainfed temperatures on horticultural and agricultural products in northern Iran. For this purpose, first, the data of the temperature of the whole station were obtained at a time interval of 30 years. Then, using Anfis's adaptive neural network model, data were collected for prediction and prediction for the next 6 years. Then, to measure the land suitability of the northern strip Iran was used for cultivating according to the predicted data using two models of Vikor and Topsis.
Conclusion:
In recent years, damage to agricultural and horticultural products has been increased due to temperature fluctuations. Accordingly, in this research, the prediction of the risk of monthly rainfed temperatures on horticultural and agricultural products in northern Iran has been investigated. Based on the predicted data, the minimum temperature of the Gorgan station was the lowest educational error with a value of 0.10 and at the maximum temperature, the lowest error was 0.015. Finally, in Golestan province, the maximum temperature And at least both are weak in the incremental state. Minimum and maximum temperature of Bandar Anzali station was the lowest educational error with the value (0.013, 0.10). In Gilan province, the maximum temperature peaks and at least both are in incremental conditions and the maximum temperature has a higher intensity. Be The minimum temperature of the Babolsar station was the lowest educational error with the value of 0.019 and at Ramsar maximum temperature, the lowest error was 0.016, and Mazandaran province exhibited maximum and minimum temperatures at both incremental and minimum levels Temperature showed greater intensity.
Results:
According to the findings of the study, with respect to the friction frain modeling, the maximum temperature showed the lowest defect compared to the minimum temperature. In Golestan province, the maximum temperature peaks and at least both are in weak increment, but in Gilan province, the maximum temperature peaks and at least both the maximum and maximum temperatures are higher. Mazandaran province showed maximum temperature and minimum temperature in both incremental and minimum temperature conditions.
 
J Hatami, S Sabetghadam, F Ahmadi-Givi,
Volume 6, Issue 1 (5-2019)
Abstract

 Investigation of the daily minimum visibility meteorological conditions using RVR data at IKA airport during 2013-2014
Hatami, J. 1, Sabetghadam, S. 2*, Ahmadi-Givi, F. 3
1M.Sc. Student, Institute of Geophysics, University of Tehran
2Assistant Professor, Institute of Geophysics, University of Tehran
3Associate Professor, Institute of Geophysics, University of Tehran
 
Abstract
Atmospheric visibility is defined as the greatest distance at which an observer can see a black object viewed against the horizon sky, which is usually known as visual range. It shows the degree to which the atmosphere is transparent to visible light, therefore its impairment results from light scattering and absorption that can originate from natural or anthropogenic sources.  Visibility is an important atmospheric parameter in landing and takeoff of an aircraft. Reduced visibility due to snow, rain, fog, and haze is an important consideration in the landing and takeoff of aircraft. Visibility and the related quantity Runway Visible Range (RVR) are meteorological parameters that are crucial for the operations at an airport. The Runway Visible Range is defined as the range over which the pilot of an aircraft on the centre line of a runway can see the runway surface marking or lights delineating the runway or identifying its centre line. A large number of aviation accidents are happened cause many passengers to die. Today, safety is very important in aviation. In fact, it is a competitive factor among aviation companies. Measuring the exact visual range is one of the most important factors in flight security. According to the international standards, whenever the visual range is less than a certain threshold for runways, take-off and landing will not be authorized, and pilots will be ordered land on an alternative airport that costs airlines a lot of expenses.
   One of the methods in determining the runway visual range is to use instruments such as transmisometer and forward scaterometer to measure the amount of scattering and absorption of light by the atmosphere. A transmissometer measures the extinction of light over an atmospheric path between an emitter and a receiver and it  is directly related to the extinction. A forward scatter meter measures the amount of light scattered by a small measurement volume. RVR instruments usually locate at three places across each runway that is mandatory for operation in international airports.
    For the first time in Iran, data obtained from the RVR system from Imam Khomeini International Airport are applied in this study to examine the circumstances under which the runway visual range reached its minimum during two years 2013 and 2014. The high accuracy of these devices is a valuable factor for researchers to get more precise results. The data used include visibility range, temperature, dew point temperature, humidity, wind speed and wind direction, which are measured using the RVR system.  The main part of this study concentrates on fast decreases of RVR, meaning a decrease of visibility to below 1500 m which takes more than 10 minutes. Therefore some cases of RVR data have been investigated in more detail utilizing one-minute observations are presented. For these cases, some meteorological parameters are investigated before and after  this fast decrease of RVR occurred. These parameters as well as RVR are plot to find out what happened before and during each specific event.
    Results show that the critical low visibilities were mainly occurred in May and March and no cases of low visibility were seen between July to September. This can be due to the impact of more atmospheric systems and variable weather conditions in the relatively cold months. The highest visibilities were mostly occurred in July-September, due to the weakness of atmospheric systems and their less frequency of occurrences. Low visibility days were usually accompanied by dust, fog, mist and precipitation events.During 2013 and 2014, categorizing the weather events that may lead to the decrease of visibility to less than 1500 meter, shows that the 45 percent of the cases with the low visibilities caused by by dust, 35 percent by haze, 15 percent by fog and 5 percent caused by haze.
    For the critical cases, case studies show that the high relative humidity and the change of wind direction were also favored in the occurrence of low visual range. Case studies of the events suggest that these factors differ from one another based on how they are formed. After the fast decreases of RVR, the relative percentage of RVR events show an increasing in relative humidity especially during fog and precipitation.
 
Keywords: runway visual range, scattering and absorption of light, low visibility.
 
 

 
Yousef Ghavidel, Manouchehr Farajzadeh, Bashir Ghahramani,
Volume 6, Issue 2 (9-2019)
Abstract

The application of Extreme value analysis method in heat wave hazard climatology; case study in Mid-Southern Iran
Abstract
Greenhouse warming poses the main cause of atmospheric hazards’ exacerbation and emergence in recent years. Earth planet has been witnessing frequent and severe natural hazards from the distant past; however, global warming has strongly influenced the occurrence of some atmospheric hazards, especially the ones induced by temperature and has increased the frequency and severity of those risks. Such extreme risks arising from temperature element and being affected by global warming could be referred to hot days and their frequency more than one day which undergo heat waves. Of the studies conducted worldwide in conjunction with the phenomenon of heat waves, the following can be pointed out; Schär (2015) has focused his studies on the Persian Gulf and the worst heat waves expected in this area. The recent work revealed an upper limit of stability which enables the adaptability of human body with heat stress and humidity. If people are exposed to a combination of temperature and humidity over long periods higher than this level, they will lead to hyperthermia and death, because heat dissipation from the body is physically impossible. Paul and al-Tahrir (2015) using a high-resolution regional climate model demonstrated that such a situation can occur much earlier. In Iran, in relation to heat waves, Ghavidel (2013) analyzed climatic risk of Khuzestan province in 2000 regarding super heat waves using the clustering approach. The obtained results unveiled the establishment of a low pressure at ground level and high pressure dominance at mid-altitudes up to 500 hp as well as the increase in atmosphere thickness having led to the ground overheating. Added to that, the source of heat entering into Khuzestan is advective and hot and dry air transport through Arabian Peninsula, Iraq and Africa. Ghavidel and Rezai (2014) addressed in a study to determine the temperature-related threshold and analyze the synoptic patterns of super heat temperatures in southeast region of Iran; the results of study approved that the only pattern effective on the occurrence of super heat days in Iran’s southeast is the establishment of the Grange’s heat low-pressure at ground level and subtropical Azores high elevation dominance at 500 hPa level. In this study, absolute statistical indicators, also recognized as above-threshold values approach, were used in order to identify, classify and heat waves synoptic analysis in the warm period of the year in the southern half of Iran. To use above-mentioned indicators, firstly daily maximum temperature statistics of studied stations with the highest periods were averaged every day once in June to September and once for the months of July and September. Using statistical indicators of long-term mean and standard deviation or base period, indicators would be defined for the classification of heat waves and days with peak extreme temperatures. In such classifications, usually long-term average or base period is multiplied by 1 to 3 to 4 times standard deviation and each time is account for the factor of each class.
To select the days for synoptic analysis, averaging was performed of all classified waves into four heat wave categories of low, intermediate, strong and super heat; accordingly based on the maximum blocks in each class of heat waves, days that had the highest temperature values were selected as the class representative for mapping and synoptic analysis.
This study dealt with investigating heat waves synoptic during the year’s warm period in the southern half of Iran. Studies showed that a variety of synoptic systems in the year’s warm period affect the study area. As well as, synoptic analyses concluded that in the southern half of Iran over the year’s warm period when occurring heat waves, low-pressure status dominates the ground level (caused by Gang’s low-pressure and local radiant mode); thus high-pressure status with closed curves is prevailing in atmosphere’s upper levels that gives rise to the divergence, air fall and Earth's surface heating. Studying the status of the atmosphere thickness in the days with the heat wave in the study area indicates its high altitude and thickness that this itself implies the existence of very hot air and susceptibility of the conditions for the occurrence of heat waves. In addition, wind maps at atmosphere’s different levels well illustrate the wind of very warm and hot air masses from the surrounding areas to the southern part of Iran; therefore it can be noted that aforementioned hot air masses mainly wind from places like different regions of the Arabian Peninsula, Iraq, North Africa and the low latitudes to the study area.
 
Keywords: Synoptic analysis, heat waves, maximum blocks, southern half of Iran.
 
 
 


Jamileh Tavakolinia, Alireza Mehrabi, Ehsan Allahyari,
Volume 6, Issue 2 (9-2019)
Abstract

Today, air strike on installations and urban areas, is normal. As such, vulnerability assessment cities and provide the right solution for harm reduction is essential. The purpose of this investigation was to identify factors causing damage in the district of twenty in Tehran. The research method is descriptive-analytic and Data collection is library and field. Data analysis is based on using Ahp and GIS. Results show, In the district twenty , There are three zones vulnerable. Including, The old Central, The high-density Dolatabad and sizdah aban neighborhood. These zones are 34 percent of the land. The reason of it is Poor physical structure. Statistical Society is Twenty district in Tehran. Sample size is 384 people of residents of the district. Because, in this area there are strategic factors, is An important part of the tehran city. in the end, are provided The right solution of Reducing vulnerability.


Dr. Sahar Nedae Tousi, Ms Roza Hosseini Nejad,
Volume 6, Issue 2 (9-2019)
Abstract

Resilience, as a concept to confront abnormalities, surprises and unexpected changes in recent years has been raised as the ability of places, societies, and systems to respond to the dangers of tensions and pressures; so that the system can quickly return to pre-stressed situation, threats It accepts the future and confronts them. Central region of Iran according to the zoning studies of the national physical plan of Iran, including three provinces of Isfahan, Chaharmahal and Bakhtiari and Yazd, in a desert climate with many crises in the permafrost environment that has disturbed the state of resilience of the region, and as a result the scheme and target application regional resilience on policy and planning to reduce vulnerability and to cope with various trans-regional crises. Despite the fact that the concept of resilience at the level beyond the city has become apparent, there is still no clear framework for measuring this situation at the regional level. Based on this research, it is believed by the trans-regional and multi-dimensional nature of the resilience that by modifying and applying the concept of resilience to the integrated and multi-dimensional at the regional level, an appropriate framework for status measurement regional resilience in the form of a composite index and thereby risk reduction planning and promoting the resilience of the presentation To give. In this regard, the major purpose of the research is to develop an optimal framework for assessing, measuring and ranking the resilience situation in the central region of Iran. The results show that Chaharmahal and Bakhtiari province have the highest resilience and then there are two provinces of Isfahan and Yazd, respectively. In the meantime, Yazd province has the lowest resilience among the provinces of the central region; therefore, it is necessary to focus on planning and allocating resources to promote and improve priority sectors. Responding to resilience agendas requires the adoption of transregional planning and decision-making approaches such as environmental regionalism.
Dr Abolfazl Meshkini, Mr Ali Mohammad Mansourzadeh, Mr Zeynab Shahrokhy Far, ,
Volume 6, Issue 3 (9-2019)
Abstract

Identifying spatial patterns in vulnerability involves a comprehensive look at vulnerable points. And provides analytical power to the authorities. Therefore, it is necessary to recognize patterns of vulnerability so as to minimize the amount of damage to them in the event of a crisis. The city of Tehran, as the political and administrative center of the country, is faced with a variety of risks due to demographic burden and physical development. In this research, we tried to analyze the spatial distribution pattern of urban vulnerability to natural hazards in social and physical dimensions in Tehran's 7th region. The method of this descriptive-analytic study and the model used for trigonometric fuzzy logic. The results indicate that: According to the z score, the positive values are 1.96 up, which form the clusters of hot spots in the southeastern region of the arena; It is a sign of more vulnerability in these areas. Also, negative values of 1.96 and less, which are statistically significant and blue, have formed cold spots, And it is interpreted that low vulnerability zones are clustered in space and are mainly located in the northwest. Therefore, the lower the color range in the red and blue areas was less statistically significant  to the point where this positive net worth is 1.65 that in this situation, the spatial behavior of the vulnerability is considered to be non-significant in terms of hot or cold clusters with high and low values and spatial autocorrelation that the map is also displayed in yellow.
 
Mohammad Javanbakht, Hosein Hoseini,
Volume 6, Issue 3 (9-2019)
Abstract

Abstract
Introduction
Vulnerability is the limitation of a society to a risk and to dominate it for all physical, economic, social and political factors, which adversely affects the ability of the community to respond to those events. An earthquake is a natural phenomenon that will be irreversibly damaged. It has caused severe humanitarian earthquakes in the minds of a compilation of an infrastructure program to reduce the risks and damage caused by it. The country's geostationary characteristics have suggested earthquakes as one of the most destructive factors in the destruction of human life. Historical surveys show that vast areas of our country suffered financial and financial losses due to this natural disaster. According to the United Nations, in 2003, Iran ranked first in the number of earthquakes with a high intensity of 5.5 millimeters among the countries of the world.
Earthquake is a natural hazard that often causes too many losses and casualties. Iran is  country with a lot of earthquakes and  and Khorasan Razavi province which is studied in this study also experiences a large number of this natural hazard and 71% of the surface area of this province is in the range of medium, high and too high hazard of earthquake. One of the important sectors in which the effect of the earthquake damage very large is power transmission lines. Transmission of oil and gas products by pipelines is one of the most appropriate, inexpensive, fast and reliable methods. These lines are mostly buried in terms of safety and social considerations. In engineering collections, such structures are considered as vital arteries. Due to the fact that pipelines are spreading widely, therefore, due to the vulnerability of the transmission lines, it can damage the economy of the country.
 
Methodology
 In this study the vulnerability of the network lines of power transmission of Khorasan Razavi province against earthquake were studied.  The aim of the present study was applicable and method of study was descriptive-analytic. To prepare a map of the extent of the vulnerability, the fuzzy gamma method was used. Effective parameters for this research include proximity to a fault line, geological structure, land slope, population density of urban and rural areas, distance from the communication lines. One of the most important fuzzy operators for overlapping indices is the GAMMA operator. Gamma operator is the general mode of multiplication and addition operators.
 
 
Reza Reza Borna, Shahla Shahla Ghasemi, Farideh Farideh Asadian,
Volume 6, Issue 3 (9-2019)
Abstract

Today, the impact of climate is considered on the life, health, comfort, activity and behavior in a form of the branch of science   such as human biology. Due to difference of frequency people with each other, the sensibility of every one from weather can be different from the other one that's why the climate can’t be totally undesirable or the climate can be totally desirable for all the people, so we can say that all of climatic elements are affected on human comfort but the effect of some of them is quite cleared and the effect of the others is mild and sometimes invisible. The greatest effect on comfort and discomfort can be included temperature, humidity and solar radiation. The aim of this research is to investigate and determine    the area risk of climatic comfort. For this purpose, the temperature, precipitation and humidity data have been extracted for Khuzestan province form Esfarazi database. In this approach, first different properties of the temperature, precipitation and humidity for the area with climatic discomfort   have discussed   based on the conditional probability distribution. This study has been identified the areas of climatic comfort in Khuestan province using multivariate analysis (Cluster analysis and Discriminant analysis) and spatial autocorrelation pattern (Hot Spot index and Moran index) with an emphasis on architecture. The results showed that the risk area of climate comfort is included mostly  of  the western parts of  Khuzestan province namely the border areas with Iraq and some parts of  southern  of  province .On the other hand ,trend analysis the  range of this area to climatic discomfort indicated that it has increased significantly  in  recent periods .The results also  showed that  the local distribution of   precipitation  in all periods in the areas of climatic discomfort  has  been   a high  the coefficient of  variations.
Reza Doostan,
Volume 6, Issue 4 (2-2020)
Abstract

An Analysis of Drought Researches in Iran
Extended Abstract:
  Iran is located the spatial geographical position in the south of the temperate region and north of the tropical region between the northern latitudes 40 to 25 degrees north and 65-44 degrees eastern along the seas, oceans and warm and great desert, on the other hand, with complex topography in the Alpine- Himalayas mountain belt (the world's largest mountain belt). These conditions have caused the climate of Iran to experience a variety of the prevailing natural hazards (33 of 43 world-wide risks). One of the natural hazards is the drought that happens over the Iranian plateau since the distant past, with the name of Dave of Drought, and so far. The Iranian plateau has undergone various drought periods over the past decades and various civilizations have faced this risk, and some of the Iranian ingenuity and management have emerged about this risk of the Iran. These include qanats, reservoirs built on commuter routes and cities, historical gardens, and so on. Today, this risk is dominant over the Plateau of Iran every year, and with increasing population and growth in different sectors and, in some cases to mismanagement, followed by a larger crisis called the water crisis and the crisis Economic-social, immigration, and so on. So, given the importance of the subject, different researchers have studied different aspects of this hazard. The fact is that in the past few decades, with the advent of computers and software and data, research has become easier and more scientific, naturally, in Iran, with these tools and data, researchers has been done on different parts of the crisis. What was the achievement of these studies, and most importantly, did the researchers contemplate a practical solution to the crisis on the Iranian plateau? This study provides an overview of past studies of drought and their achievements over the last few years.
In this study, used Four hundred and three of scientific articles were published in various journals to termed "drought" in the article titled of scientific information database (SID), one of the most important sources of internal research in Iran. The distribution of the time of research and distribution of various scientific fields that investigated the drought was identified. By studying the articles and the results from them, we found that 384 scientific articles with a specific output. Based on these findings, the frequency of articles in different fields of study was determined and analyzed.
researches of drought in the past years (1379 to 1391) had increasing trend and since 1394 has been decreas in Iran. The most drought research has been done in agricultural sciences with 166 papers from 403 papers (41.2%), geographic sciences with 118 papers (29.3%) and Medical and basic sciences and engineering sciences have the least research, 0.2, 2 and 5% respectively. 78% of the studies have examined the drought in different parts of Iran And 11 percent of the articles  evaluated the consequences of this  phenomenon. 7% of drought studies have predicted this phenomenon with different statistical models and 2.5% and 2% are dedicated to drought management and zoning  in different regions of Iran respectively. Most drought studies hase been in Iran, Khorasan, Fars, Sistan and Baluchestan, Tehran, Isfahan and Kermanshah, but in other parts of Iran, studies have also been conducted in different regions. Therefore, the drought phenomenon has been studied in all regions of Iran and drought assessments have been carried out.
The reduction of drought researches in recent years suggests that quantitative and qualitative research has been carried out in this basin before 1395, and drought has been studied and evaluated with different indicators in different regions of Iran. The reality of Iran's climate and research shows that every part of Iran experiences a drought phenomenon, which is an Inherent characteristic of the climate of Iran, that given the geographical location and atmospheric patterns affecting these latitudes on the planet. The consequences of drought have also been reflected in different parts of the environment, social, economic, and so on. As part of the newspapers has indicative of the damage to this climatic phenomenon in recent years. It seems that the dominant section of the phenomenon is associated with the unconscious and real perception of managers and people of this phenomenon (which has a cultural root). At present, the consequence of severe and droughts in recent decades is the lack of proper planning and environmental degradation and crisis in various parts of Iran's environment. On the other hand, the negative consequences of global warming for the climate of Iran and similar climates are more and more worrying. Therefore, it is essential to take practical and practical solutions instead of evaluations and mere studies. The practical solutions and the production of technology and operational program in relation to these environmental crises require group research in the sub-sectors with together. While, for example, engineers play the most role in controlling superficial fluid (water and dam), But the smallest drought- research related in this area. Therefore, the separate study of each part of these hazards is merely an evaluation and is not a practical way of solving the risk for managers and planners; For example, a water crisis requires a team of researchers such as hydrology, climateology, meteorology, agriculture, urban management, rural, etc. Of course, it should be noted that our researchers have not been trained and not accustomed to group work, and the idea of teamwork is poor in our culture; But there is no way and should start from one point. Perhaps we should start with kindergartens and elementary schools in order to find suitable solutions for at least the next 20 years, researcher’s teams. Finally, it is necessary to address the sustainable development and drought, localization of indicators, operational and management plans based on the environmental capabilities and knowledge of the native area of each region.
 
Keywords: Drought Research, Evaluation, Achievement, Iran.
 
 
 
Mr Masoud Jalali, Mr , Mr Abdullah Faraji, Mr Ali Mohammad Mansourzadeh, Mr Sayyed Mahmoud Hosseini Seddigh,
Volume 6, Issue 4 (2-2020)
Abstract

Analysis and zoning of thermal physiological stresses in Iran
 
Abstract
Human health is influenced by weather variables in all circumstances, including atmospheric pressure, humidity and temperature around them. Based on climate hazard and climate changes, different parts of human life and economic and social strategies such as health, hydrological pollutants And agriculture had a profound effect, including the discussion of the effects of thermal stress on human health over the last few decades, and has become a major issue in the world's scientific circles. Heat and cold stresses, the exposure of humans to extreme heat and cold, are part of the extreme events, often encountered by people during daily activities or in the workplace, and affecting human physical activities. It is important that, if the body is not cooled through transpiration or cooling mechanism, severe deaths are inflicted on human health; therefore, the person has to reduce his activity in order to reduce the adverse effects of heat stress. Hence, many researchers consider the thermal stress component more important than other components in assessing human health.
In this study, using the physiological equivalent thermometer of PET thermal stress assessment and zoning of human thermal physiological stresses in Iran, with the length of the common statistical period from 1959 to 2011, and for the arsenal of thermal physiological stresses of Iran Forty stations have been used as representatives of Iranian cities. To calculate the physiological equivalent thermal temperature, all the effective meteorological elements in the human energy bill are measured at an appropriate height of climate biology, such as 1/5 meters above the Earth's surface. Data on climatic elements are provided by the Meteorological Organization of Iran. In the absence of data for some courses, linear regression method was used to reconstruct these missing data. After calculating the indices, the frequencies were also monitored and finally, using the GIS technique, the Kriging method of the study area was based on the frequency of occurrence of the indicators. Therefore, in order to achieve the results and objectives of the present study, software such as SPSS for data normalization as well as missing data was analyzed and analyzed using Ray Man's model based on meteorological elements to calculate the equivalent thermal physiological temperature of humans. Also, using the GIS software and Ordinary Kriging method, the best interpolation method was used to zon the human cysiological stresses.
Today, in the planning of human health and comfort, the study of the physiological thermal stress plays an important role. In this regard, weather conditions can be used in the long-term planning of climate and in the short term planning of atmospheric conditions. In the present study, using the thermophysical Thermal Equivalent Thermal Index (PET), the climate climatic Atlas of Iran was prepared on a monthly basis. Calculated values for 40 stations in the country with a total statistical period of 52 years (1959-2011) were prepared. The results of this study showed that the spatial distribution of the physiological equivalent thermal temperature index in the country follows the altitudes, roughness and latitude. Accordingly, the low values of the indicator, which relate to the stresses of the cold, are consistent with the high and mountainous regions as well as the high latitudes, and vice versa, the thermal stresses occur in low and low elevations, as well as low latitudes, which of course, severe heat stresses occurred in the summer. Because throughout this season, the entire country of Iran is dominated by high tidal altitudes at high and low levels of ground pressure (1000 hp) with its warm and dry air, causing extreme heat and The term effects of heat waves on humans, heat loss, thermal contraction of the muscles and skin dryness, infectious or skin diseases, inflammation, sunburn, dizziness, fatigue, and mortality due to an increase in allergies can be mentioned. Significant differences in the environmental conditions of the mountainous masses of Kerman, Yazd and Sistan and Baluchestan provinces with their surrounding areas or low and low northern areas, and especially the Moghan Plain and Sarakhs plain, located in the upper latitudes of the country The issue is that the role of elevation in spatial distribution of the country's climate is much more colorful than factors such as latitude and longitude. The results of the analysis of the monthly thermal physiological stress maps showed that in terms of the area without tension, the march of the month with 47/8% of the area (778424/2km2) is in the first place and has the most favorable environmental conditions, The moon with 43/5 percent of the area (709275/2km2) is in the second position and also in March with 22.6 (359128/9km2) in the third, August and the last month. The highest thermal stresses (29
Dr. Firouz Mojarrad, Dr. Hassan Zolfaghari, Mr. Mehdi Keyghobadifar,
Volume 6, Issue 4 (2-2020)
Abstract

 
Analysis of the Characteristics of Sultry Days in Iran
 
Extended Abstract
Sultry phenomenon occurs due to the combined effect of high temperature and humidity. Sultry intensity increases with increasing relative humidity and decreases with decreasing temperature. This phenomenon has a tremendous impact on comfort and other human activities. Various indices have been used to study this phenomenon in Iran and in the world. According to previous studies, and as far as information is concerned, there has not been a comprehensive study across Iran on the characteristics of sultry days based on degree of severity. Therefore, the purpose of this study is to investigate the frequency, duration and severity of sultry days and its temporal and spatial analysis throughout Iran.
To do this research, daily temperature, relative humidity and partial water vapor pressure of 101 synoptic stations were used for a 28-year period (1987-2014). In choosing the indices of sultriness, the goal was to select indices that show the sultry state on a daily scale. For this purpose, in the first stage, 16 empirical sultry or sultry-related indices were used, all of which used climatic parameters such as temperature, relative humidity, water vapor pressure and cloudiness to calculate the sultry state or comfort. Among them, 13 indices were eliminated because they surveyed the phenomenon on a monthly or annual basis or were not consistent with the objectives of this study. Finally, according to the objectives of the study, three indices were chosen: 1- Sultry Intensity Index (Lancaster-Carstone empirical equation), 2- Partial Water Vapor Pressure Index (partial water vapor pressure equal to or greater than 18.8 hPa), and 3- Heat Index (HI).
The results of this study showed that two indices of Sultry Intensity and Partial Water Vapor Pressure are suitable for explaining the conditions in Iran and their outputs are not significantly different. But Heat Index did not lead to desirable results. According to the results of the Sultry Intensity Index, the sultry phenomenon is not comprehensive in the country and is limited to 21 stations adjacent to the Caspian Sea coasts in the north (besides Parsabad Moghan Station) and the Persian Gulf coasts (besides Ahwaz station) and the Oman Sea coasts in the south. In other parts of the country, due to their internal and leeward position, being away from moisture sources, poverty or lack of vegetation and insufficient penetration of wet and rainy systems, there is no sultry condition and, on average, even one day is not seen with sultry circumstances. On the southern coasts, on average, sultry conditions begin on April 3 and end on November 16. Therefore, in this area, 7 months and 11 days of the year have sultry conditions. This is natural due to the lower latitude and the Azores high pressure sovereignty in the south. But on the northern coasts, the sultry period is shorter and with a 48-day delay compared with the southern coasts, the average sultry day begins on May 22 and ends on October 12. Therefore, the duration of the sultry period is on average 4 months and 19 days. In terms of the number of sultry days, the most frequencies belong to the southern coasts stations. The largest number of sultry days related to the Chabahar port on the coasts of the Oman Sea with 291 days, followed by Jask port with 264 days. The lowest number of sultry days is also from Ahwaz station with 1 day and then Mahshahr port with 42 days. Among the stations on the southern coasts, the Oman Sea stations compared with the Persian Gulf stations have more sultry days due to lower latitudes, Azores high pressure sovereignty and Southeast Asian monsoon moisture influence. In contrast, the number of sultry days on the northern coasts is much lower and averages 140 to 150 days a year. Sultry severity is also less, so that there are no extreme severe sultry days in any of the stations on the northern coasts. But the number of extreme sultry days is remarkable on the coasts of the South, to 160 days in the port of Chabahar and 111 days in the port of Jask. At Parsabad Moghan in the north and port of Mahshahr in the south, due to distance from the coast and lack of sufficient moisture, the duration and severity of sultry is much lower and there are basically no days of severe and extreme sultry states. The annual trend of the number of sultry days at any station is not significant.
 
Keywords: Sultry, Temperature, Relative Humidity, Sultry Indices, Iran
 
 
Saeid Jahanbakhsh Asl, Behruz Sari Sarraf, Hosein Asakereh, Soheila Shirmohamadi,
Volume 7, Issue 1 (5-2020)
Abstract

The study of temporal - spatial changes of high extreme rainfalls in west of Iran (1965-2016)
 
 Extended Abstract
Introduction                                   
Rainfall is one of the appropriate weather parameters not only in describing weather condition in one specific area but also is in estimating potential impacts of climate change in the environment and in many economic and social systems. Some studies show that during half a century weather patterns by more and severe raining events and by changes in scheduling and rain status has been changed. From 1960s with its much slope, the abundance and severity of extreme rainfalls throughout the world has increased and it is expected to continue the increase until the end of the current century. So understanding the behavior of extreme events is one of the main aspects of climate change and the increase of information about heavy rains has utmost importance for society, especially for the population who lives in areas with increased flood risk.
According to above mentioned cases and abnormal behavior and irregular rainfalls in Iran and its high variability from one hand and Iran's west region ability to heaviness and extension of rainfalls on the other hand, the necessity of understanding and study of temporal and spatial dangerous rainfalls is recognized. Among extreme rainfall characteristics, the portion of such rainfalls in total rain production is studied less.   Due to the experiments carried out, the increase of annual rainfall in Iran happens through heavy rainfalls. Therefore heavy rainfall portions out of total annual rainfalls can be defined as an index of crisis. The increase of this index implies the heavy floods in rainy years and severe drought and drought years.
 
Data and Method
Iran's west region including East and West Azerbaijan provinces, Zanjan, Kurdistan, Kermanshah, Hamadan, Lorestan, and Ilam consists of about 14 percent of Iran's total area. The height of this region includes a domain of 100 to about 4000 meters. Zagros mountain ranges are the most important characteristic of west of Iran, which are drawn from north-west to south-east.
In this research, we used network data from interpolation daily rainfall observation of 823 meteorology stations from January 1st up to December 31st, 2016 by using Kriging interpolation method and by separating 6×6 km spatial. The results formed matrix interpolation process by dimension of 18993×6410. This matrix has the rain status of 6410 points of west of Iran for every day rainfall (18993). Extreme rain falls are identified in terms of threshold of 95 percentile in each point and each day of year. The rainfall of each day and each pixel is compared to that related pixel and corresponding to that day and those days which their rainfalls rates were equal to or larger than threshold were identified for studying extreme rain fall portion in total yearly rainfall, the total of equal rainfalls and more than 95 percentile is calculated for each year and each of pixel and, it is divided to total of the same pixel rainfalls in that year.
We used the least squarely error for understanding temporal- spatial behavior of regression.
 
Results and Discussion
The average extreme rain falls in west of Iran is under the influence of their roughness and placement and also synoptic rainfall. The proof of this claim identifies through placement of average extreme rainfall over altitudes of region. By increasing geographical latitude in Iran's western provinces, it is decreased both of total extreme rainfalls and portion of such rainfall out of total yearly rainfall. Total extreme rainfall trend shows a frequency in a domain with 16 mm in each year. The negative trend of total rainfall with the area of 74.72 percent consists of three quarters of Iran's west.
The narrow strip of the west of Kurdistan and south-west of west Azerbaijan have the highest amount of positive trend which is meaningful in certainty level of 95 percent.
The study of process showed the ratio of extreme rainfalls portion to total yearly rainfall, which is increasing about 60.7 percent of west area of this country extreme rainfalls in total yearly rainfall and the greatest part of this area is located in southern half of the studied area.
The negative trend also is located in northern half and they have consisted of 39.29 percent of studied area of these, only in 29.81 percent of region, the trend ratio of extreme rainfalls to total yearly rainfalls are meaningful in certainty level of 95 percent.
Keywords: Extreme Rainfalls, Trend, 95 Percentile, Rainfall Portion, west of Iran.
 
Mr Farshad Pazhoh,
Volume 7, Issue 1 (5-2020)
Abstract

 Identification of the Effective Jet Stream Patterns In the Heavy Precipitation of the Cold Season In the Southern Half of Iran
Farshad Pazhoh[1], PhD in Synoptic Climatology, Department of Natural Geography, Faculty of Geographical Sciences, University Kharazmi, Tehran, Iran
 
Every year, important parts of a large part of our country are affected by the climatic hazards of heavy precipitation and lots of damages are done to the country. If the generating circulation patterns of heavy precipitation waves will identify, its occurrence can be predicted from at least one or two days before the beginning of the sequence of patterns ending in floods (Alijani, 2006, 156). Occurrence of heavy precipitation, so that its amount is more than the soil penetration capacity, causes runoff and floods. Now, if these heavy precipitations occur in urban areas, it is associated with more dangers, because the permeability in urban areas is less than in out-of-town areas, and a significant amount of such precipitation in urban areas has turned into runoff and floods. Cause damages to places, buildings and urban facilities (Taheri Behbahani and Bozorgzadeh, 1996, 2).
Two sets of data were used to conduct this research. One is surface data and the other is high atmospheric data. For this purpose, in the first category, the related precipitation data of the cold season of 8 synoptic stations in the southern half of Iran (Table 2) in the period from December 1, 1970 to March 31, 2014 were obtained from the Meteorological Organization. To identify the occurrence of heavy precipitation leading to major floods in the study area, considering that heavy precipitation has covered more than 50% of stations and the precipitation of each station is more than 95% during the study period.
    Considering the above two conditions, 61 heavy and pervasive precipitations were selected from the total precipitations above the percentile of 95% of the stations. In the second category, high atmospheric data obtained from the National Oceanic and Atmospheric Administration of the United States. The synoptic scale in order to tracking the troposphere synoptic patterns includes a longitude of 20 west degrees to 100 east degrees and a latitude of 0 to 80 north degrees. In the selected synoptic scale, 1790 cells are located; the distance between each cell is 2.5 by 2.5 arc degrees.
    In order to identify the jet stream patterns, first the factor analysis method with Varimax rotation was applied on the geo potential height data of 500 hPa during the selected 61 days of heavy and pervasive precipitations and found that the first 12 factors explain more than 90%   data’s diffraction. The first factor accounts for about 32% of geo potential height data diffraction (Table 4). In the next step, in order to reduce the data volume and identify the synoptic patterns, the cluster analysis method was performed on the scores of the first 12 factors by the integration method and 4 synoptic patterns affecting the arrangement of the winds were extracted. Then, for each of the identified patterns, a representative day that had the highest correlation with the desired pattern determined (Table 3) and appropriate maps for the representative days of the patterns were drawn and analysed.
The results showed that the merged jet stream patterns (subtropical-sub polar), tropical jet stream (ridge-trough), orbital subtropical jet stream and meridian subtropical jet stream were effective in the occurrence of heavy precipitation, which meridian subtropical jet patterns and merged have played the most important role. In the first pattern, the merged jet stream plays role in 16 days and 26.3% of the precipitation days. The merged jet streams core is generally located on the Red Sea, and the subtropical jet stream penetrates from North Africa, and after crossing the Red Sea and northern Saudi Arabia, the left half of the jet stream’s exit covers the whole of the southern and central half of the country. The sub polar jet stream in a northwest-southeast direction from central and the west of the Europe from the centre and west of Europe penetrate to the lower latitudes and from central and eastern part of the Mediterranean and at the entrance part of the left side merge with subtropical jet stream. In the merger pattern, the sub polar jet stream corresponding to the western half of the trough of the middle-level of troposphere plays the role of cold air Advection and transferring the western winds to the lower latitudes, and the subtropical jet stream, corresponds to the eastern half of the trough, play the role of the discharge and divergence of warm and southern humid air on the southern half of the country’s atmosphere. In the second pattern, the subtropical jet stream (ridge-trough structure) with 13 days and 21.3%, generally in Northeast Africa, the subtropical jet stream with a huge ridge structure in direction of northwest to south east extends to the centre of the Red Sea and Saudi Arabia and also the trough structure of   jet stream stretches from north of Iraq to the centre of the Red Sea. This trough structure’s sinkhole of jet stream this subtropical sinkhole has caused the left half of the jet stream's outlet with meridian curvature cover the whole of the southern half and most of the country after crossing Saudi Arabia and the Persian Gulf. But in the third pattern of the orbital subtropical jet stream, which plays a role in 14 days and 23.4% of heavy and pervasive precipitation days, the jet stream core has the most stretching and range, mainly from the eastern Mediterranean and north of Saudi Arabia to the western half of Iran, and the jet stream structure is completely formed west to east with least meridian structure. The intensity and pervasiveness of precipitations in this pattern such as the second one is weaker than the other patter. However, in the fourth pattern, the meridian sub-tropical jet stream is present as the most frequent pattern with 18 days and 29% of the selected precipitations days.  In this pattern the jet stream has a southwest to northeast direction and the jet stream's core, like the third pattern, generally extends from north of Saudi Arabia to centre of Iran and sometimes to northeast of Iran. The locating of this jet stream with a suitable curvature on the important water resources of the south of the country and corresponding to the north eastern half of the trough from north eastern of Africa to north eastern of Iran after the merged pattern, has caused the most pervasive and intensive precipitations days in the south of the country.
 
Keywords: Heavy and Pervasive precipitation, Cluster Analysis, Subtropical Jet stream, Low Pressure, Trough, Southern half of Iran
 
[1] Corresponding Author:                                                                                  Email: climate.synoptic@gmail.com

Kaveh Mohammadpour, Mohammad Saligheh, Ali Darvishi Bloorani, Tayeb Raziei,
Volume 7, Issue 1 (5-2020)
Abstract

Analysis and Comparing Satellite Products and Simulated
 Of AOD in West Iran (2000-2018)
 
Kaveh Mohammadpour, Ph.D. Student in Climatology, Kharazmi University of Tehran
Mohammad Saligheh, Associate Professor in Climatology, Kharazmi University of Tehran
Ali Darvishi Bloorani, Assistant Professor in RS & GIS, Tehran University
Tayeb Raziei, Assistant Professor in Climatology, SCWMRI, Iran
 
Introduction
Dust are the main type of aerosols that affects directly and indirectly radiation budget. In addition, those affect the temperature change, cloud formation, convection, and precipitation. In recent years, the increase of different sensors and models has made possible to research the dust. The most important studies about dust analysis has been considered of Aerosol Optical Depth (AOD) as the most key parameter, which are based on the use of remote sensing technique and global models for analyzing the behavior and dynamics of dust in recent two decades. To achieve this, it has used of MODIS and MACC to study and identify the behavior of dust in the last two decades over west Iran.
 
Materials and methods
Areas in this study are Ilam, Kermanshah, Kurdistan, Lorestan and Hamedan provinces. The area has studied of two data series such as: first is MACC data with a spatial precision of 14 km2 and a 3-hour time scale; and other one is MODIS sensor production on the Terra satellite with a 10-square-kilometers resolution. In order to analyze the dust in the area in the period 2000 to 2018, statistical methods and simulation has used of the AOD parameter in MACC and MODIS. Before any processing, the data regraded to 0.2 × 0.2 degrees in order to compare the data. Then, the average daily AOD formed in a 22 × 23 matrix with 560 pixels that presented with 3653 × 560 for MACC during 2003 to 2012 and 6489 × 560 for MODIS during 2000-2018. Average of daily AOD obtained of MACC and MODIS calculated using of statistical equations. Then, the spatial distribution of AOD during the dusty months for synoptic stations and total province surface extracted using of R packages during the daily time series of the periods. Finally, the spatial distribution of the obtained AOD interpolated using the kriging function.
 
Results and Discussion
The average annual AOD obtained from Deep Blue algorithm from MODIS was less than MACC in all of the interested stations, except for Hamedan and Khorramabad stations, and provinces surfaces.
Correlation of AOD between MODIS and MACC shown that the correlations is high between model and sensor data (R2 = 59). In addition, the spatial correlation map shows 0.38 to 0.76 in which indicates a significant relationship between the MACC and MODIS pixels and the relationship is more in the western provinces of the area than the northeast of the region (Hamedan). The monthly comparison of the mean of AOD of the sensor and the model in the whole the area shows a highest correlation between the AOD in February and October.
The interpolation of the spatial distribution in the decade of the study (2003-2012) in MACC showed that the spatial variations of AOD is decreasing from the south of Ilam to the north of Kurdistan and reached the lowest level in the north of Kurdistan province. In general, the findings of annual and seasonal spatial distribution (dry period) of dust showed that MACC overestimated AOD compared to MODIS in the area. Nonetheless, the dust pattern in both of the sensor and the model increased from south to north. Although, the dust pattern is more regular in the sensor than the model. The spatial distribution of dust in Ilam, Kermanshah, and Kurdistan provinces in MODIS and MACC shows that dust in the southern point of the Ilam province has the highest concentration and the lowest is observed in the northeast of Kurdistan province. This spatial distribution of dust showed that dust in western provinces of the area follow latitudinal trend , in which is influenced by the high topography of Kermanshah and Kurdistan provinces and the proximity of Ilam province to dust sources in the distribution of dust intensity.
 
Conclusion
The results showed that there was a significant correlation between the sensor and the model and the coefficient was more than 0.4 in all months on the area. The findings of the annual amount of dust in MODIS showed that the amount of dust in the years 2000 to 2009 has increased in whole areas and from 2009 onwards, this annual trend has been reduced by 2018. MACC findings also showed that the AOD has been growing up in the period, although AOD amount have had a steep slope by 2010, but since 2010, dust has a steady slope. Therefore, West Iran has experienced two active (before 2010) and inactive (after 2010) periods in dust during an 18-years period on the area. The findings of MODIS and MACC in the study area indicate that the monthly distribution of dust from April to August has the highest concentration. In general, the annual and seasonal spatial distribution (months with the highest AOD) of dust indicates that the intensity of AOD in MACC was higher than MODIS in the area. Although the sensor and model has a roughly similar pattern and increases from south to north, but the trend in MODIS is more regular than MACC.
 
Keywords: Aerosol Optical Depth (AOD), MACC, MODIS, West Iran
 
 
 
 
Aydin Moradi, Somaye Emadodin, Saleh Arekhi, Khalil Rezaei,
Volume 7, Issue 1 (5-2020)
Abstract

 
 
Miss Soraya Yaghobi, Mr Kamran Karimi, Dr Marzaban Faramarzi,
Volume 7, Issue 2 (8-2020)
Abstract

The study and Comparison of desertification process on the basis of climate Criterion (Case Study: Abbas and Dehloran Plains, Ilam)
Soraya Yaghoobi, Kamran Karimi, Marzban Faramarzi
Abstract:
Nowdays desertification is a disaster in many countries , especially in developing countries. This problem includes natural factors and improper human activities. According to the expansion of desertification, providing the appropriate management methods will be reduced desertification intensity and its expansions. In this way, knowledge of processes of desertification and factors causing and  the intensifier it and also awareness of intensity and Weakness the processes and factors that are important and necessary   that should review and evaluate. Recognition criteria and indicators for provide a model to show the process of desertification and for determine one of the  best reason effective factors for prevent the spread of desertification factors is necessary. To knowledge and Trend of desertification and separation of  vulnerable  areas versus degradation factors .we should indentifi and evaluat  criteria and indicators affecte  at desertification. Therefore in this study of  the Iranian model IMDPA to assess trends and Comparison of desertification in recent years has used.
The studied area of  Dehloran plain is located in southeast of Ilam province (47 02′ 16″ to 47 25′ 07″ E and 32 48′ 33″ to 32 18′ 48″N) with an area of 54252  hectares, With precipitation  average 251.6 mm and Abbas plain is located in south of Ilam province(47 37′ 55″ to 47◦  50′ 57″ E and  3217′ 77″ to 3229′ 25″N) with an area of 34104 hectares With precipitation  average 227.1mm. In this study, in dehloran plain of six stations in this Inside and outside the area also in Abbas plain of five  stations outside the area  used to measure the amount of rainfall in different seasons of year. In this study, to assessment  and Comparison of desertification in two study area of the Iranian model IMDPA used. In this study, of climate criteria, were used. which according to the IMDPA model for this criteria, indexes are considered for evaluation e.t.c: Climate criteria: (1) the amount of annual rainfall 2-drought indexe(SPI) 3. continuing drought In IMDPA model  All measurements  do in this work  units. To this end, first, working unit maps (geomorphologic facies) were created using slope, geology, and land use maps. a map was generated for each index according to assigned weights, such that the qualitative map of the desired criteria were obtained using the geometric mean of indicators.
The results earn  of  evaluation  of desertification  showed that  in the period  2005-2009  weight average of climate criteria is same with 1.50 all of the region are in the classe Middle sub class 1 and class low sub class3 . in the period  2010-2014  Also  weight average of climate criteria is same with 1.88 in classe Middle sub classes 2 and 3.  Also weight average of climate criteria in Abbas plain In the first period is same with 1.92  in the classe Middle sub classe2. Also In the second period with weight average is same 2.3 in classe Middle sub classes 2 and 3. The results showed that SPI index, as the most effective indexes, in plain Abbas In the first and second periods with the weighted average 3.04and 3.2 in the intense class under class 2 and 3. in front in Dehloran plain SPI index in the first and second periods with weighted average of 1.93 and 2.25 in the moderate classe and sub-classes 1, 2 and 3 and intense sub-classe 1.
In this study, to assess and Comparison of desertification Dehloran and Abbas Plains to provide regional model has done. . In this way  of  a criteria, also important and effective indexes belonging to this criteria of desertification used in dehloran and Abbas plains . The obtained results of the analysis criteria and Indexes indicated that in dehloran and Abbas plains in the first period ( 2005-2009) And second period (2010-2014)  between  indexes  the amount of annual rainfall, standard precipitation index (SPI) and drought duration Evaluated on the areas respectively standard precipitation index (SPI),  rainfall and drought duration index the most important factors in exacerbating desertification. Can be concluded that the intensity of desertification in Abbas plain compared to dehloran plain terms of climate is In more adverse conditions. In general, it can be concluded that desertification would intensify in future decades.
Keywords: Desertification, IMDPA, Climate, Abbas Plain, DehloranPlain
 
Koohzad Raispour, Yones Khosravi,
Volume 7, Issue 2 (8-2020)
Abstract

Abstract
Air pollution is one of the most important problems in many countries in the world, which, besides the environmental damage and human health, imposes many adverse social and economic impacts. Therefore, considering the vital importance of air and the rising course of increasing the contaminating agents in recent decades, it is necessary to study the elements and their pollutant gases in order to be aware of the existing situation and to adopt the necessary solutions. The phenomenon of atmospheric air pollution in Iran, as part of the world's atmosphere, is one of the goals of the industrial revolution, which has been increasing day by day as industrialization; population growth and urbanization have grown dramatically. Carbon monoxide (CO) is a colorless, odorless, and tasteless gas that is slightly less dense than air. In the atmosphere, it is spatially variable and short lived, having a role in the formation of ground-level ozone. Carbon monoxide consists of one carbon atom and one oxygen atom, connected by a triple bond that consists of two covalent bonds as well as one dative covalent bond. Carbon monoxide is produced from the partial oxidation of carbon-containing compounds; it forms when there is not enough oxygen to produce carbon dioxide (CO2), such as when operating a stove or an internal combustion engine in an enclosed space.
Carbon monoxide is one of the most dangerous air pollutants. Due to its importance, many techniques and methods have been used to monitor the Earth's atmosphere in recent years. as well as, the use of satellite data has become widespread because of the availability and availability of features such as spatial, temporal and spatial resolution. In this study, the data from Aqua / AIRS Carbon Monoxide data can be used to study the rate and trend of carbon monoxide gas changes in the atmosphere of the entire world, including Iran.The relevant data in NetCDF format, with one-day and 13.5 x 13.5km spatial resolution of during the 16-year statistical period (2003-2018), was extracted from ttps://disc.gsfc.nasa.gov/datasets/AIRS3STM_006 using ArcGIS software And Grads are processed, represented, analyzed.
The results indicate that the amount of carbon monoxide was reduced during the monthly and annual time series. Of course, monthly and seasonal variations have been impressive. Monthly, the highest concentration of carbon monoxide in January, February and March, and the lowest in August, September and October. Among the seasons, the highest and lowest levels of carbon monoxide were observed in the seasons of winter and summer, respectively. In spatially, the highest amount of surface carbon monoxide with an average of 150 ppb above the city of Tehran and the coastal area of the Caspian Sea and its lowest level with an average of 115 ppb on the Zagros heights was observed.
The results clearly show a clear picture of the dispersion of carbon monoxide gas in the horizontal and vertical direction of Iran's atmosphere. Based on the results obtained from the monthly carbon monoxide data collected during the statistical period (2003-2018), conducted in a three dimensional and regional area extending to the geographical area of Iran, The average surface carbon monoxide of more than 150 ppb above the Tehran metropolitan area and northern coast of Iran is less than 115 ppb on Zagros altitudes. Among other results, there are significant differences between the monthly carbon monoxide average in the surface troposphere of Iran, so that in the twelve months, the highest amount of carbon monoxide was observed in cold months and the lowest was observed in the warm months of the year, respectively. Seasonally, the highest level of seasonal carbon monoxide has been observed in winter and its seasonal season has peaked in summer. The results of vertical profiles (vertical aspect) of carbon monoxide changes in Iran's atmosphere in line with latitude and longitude indicate the maximum carbon monoxide concentration at lower levels of barley so that the maximum amount of carbon monoxide in the Iranian atmosphere is concentrated in the lower levels and Rarely exceeds the level of 250 hPa. Also, the results indicate that the rate of carbon monoxide emissions in the atmosphere of Iran has decreased, so that in the last years of the statistical period, about 30% of the amount of carbon monoxide in the atmosphere of Iran has been reduced, compared to the early years of the statistical period.
 
Key words: Air Pollution, Carbon Monoxide, AIRS, Remote Sensing, Iran.
 
 
 
Dr Hassan Lashkari, Miss Neda Esfandiari,
Volume 7, Issue 2 (8-2020)
Abstract

Identification and synoptic analysis of the highest precipitation linked to ARs in Iran
 
              Abstract
        Atmospheric rivers (ARs) are long-narrow, concentrated structures of water vapour flux associated with extreme rainfall and floods. Accordingly, the arid and semi-arid regions are more vulnerable to this phenomenon. Therefore, this study identifies and introduces the highest precipitation occurred during the presence of ARs from November to April (2007-2018). The study also attempted to demonstrate the importance of ARs in extreme precipitation, influenced areas and identifies the effective synoptic factors. To this end, integrated water vapour transport data were used to identify ARs, and documented thresholds applied. AR event dates were investigated by their daily precipitation, and eventually, ten of the highest precipitation events (equivalent to the 95th percentile of maximum precipitation) associated with ARs were introduced and analyzed. The results showed that most ARs associated with extreme precipitation directly or indirectly originated from the southern warm seas. So the Red Sea, the Gulf of Aden and the Horn of Africa were the major source of ARs at the time of maximum IVT occurred. Synoptically, seven AR events formed from the low-pressure Sudanese system and three events from integration systems. The subtropical jet was the dominant dynamic of the upper troposphere, which helped to develop and constant of ARs. Moreover, the predominant structure of jets had a meridional tendency in Sudanese systems, while it was a zonal orientation in integration systems. The intense convective flows have caused extreme precipitation due to the dominance of strong upstream flow besides having the highest moisture flux. The station had the highest precipitation has been located in the eastern and northwestern region of the negative omega field or upstream flows.
 
        Keywords: Identification and synoptic analysis, highest precipitation, Ars, Iran.



Page 3 from 6     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb