Showing 30 results for Environment
Bohloul Alijani,
Volume 7, Issue 4 (2-2021)
Abstract
Abstract
Corona Virus pandemic outbreak is the counter act and warning of the natural environment for the destructive activities of man in the nature. Many researchers and specialists believe that a risk free and sustainable life is possible if we correct our behavior toward the nature. This research was carried out to substantiate this hypothesis and offer a reasonable and rationale solution. It is believed that the best way to solve this problem is the environmental ethics. Many other ways such as technology have been proposed, but until the mind and thought of man has not changed to good relation with the nature, it is not possible to reach a viable solution. For this end, the integrated system of earth was analyzed to understand mechanism of the relation between nature and human. Two supportive theories of Markov Blanket and Gaia were addressed here to explain the relation between nature and society. According to these theories the system of earth and society is live and any change in one will mirror itself on the other. As a result, the society models itself to the nature in long run. This means that to have a healthy society we should have a healthy nature and environment. Thus, the UNEP has suggested the integrated One Health program to save nature, humans and animals at the same time.
The distortions of the earth during the past 70 years were sampled and described as the footprints of mankind. Some examples of environmental disorders such as climate change, droughts, floods and diseases were analyzed and their impacts on the society were displayd. In order to demonstrate the environmental ethics as the only solution to the current crises, first the ethics in general were discussed and then the environmental ethics were given a thorough explanation. Different underpinning philosophies are presented and accordingly different approaches to the nature such as development, preservation and conservation were discussed. A new philosophy, geocentrism, was suggested as the suitable and efficient thought. According to this philosophy it is the distributions which are in the forefront of human destruction. Therefore, we should try not to disturb the distributions of any kind. These include all ecosystems of any scale; because emphasizing on the ecosystems is not sufficient. The geocentrism philosophy covers all non - anthropocentrism philosophies such as biocentrism and ecocentrism. Of the different approaches, the conservation was selected as it assumes intrinsic value for the nature and sustainability of resources for ever.
To solve the problem and bring the earth system to sustainable state, the environmental ethics should be implemented. In terms of moral values, these include truth, good, duty and justice. The mankind should characterize himself with these genuine characters. He should do his duty as not making problem to the life of any creature; this being human, plant, animal or rock and soil and etc. He should do the good and justice. On the objective side, he should give intrinsic value for every creature on the earth including the environment and its components. In this way, we treat the environment with respect and dignity and not let ourselves to destroy or damage it. However, to achieve these goals we should use resources only as much as we need biologically, consider the long run benefits instead of short term benefits, treat the nature as having intrinsic value, implement the environmental distance from wild life, using vegetarian diet.
One important notice is the nature of human who we are asking to do these mandatories. Are we sure that what we are ordering human will be done by him. If he does not do then none of these comments is valuable. Therefore, we first should understand the humans and educate them to accept our orders. This is why that the ethics become important. We should train moral humans and then ask them to do. He will do only when he gets overarching and believed knowledge about the subjects we are offering. The main reason for the distortion of the nature is that the humans are not aware of the value of nature and the long run results of their actions. This is possible only through the good and responsible training of man. We are now missing this education. In brief, we understand that the main solution for the destruction of nature is empowering the humans with morals, especially environmental ethics. But to implement this objective, at the first point we need a wise and understandable human. Therefore, first we should train people and ask them to act as a moral and generous person and care for the nature and all creatures of the universe.
Key words: Corona Virus, Covid-19, sustainability, environmental ethics, human-nature relation, Markov Blanket, natural resources, UNEP One Health program, Gaia, Anthroposcene.
Saeed Fathi, Ph.d. Ali Mohammad Khorshiddoust,
Volume 8, Issue 1 (5-2021)
Abstract
Zoning and Spatial Analysis of Potential Environmental Hazards
Case study: Silvana District
Abstract
Natural hazards can be considered as one of the most important threats to humankind and nature that can occur anywhere in the world. Natural hazards are one of the main obstacles to sustainable development in different countries and one of the important indicators of the development of world countries is their readiness to deal with natural hazards. Therefore, it is important to pay attention to it and appropriate measures should be taken to reduce the vulnerability of human settlements. Nowadays with increasing population growth, population dynamics and the large number of people exposed to various types of disasters, the need to identify environmental potential hazards and identification of hazardous areas are felt more and more. Meantime, some people may not be aware of potential hazards of their place of residence. So by identifying and evaluating potential hazards and their Risks before the occurrence, we can significantly reduce the severity of the damages and contribute to sustainable regional development. The negative effects of natural disasters can be minimized by the availability of comprehensive and useful information from different areas and Multihazard mapping is one of the most effective tools in this regard.
According to the above mentioned, in this study, the spatial analysis of potential hazards in Silvana district in Urmia County has been studied. This study area due to specific geographic conditions such as position, complexity of topographic and ecological structures, in general, the existence of environmental factors for hazards has been selected as the study area. There have been a number of hazards in the past and assessing of this area is necessary, because of the lack of previous studies. For this purpose, by reviewing various reports and doing field observations, three hazards including Flood, Landslide, and Earthquake are identified as potential hazards of the study area.
For assessing hazards, 12 factors in 6 clusters such as Slope, Aspect (Topographic factors), Lithology, Soil type, Distance to Faults (Geological factors) Precipitation (Climatological factors), River Network Density, Groundwater Resources (Hydrological factors), Land use, Distance to Roads (Human factors), Observed Landslide Density and Seismicity (Historical factors) as the research factors has been selected. For weighting factors, Analytic Network Process (ANP) Method in Super Decisions 2.6.0 software environment has been used. The results of the analysis show that Slope (0.201), Precipitation (0.161), Lithology (0.112), Distance to Faults (0.106), Land use (0.096), Rivers (0.078), Seismicity (0.06), Soil Type (0.055), Landslide Density (0.047), Aspect (0.033), Groundwater (0.03) and Distance to Roads (0.016), Respectively have maximum to minimum relative weight. Then, weighted maps are standardized with using FUZZY functions. For this purpose, Fuzzy membership functions such as Linear, Large and Small has been selected based on each factor. For some factors such as Slope, Aspect, Lithology, Soil type, Rivers density, Land use, Seismicity and Landslide density, Fuzzy linear function has been used. For some others such as Groundwater and Precipitation, Fuzzy large function has been used and for distance to Faults and distance to Roads, Fuzzy small function has been used. Finally, weighted maps were overlay in ArcGIS 10.4.1 environment with Fuzzy Gamma 0.9 operator and potential hazards zoning maps is obtained.
Final results indicate that major parts in the Northwest, West and South of the study area located in high risk zones and 59 percent of the total area exposed to high risk. Based on hazard zoning maps, 44 percent of the area exposed to Flooding, 48 percent exposed to Landslide and 44 percent exposed to Earthquake. Also, 61 percent of the population or 37394 people exposed to one hazard, 7 percent or 3817 people exposed to two hazard and 8 percent or 4914 people exposed to three hazard. According to surveys, only 21 percent of the study area is considered as a low risk area but that does not mean that environmental hazards will never happen in these areas. In general, and based on results, it is concluded that Silvana district has a high potential for environmental hazards. Final results of the research show that potential hazards identifying and preparation of hazard zoning maps can be very useful in reducing damages and achieving sustainable regional development. Therefore, considering the ability of hazard zoning maps to identify areas exposed to risk and assess the type of potential hazards, These analyzes should be considered as one of the most appropriate and useful tools in different stages of crisis management that can be the solution to many problems in preventing and responding to natural disasters and therefore, it is recommended that they be used in the crisis management process.
Keywords: Spatial Analysis, Environmental Hazards, Silvana, ANP Method, Risk
Mr Hossien Rahi Zehi, Dr Mahmood Khosravi, Dr Mohsen Hamidian Pour,
Volume 8, Issue 1 (5-2021)
Abstract
The Spatio-Temporal Variations of Aerosol Concentration Using Remote Sensing in Sistan and Baluchestan Province (2018 - 2000)
Abstract
Atmospheric particles play an important role in balancing the energy budget of the Earth's surface. The Sistan and Baluchestan province because of the specific geographical conditions during the year is witnessing the spread of dust particles caused by dust storms. This paper investigates the spatial changes of this phenomenon in the region to identify the association of dust accumulation and the reasons for these concentrations. In this study, the AOD Index data of the Aqua and Terra Modis Satellite Sensor (MODAL2_M_AER_OD) with 10 × 10 km spatial resolution were used. Then, by using statistical methods, a spatial analysis was done and the temporal and spatial changes trends at 95% and 99% significance level were performed using the nonparametric Mann-Kendall method. The results showed that the maximum concentration of aerosol in areas such as Zabol, Zahak, Hirmand, Hamoun, Iranshahr, Bampour, Jazmurian basin, Chabahar, and Konarak. On average, the highest variations in aerosol concentration were in the southern regions of the province include Dashtiari, Polan, and Chabahar, and the least in the northern part of Polan, Chabahar, Konark, and Bampour areas. The trend of changes was evaluated at two significant levels of 95 and 99%. The results of this section showed that the AOD had a positive and increasing trend in June, July, and August in the areas of Dalgan, Iranshahr, Bampour, Bazman, Mirjaveh, Nokabad, Zahedan, Nosratabad, Zaboli, Qasrqand, Irandegan, and Sib-va-Soran Plain and areas such as Korin, Zabol, Zahak, Sirkan (Bamposht), Hamoun have a negative and decreasing trend. The average changes in aerosol concentration in June, July, and August show a significant increase in the aerosol concentration from 2015 to 2018 up to 0.8.
Keywords: Environmental Changes, Dust, Environmental Hazards, Climate.
Mohammadreza Jafari, Shamsullah Asgari,
Volume 8, Issue 2 (9-2021)
Abstract
One of the causes of environmental hazards is the change in the pattern of surface water flow in floodplains following the construction of flood Spreading networks. The purpose of this study is to prepare a zoning map of vulnerable areas of the flood Spreading station of Musian plain in Ilam province after the implementation of the aquifer project in this plain. To prepare this map, five factors influencing the change in flow pattern including elevation, slope, flow direction, geological formations, and landuse change were examined. Then, in the GIS environment, each class of the mentioned factors was given a score of zero to 10 based on the range and the corresponding weight layers were created. Then, by combining the created weight layers, the vulnerability zoning map of the area was created based on 5 classes: very low, low, medium, high and very high. The results showed that the most important threat and danger factor is the concentration of waterways behind erosion-sensitive embankments. Also, the study area in terms of vulnerability includes three classes with medium risk, high and very high and covers 16, 62 and 22% of the area, respectively. Flood and upland Spreading areas, risk areas and lowland lands are the most vulnerable parts of the basin in terms of floods and sedimentary deposits.
Zahra Mosaffaei, Ali Jahani, Mohammad Ali Zare Chahouki, Hamid Goshtasb Meygoni, Vahid Etemad,
Volume 8, Issue 3 (12-2021)
Abstract
Risk modeling of plant species diversity and extinction in Sorkheh_hesar National Park
Zahra Mosaffaei1, Ali Jahani2*, 3MohammadAli ZareChahouki, 4Hamid GoshtasbMeygoni, 5Vahid Etemad
1 Masters of Natural Resources Engineering, Environmental Sciences, College of Environment, Karaj
*2Associate Professor, Department of Natural Environment and Biodiversity, College of Environment, Karaj.
3 Professor, Department of Restoration of arid and mountainous regions, University of Tehran, Karaj
4 Associate Professor, Department of Natural Environment and Biodiversity, College of Environment, Karaj
5 Associate Professor, Department of Forestry and Forest Economics, University of Tehran, Karaj
Abstract
Full identification of hazards and prioritizing them for non-harm to nature is one of the first steps in natural resource management. Therefore, introducing a comprehensive system of evaluation, understanding, and evaluation is essential for controlling hazards. This study aimed to model and predict environmental hazards following increased degradation in natural environments by ANN. Thus, 600 soil and vegetation samples were collected from inhomogeneous ecological units. Soil samples were prepared by strip transect method according to soil depth in four profiles (5, 10, 15, 20 cm). Vegetation samples were also collected using a minimum level method using 2 2 square plots according to the type, density, and distribution of vegetation. Sampling was done in two safe zones and other uses were modeled using ANN in MATLAB environment. The optimal model of multilayer perceptron with two hidden layers, sigmoid tangent function and 19 neurons per layer and coefficient of determination of 0.90. The results of sensitivity analysis showed that soil moisture content would be effective in decreasing biodiversity and flood risk as well as increasing the risk of extinction of endemic species in the region, and then the apparent and true gravity and soil porosity and distance from the road play a key role in the degradation of cover. Vegetation has increased flooding and extinction risk. Therefore, it is recommended that measures related to soil and vegetation restoration in this park be taken to reduce future damages as soon as possible.
Keywords: Modeling, Artificial Neural Network, Environmental Hazards, National Park, Vegetation
Professor Bohloul Alijani,
Volume 8, Issue 3 (12-2021)
Abstract
Geography and the Paradigm of Sustainable Development
Extended Abstract
Geography and sustainable development
The relation between society and environment has gone through different phases. During the years before the World War II, the environmental determinism controlled this relation. However, after the 1950’s the anthropocentrism replaced the environmental determinism and humans began to overuse the nature in such a way that nature lost its sustainability and many hazards and crises occurred. These destructions were so intense and widespread that some researchers compared with the episodes of geologic time and named the era beginning from 1970’s the Anthropocene epoch. During this period, the planetary boundaries were crossed in some areas such climate change, nitrogen cycle and biodiversity. Climate change has created most of other hazards.
To overcome these problems in 1978 the Brandtland report announced the sustainable development as not to spend resources more than the nature’s production capacity and not to pollute the nature more than it can assimilate. In other words, the nature should remain in its sustainable state so that the future generations can live with no limitations. The principles of the sustainable development were defined in the earth summit of Rio in 1992 such as social equity, economic viability, and environmental sustainability. These principles were broken down in 17 goals. The Rio conference asked all countries to achieve the sustainable development goals by 2030.
Methodologically the sustainable development requires integrated multidisciplinary approach to investigate the complex system of human- environment in different temporal and spatial scales to achieve the social equity, economic viability, and environmental sustainability. For this reason, many disciplines such as natural resources, environmental sciences, ecology and geography have contributed to the field. Different data from natural resources, human needs and drivers and environmental changes are required to process in very complicated models. In addition to different variables, the hazards are very important component of the sustainable development research, which also requires multi-aspect complicated approach and models. Spatial dependency is another aspect of sustainable development as it differs from place to place in many characteristics. In brief, from the spatial perspective the sustainable development is an integrated multi-approach research about the human-environment system to establish the sustainability on the earth. All of the related fields should study the sustainable development in collaboration with each other. However, the geography due to its long history of studying the relation between human and environment and its spatial dependency is the best single scientific field which can afford studying the sustainable development. Since the earliest times geography has developed quantitative methods, spatial techniques such as geostatistics, and environmental ethics to conserve the nature and human prosperity. The multi approach and systematic works are the main characteristics of Geography. On the other hand, Geography’s vision of defining the location for human’s activities while saving the nature’s sustainability covers the sustainable development completely. Therefore, geography is the overarching field for the sustainable development and it is the main intention of geographers to research and implement the sustainable development to reduce the environmental hazards and develop the sustainable environment for all the human beings at present and in the future. Geography studies the sustainable development through three steps including spatial analysis, spatial planning, and spatial management. In addition, geographers should learn different skills such remote sensing, multivariate statistics and above all develop a common language between different branches of geography.
Keywords: geography, sustainable development, environmental ethics, human nature relationship, Anthropocene, planetary boundaries, sustainability.
Maasoud Akhavan Kazemi, Parvanh Azizi, Mohammadbagher Khoramshad Khoramshad, Mohammad Abolfathi,
Volume 9, Issue 2 (9-2022)
Abstract
New Social Movements: A Case Study of Emerging Environmental Movements
Abstract
The term modern social movements is used to describe movements that were active in France in the late 1960s through collective action in the social sphere. The most important new social movements are the civil rights movement, the women's movement, the peace movement and the environmental movement. The rapid growth of industrial and capitalist societies, regardless of environmental degradation, has created many problems. The most important problems are soil erosion, resource reduction, ozone depletion, greenhouse effects, extinction of animal and plant species and various types of soil and climate pollution. The combination of these factors has provided the basis for the formation and activation of environmental movements. The present paper tries to answer the question of how emerging environmental movements can be analyzed in the form of new social movements? And what are their effects on new social movements? Therefore, with the qualitative interpretive method, and the method of case studies, it examines the nature and why of emerging environmental movements. The research findings show that environmental crises and the need to solve environmental problems that have become a pervasive and global crisis, have provided the basis for the formation, activity and impact of emerging environmental movements. Therefore, in order to deal with the existing crises, emerging environmental movements first informed and increased public awareness, and then created pro-environmental organizations and groups, and finally, by entering In the field of politics, and using new tools and methods, they have expressed their demands and protests in a peaceful and non-violent way, in order to force governments to respond and finally enter directly into The field of politics as influential groups and political parties in the field of public policy. As a result, the volume and scope of social power and the political influence of emerging environmental movements have led to the revitalization and enrichment of new social movements; in a way that today they can be identified and analyzed as powerful social forces and influential actors in the field of political sociology.
Keywords: New Social Movements, Emerging Environmental Movements, Social Forces, Methods of Action, Political Nature.
Mr. Hamidreza Parastesh, Dr. Khosro Ashrafi, Dr. Mohammad Ali Zahed,
Volume 9, Issue 3 (12-2022)
Abstract
Energy Information Administration (EIA). 2022. Natural gas explained. https://www.eia.gov/energyexplained/natural-gas/use-of-natural-gas.php#:~:text=The%20United%20States%20used%20about,of%20U.S.%20total%20energy%20consumption
Energy Information Administration (EIA). 2022. Natural Gas Consumption by End Use. https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_nus_a.html
IEA. 2020. Gas 2020. https://www.iea.org/reports/gas-2020/2021-2025-rebound-and-beyond
Cinq-Mars, TJ.; T. Kropotova, M. Morgunova, A. Tallipova, and S. Yunusov. 2020. Leak Detection and Repair in the Russian Federation and the United States: Possibilities for Convergence. Stanford US-Russia Forum Journal.
Weller, ZD.; DK. Yang, and JC. von Fischer. 2019. An open source algorithm to detect natural gas leaks from mobile methane survey data. PLoS One,14(2):e0212287.
SHAHEDI, AS.; MJ. ASSARIAN, O. KALATPOUR, E. ZAREI, and I. MOHAMMADFAM. 2016. Evaluation of consequence modeling of fire on methane storage tanks in a gas refinery.
Costello, KW. 2014. Lost and unaccounted-for gas: Challenges for public utility regulators. Util Policy,29:17–24.
Arpino, F.; M. Dell’Isola, G. Ficco, and P. Vigo. 2014. Unaccounted for gas in natural gas transmission networks: Prediction model and analysis of the solutions. Journal of Natural Gas Science and Engineering,17:58–70.
Weller, Z.D.; SP. Hamburg, and JC. von Fischer. 2020. A national estimate of methane leakage from pipeline mains in natural gas local distribution systems. Environmental science & technology, 54(14):8958-8967.
Meland, E.; NF. Thornhill, E. Lunde, and M. Rasmussen. 2012. Quantification of valve leakage rates. AIChE journal, 58(4):1181-1193.
Wagner, H. 2004. Innovative techniques to deal with leaking valves. Technical Papers of ISA, 454:105-117.
Kaewwaewnoi, W.; A. Prateepasen, and P. Kaewtrakulpong. 2010. Investigation of the relationship between internal fluid leakage through a valve and the acoustic emission generated from the leakage. Measurement, 43(2):274-282.
Zhu, SB.; ZL. Li, SM. Zhang, and HF. Zhang. 2019. Deep belief network-based internal valve leakage rate prediction approach. Measurement, 133:182-192.
Panahi, S.; A. Karimi, and R. Pourbabaki. 2020. Consequence modeling and analysis of explosion and fire hazards caused by methane emissions in a refinery in cold and hot seasons. Journal of Health in the Field.
Plant, G.; EA. Kort, C. Floerchinger, A. Gvakharia, I. Vimont, and C. Sweeney. 2019. Large fugitive methane emissions from urban centers along the US East Coast. Geophysical research letters, 46(14):8500–8507.
Akhondian, M.; S. MirHasanNia. 2017. Biodiversity of microalgae, a potential capacity in biological and environmental technologies. Journal of Human Environment and Health Promotion,41:39–70.
Defratyka, SM.; JD. Paris, C. Yver-Kwok, JM. Fernandez, P. Korben, and P. Bousquet. 2021. Mapping urban methane sources in Paris, France. Environmental Science & Technology,55(13):8583-8591.
Mohammadi Ashnani, M.; T. Miremadi, A. Danekar, M. Makhdoom Farkhonde, and V. Majed. 2020. The Policies of Learning Economy to Achieve Sustainable Development. Journal of Environmental Science and Technology,22(2):253–274.
Gioli, B.; P. Toscano, E. Lugato, A. Matese, F. Miglietta, A. Zaldei, and FP. Vaccari. 2012. Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environmental Pollution,164:125-131.
Moriizumi, J.; K. Nagamine, T. Iida, and Y. Ikebe. 1998. Carbon isotopic analysis of atmospheric methane in urban and suburban areas: fossil and non-fossil methane from local sources. Atmospheric Environment, 32(17):2947-2955.
Zazzeri, G.; D. Lowry, RE. Fisher, JL. France, M. Lanoisellé, CSB. Grimmond, and EG. Nisbet. 2017. Evaluating methane inventories by isotopic analysis in the London region. Scientific reports, 7(1):1-13.
Wever, JL.; GJL. Van Orizande, WB. Rademaker, and GJ. Van Schagen. 2002. Applicability of the Hi-Flow sampler in reducing methane emissions from a technical/economical point of view. Feasibility study; Toepasbaarheid Hi-Flow sampler bij reductie methaanemissie op technisch/economische gronden. Haalbaarheidsstudie.
Bacharach INC. 2015. Hi flowR sampler for natural gas leak rate measurement.
Connolly, JI.; RA. Robinson, and TD. Gardiner. 2019. Assessment of the Bacharach Hi Flow® Sampler characteristics and potential failure modes when measuring methane emissions. Measurement, 145:226–233.
Khorasan Razavi Gas Company. 2019. Determining the statistical population and sample size of field measurements to estimate normal emission inventory Greenhouse gases in the gas network of Khorasan Razavi province.
Estimation of methane gas leakage from Mashhad urban landfills and evaluation of economic and environmental effects
Abstract
This study, which was conducted in 8 urban gas areas of Mashhad; At first, descriptive statistics of the state of Mashhad urban gas regulators and different leakage modes were presented; In order to analyze the collected data and investigate the causes of leakage, the relationship between 5 variables and the amount of leakage from gas regulators was tested with the Statistical Package for the Social Sciences (SPSS) V.26 software; These 5 variables are: regulator equipment/connections, regulator operation age, regulator service type (domestic, industrial and commercial), urban area and different seasons of the year.
The results of the analysis showed that there was a significant difference between the type of equipment/connections and leakage. (P-Value = 0.0001). Also, a significant difference was observed among other variables of the research (the operation age of the regulator, the type of regulator service (domestic, industrial and commercial), the urban area and different seasons of the year) with the leakage rate (P-Value=0.0001); The pressure drop due to the greater demand of gas consumption in the winter season has reduced the amount of leakage compared to other seasons; The influence of the age of distribution network equipment/connections due to wear and tear and longer life will aggravate the amount of methane gas leakage; Also, the amount of leakage in commercial places had a significant difference with other types of uses; Being in an urban area has also increased the amount of methane gas leakage compared to other areas; The type and quality of equipment and connections as the main and influential factor in methane gas leakage should be considered by managers and officials in this field of work.
Keyword: Methane, Riser, Urban area, Environmental effects, Economy Effects, Gas, Emission
Prof Bohloul Alijani,
Volume 10, Issue 1 (5-2023)
Abstract
Abstract
During the recent decades the discipline of geography has lost its priority and position to some degree in Iran. Most of the graduates could not enter into the work in the universities and other organizations. The human-environment system, the main area of geographical specialty - has experienced many crises and hazards among which the global warming and climate change being the most destructive. This means that the ongoing curriculum is not working well and needs to experience a fundamental change. To implement this operation some points should be cleared out: The hazardous condition of the world and especially Iran, the education history and state of geography in Iran, and the relation between geography and sustainable development of the world. The discipline of geography has changed its approach according to the circumstances of each period several times. For example, at the beginning of the twenty-century due to the dominance of the environmental determinism, the dominant approach of geography was the relation between man and environment. But since the 1970’s the earth has encountered with different hazards and crises to the extent that it is named as the period of Anthropocene. Accordingly, the dominant approach of geography during this Anthropocene era is to identify and solve the hazards and crises and lead the man- environment system towards the sustainability as once was requested by the secretary general of the United Nation. In this regard the geography should adopt the sustainable development concepts and goals. For this reason, the geography of Iran should make a switch from its very specialized approach to a relatively wholistic view and pay more attention to the human- environment paradigm. To implement this order, the following assumptions should be considered.
- The applied objective of the discipline should be defined as “locating the suitable place for the living and activities of man without endangering the sustainability of the natural environment. This objective is not clear at the present curriculum. Defining this objective will clearly show students what is their job after finishing the career.
- The main vision of geography education is the creation of the sustainable geographical space or environment.
- The research approach is problem solving. Because most of the laws and concepts are identified and defined. Due to the hazardous nature of the earth system geographers should identify the problems and research to solve them via geographical thought and knowledge.
- The terrestrial unit for working is region. This is very important concept in geography. We cannot prescribe one sustainability procedure for all of the world. But we do one for each region. When regions became sustainable, all the world will be sustained.
- In any region the hazards and crises will be identified and described through the spatial analysis methods and will be conducted towards sustainable human – environment system. This monitoring is composed of the stages of spatial analysis, spatial planning, and spatial managing.
- All of the geography subjects and materials are necessary for sustainable development goals. The only criteria will be added is the environmental ethics in all of the geography activities and applications.
- Instructors and students should be familiar with the techniques of integration and multi-dimension modelling.
- All geography graduates will respect the nature and its resources and should consider the environmental ethics during their academic career. They should be able to identify and solve the environmental problems through the geographical thinking. Geographical thinking means asking geographical question, gathering geographical data, processing the data with geographical (spatial) methods, and presenting the results in the geographical forms, i.e., maps. All the graduates should be creative and critical and should have the power of scientific challenging and discussions.
- Geography is one independent and overarching discipline and we will offer only one total geography in bachelor level. The master career can be specialized according to the applied objectives of the societies. The doctoral program is also one integrated discipline. The specialty of graduates will be defined according to their dissertation.
- The subjects include the fundamental courses such as physical geography and sustainable development, regional courses such as the human geography of Iran, technical courses such as remote sensing, GIS, and statistics, the applied courses such as evaluating the natural resources, and so for. The students with any high school background should pass all the courses with high quality so that after graduation they have the potential to analyze the human- environment problems and recommend the required solutions.
Key words: geography curriculum, sustainable development, geography of Iran, twenty first century, environmental ethics, geographical thinking, Geography and sustainable development.
Dr Sara Kiani, Dr Morad Kavyani, Dr Amirali Tavasoli,
Volume 10, Issue 4 (12-2023)
Abstract
The Namak Lake is situated between three provinces: Isfahan, Qom, and Semnan. However, the functioning of Namak Lake and its susceptibility to environmental, ecological, economic, and social influences not only affect the immediate surroundings but also impact other provinces. Naturally, a crisis in this lake can have negative effects on human communities and the residents of the surrounding areas in terms of environmental, economic, and social aspects. Therefore, the aim of this research is to identify the temporal-spatial changes in the salinity of Namak Lake and, subsequently, to investigate and analyze the effects of these changes on the environmental security of the surrounding regions. To achieve this goal, salt zones were identified using soil salinity indices, including the Normalized Difference Salinity Index (NDSI), Salinity Index 1 (SI1), Salinity Index 2 (SI2), and Brightness Index (BI), over a 30-year period (1992-2021) with five-year intervals. Then, using the maximum likelihood method, the salt zones were classified into four land cover types, including water zone, moist zone, salt zone, and other uses. The results of this study indicate that due to the reduction in water inflow into the lake as a result of dam construction in the upstream basin and the effects of climate change, the water zone, or seasonal lake, of Namak Lake has disappeared and the salt zone has expanded in this area. The most significant changes in the lake are related to the northwestern part of the lake, where major rivers such as Jajrood, Shur, Qarechai, and Qamaroud flow into this part of the lake, contributing to its drainage. Therefore, dam construction on these rivers has led to a downward trend in water flow into the lake. Furthermore, the results suggest that due to the absence of settlements and human communities near Namak Lake and the natural and climatic conditions of the region, it is not expected that environmental incidents that could have security and political implications will occur in the short term.