Search published articles


Showing 355 results for Type of Study: Research

Sharifeh Zarei, Bohloul Alijani, Zahra Hejazizadeh, Bakhtiar Mohammadi,
Volume 8, Issue 4 (1-2021)
Abstract

In this research, the most important synoptic patterns of widespread snowfall in the western half of Iran have been investigated. For this purpose, the data of current weather code and snow depth of 36 synoptic stations during the statistical period of 1371-1400, for the months of October to March, were received from the Meteorological Organization of the country. In order to investigate wide snowfalls, the days when more than 70% of the studied area saw snowfall at the same time were extracted as a wide day. In order to perform synoptic-dynamic analysis of wide snowfalls in the western half of Iran, the classification method using cluster analysis was used and maps of representative days were drawn, including atmospheric temperature, moisture flux, geopotential height, tovai, front formation, jet stream, omega index, and orbital and meridian wind data. Trend analysis was also performed using the Mann-Kendall test.  The results showed that 4 models justify the widespread snowfall in the studied area in the best way. According to the results in all the models, at sea level, the collision of cold and dry air of northern latitudes with warm and humid air of southern latitudes has caused the formation of frontal fields in the western half of Iran. At the level of 500 hectopascals, the intensification of the meridional currents in the western winds caused the creation of closed centers and as a result the flow changed in the direction of the westerly winds, and the location of the western half of Iran in the east of Naveh Al-Aghti and Sardchal has provided the necessary conditions for air to rise. Also, there was no trend in the number of snow days in the western half of Iran at the significant levels tested. But; The number of snow days has been decreasing over time. In general, it can be concluded that due to the warming of the earth and climate change, the number of snowy days has decreased and these changes have led to a significant shortening of the snow season.
Tahmineh Chehre Ara,
Volume 9, Issue 1 (5-2022)
Abstract

Investigating the role of  atmospheric circulation patterns in the severe air pollution in Esfahan

Introduction
The atmosphere is a dynamic system in which a large number of physical and chemical processes occur simultaneously. Studying the dynamics and transmission of pollutants in the atmosphere using atmospheric patterns is one of the important topics in this field. Atmospheric patterns simulate the occurrence of different processes within the atmosphere and their interactions. Using an atmospheric model also requires comparing the results of the model with field and laboratory experiments. This helps in understanding the occurrence of chemical and physical processes in the atmosphere as well as evaluating the implementation of a suitable model. Laboratory measurements provide valuable information while at the same time visualizing and describing atmospheric properties and atmospheric composition at specific time and space intervals. An atmospheric model provides a complete picture of the evolution of spatial and temporal variations in atmospheric pollutants at different altitudes. Understanding atmospheric dynamics can be understanded by combining measurements and integrated modeling with using synoptic systems in periods with pollutated air. Therefore, in this study, it has been attempted to analyze the atmospheric factors that cause severe pollution in Esfahan and the relationship and mechanism of the atmosphere at the time of occurrence of this phenomenon.

Data and methods
In this study, three datasets including pollution data recorded at air pollution stations, digital atmospheric data and high atmospheric stations were used. The air pollution data are from three stations of Laleh Square, Azadi and Bozorgmehr which were obtained from Esfahan General Environmental Protection Office. The pollutants include carbon monoxide, nitrogen dioxide, sulfur dioxide, ozone and suspended particulate matter (PM10), which have been prepared and processed daily for a 12-year statistical period (1995-2005). To study atmospheric conditions were used re-analyzed data from the National Center for Environmental Prediction (NCEP / NCAR) include sea level pressure, geopotential height, vertical velocity (Omega), wind orbital components (U), and meridian wind ( V) was used for different levels of atmosphere. 
The above atmospheric data were obtained from the University of Wyoming site for the study days, including air temperature, dew point temperature, wind direction and intensity, and atmospheric stability and instability conditions (based on skew-t curves). In this study, a Lagrangian model with the capability of tracking particle backward in different levels of atmosphere called HYSPLIT was used to investigate the days associated with severe pollution.

Results and discussion
The results show that the highly pollutated days of the city of Esfahan can be explained by the four synoptic patterns. The occurrence of days with extremely severe pollution in Esfahan, rather than being rooted in local factors, is due to the interaction of local conditions with atmospheric circulation at the regional scale. In other words, the city of Esfahan will only experience extremely polluted days when the atmospheric circulation of the atmosphere provides conditions for increased concentrations of pollutants.
The main causes of the occurrence of days associated with maximum contamination can be attributed to Subtropical high latitude and its progression to higher latitudes. This circulation system contributes to the occurrence of highly polluted days on most days, either directly or in combination with other atmospheric systems.
The role of local factors such as the formation of inversion layer and the increase of atmospheric thickness due to the dominance of high pressure systems in the region can also be considered to exacerbate the conditions.
The use of suspended particle backward models and the study of atmospheric thermodynamic relationships have provided a deeper and more accurate understanding of the mechanisms dominating the occurrence of pollutants in Esfahan.
The results of this method showed that the occurrence of highly polluted days in the city of Esfahan can not be attributed to urban pollutants such as industrial factories of automobiles and so the influx of particulate matter from different areas has caused higher intensity pollution.

Conclusion 
The results showed that four factors and patterns prevailed in the middle of the atmosphere at the time of the most severe days pollution in Esfahan. The results of the PSI values in each pattern showed respectively from pattern of one to four, is 221, 238.6, 203 and 281.
The synoptic conditions can be attributed to the presence of tropical high pressure, which is accompanied by a layer of temperature inversion in the lower levels of the atmosphere and the middle troposphere.
Strength of negative vorticity above 700 hPa and continued surface convergence to this altitude have made the nature of the summer atmosphere clearly observed in the pollution event in the city, which has been enhanced by strong anomalies.
On the other hand, the output of the HYSPLIT model showed that the occurrence of highly polluted days in the city of Esfahan could not be detected in urban pollutants such as automobile industrial plants and. But, the influx of particulate matter from different areas has made the pollution more intense, and the influx of dust particles has exacerbated this hazard.

Keywords: Air Pollution, PSI Index, Atmospheric Regional Circulation Patterns, HYSPLIT Model, Esfahan

 
Manijeh Ahmadi, Mohsen Kalantari, Mostafa Mohammadi,
Volume 9, Issue 1 (5-2022)
Abstract

 Introductions
Today, various social ills such as addiction, cultural issues and problems have been added to the issues raised in the past and require extensive studies and planning in this area to preserve the small human capital of rural settlements and be used for sustainable rural development. The present study has spatially analyzed the effective factors for drug addiction and abuse. Today, various social ills such as addiction, cultural issues and problems have been added to the issues raised in the past and require extensive studies and planning in this area to preserve the small human capital of rural settlements and be used for sustainable rural development. In recent years, drug abuse has increased worldwide, so that now all countries in the world are incurring significant costs as a result of the damage caused by this phenomenon. Drug abuse has incurred enormous social and economic costs through its devastating effects on human health and the increase in crime and mortality in society, and as a result has become a major threat to societies. There is no specific agreement on the root causes of drug abuse, so that the factors associated with it are numerous and varied, including individual contexts, family characteristics, and social and environmental factors.  The present study has spatially analyzed the effective factors for drug addiction and abuse.

Research Method
The type of research is applied and the nature of the research is descriptive-analytical. Independent variables in this study are physical and demographic factors in the study village. The dependent variable of this study is the situation of addiction and drug abuse in Dizajabad village. The validity of the research indicators was reviewed and modified by the professors and the reliability value was calculated based on Cronbach's alpha of 0.784. The statistical population of the present study is villages at risk of addiction and drug abuse. This village was identified through interviews with law enforcement experts and statistics available in this organization as well as unofficial statistics. The number of these villages includes four villages (Sayan (Mahdieh town), Dizajabad, NoghtehBandi and Choreh Nab) which were selected as a sample village using the lottery method of Dizajabad village. The study population in Dizajabad village includes people who are addicted to drugs and abuse in Dizajabad village, which have been collected through irregular interviews, as well as for comparison and assessment between addicts and other people. The questionnaire was completed in all residential units where people lived and the Cochran's formula was used for accurate sampling.
The baseline map was used to perform the analyzes. Using Cochran's formula, 115 residential units belonging to people with addiction and drug abuse were selected as a sample. In order to analyze descriptive data from Excel software and also for correlation between physical characteristics, population of people with addiction and drug abuse, Spss software and Human Whitney and two-group T tests were used in Arc Gis / Arc map environment. Hot Spot Analysis, kernel density estimation and standard deviation ellipse tests were used.
Interpretation of results
Findings show that the spatial distribution of addiction and drug abuse in Dizajabad village is not evenly distributed and are mostly concentrated in the northwest and southeast, which are in these two areas due to the high density of residential units. . According to the tests of hot spots of addiction and according to the studied items, the two southeastern and northwestern parts of the village have hot spots and the standard deviation ellipse in this map indicates that its direction is northwest, southeast. This direction is influenced by the shape of the village. The pattern of drug distribution in the village also indicates that it is concentrated in two parts, northwest and southeast. The median center indicates that the southern and to some extent the southeastern part are more addicted than the other parts. The reason for the increase in the points of addiction and abuse in the two mentioned parts is the density of the residential unit and the existence of a network of winding and unbalanced passages, especially in the southeastern part. Centers of addiction and drug abuse by kernel density estimation method show that the two parts of the northwest and southeast of the village are more affected by drug addiction and abuse.
Keywords: Spatial distribution, Drugs, Addiction, Suburban villages, Zanjan Township











 
Shamsollah Asgari, Tayeb Raziei, Mohamadreza Jafari, Ahmad Hosini,
Volume 9, Issue 1 (5-2022)
Abstract

Introducing the appropriate model of oak forest and drought relations

in Ilam province

Introduction
The forest ecosystems of the Zagros vegetation region have a very long history of exploitation in various
forms. The material of the Zagros vegetation region is Iranian oak. In recent years, a significant
proportion of oak forests have dried up or have experienced drought. Although the main cause of drought
in these forests has not been determined yet, in the preliminary studies, factors such as climate change,
increasing dust, increasing drought periods, pest infestation and disease, high user changes have been
cited as reasons for drought in the Zagros forests. (Hosseinzadeh and Pourhashemi, 1396). Iran's location
in the arid and semi-arid zone of the world (sub-tropical region) has often been associated with
fluctuations in climatic and atmospheric elements and under the influence of atmospheric currents,
synoptic patterns, irregularities in precipitation and temperature patterns (Rahmati, 2016; 1383).
Comparison of the effect of climatic variables on healthy masses and affected by the decline of oak in
Khorramabad city based on rainfall and temperature data using Pearson correlation coefficient, on annual
growth rings of oak trees Effectiveness of drought of oak trees from both series In general, healthy trees
have been more affected by monthly and seasonal temperatures and have shown the highest coefficient of
correlation with the temperature of the region (Naseri Karimvand et al., 2016). , And the Standardized
Rainfall Index (SPI) and the correlation between these two indicators in assessing and monitoring drought
in different areas of Isfahan province, the results showed that NDVI plant index can be a good alternative
to climatic indicators in drought assessment and monitoring) with the conclusion and colleagues, 2011:
79).
Data and Method
So from SPI and NDVI indicators and Moran index and statistical regression statistics and satellite
images of Modis and Landsat have used to analyze the relationship between dieback of Ilam forests and
happened drought in the region. The precipitation data of 93 rain gauge stations were analyzed during the
statistical period and according to the dry coefficients of SPI index, drought zoning layers of Ilam
province were prepared for two time series of 2000 to 2009 and 2010 to 2019. Greenery's raster layers
were prepared from Modis satellite imagery for the mentioned time series. The results of analysis of
Moran's statistical showed a significant correlation between the SPI index and the NDVI index in spatial
dimensions. By a simple random method, 143 points of oak dieback with dimension of 30 m 2 , which each
point was equivalent to a pixel-size, were recorded with a GPS device, and by simulating in satellite
imagery, the droplet layer of oak dieback was extracted.
Result and Discussion
What is debatable about the results of the implementation of methods for obtaining drought ranges and its
relationship with oak drought points or masses is that the results of the models show a statistically close
and direct relationship between drought and oak drought. . The general trend of oak drought and drought
in these two decades has been from the southeast to the northwest of Ilam province, with increasing
temperature and decrease in rainfall in the southern and eastern regions of the province and increasing
rainfall and decrease in temperature in the central and northwestern regions of Ilam province. The data of
the synoptic stations are consistent. Analysis of satellite imagery and declining greenery in the models
although the study was aimed at meteorological drought and precipitation fluctuations, but spatial
changes of arid points and masses in the province were adapted to field visits and human intervention,
especially in the southeast with agriculture. Under the rubble and the remnants of the dried trees, the ax
has been placed on the roots of these trees, and this trend is spreading in almost other parts of the arid
areas of the province. Therefore, due to the irregularity in the pattern of precipitation and temperature of
the research country (Rahmati, 2016; Zandi Army, 2004) and the effect of monthly and seasonal

نشریه تحلیل فضایی مخاطرات محیطی، سال نهم، شماره 1، بهار 1401 2
temperature on the growth and decline of oak trees in the study (Naseri Karimvand et al., 2016) and other
related research and The flooding situation in the basins of Ilam province, the rainfall, the impermeability
of the soil and their erosion, and finally the lack of moisture in the months before the oak trees grow in
the soil and the increase in temperature in the dry season, which leads to reduced humidity and eventually
greenery. Variables affecting oak drying in linear regression are not responsive, but more accurate results
will be obtained in multivariate regression, although regression analyzes are spatially empty, and X and Y
represent a one-way, quantitative analysis based on the number of dried trees with pixel counts. Drought
range is measured which this defect in SPI method despite its spatial and statistical analysis using Moran
statistical index due to non-compliance in the coefficients of this index with the range of changes in
Moran statistical analysis in statistical analysis is a more appropriate explanatory coefficient than The
regression models showed but at a lower level than the NDVI method it placed. The advantage of NDVI
method with Moran statistical analysis is the relationship between pixel and pixel, ie in spatial analysis,
all pixels that have green changes have been analyzed in the same domain of spatial changes with oak
trees. High results and higher statistical explanation coefficient were obtained than other models.
Conclusion
Although linear regression between extracted oak dieback points with SPI and Moran statistical indicators
was significant, but the relationship between NDVI index and Moran statistic has the effect of
independent variable of drought trend in spatial and temporal dimensions on the dependent variable
process of oak drought with spatial analysis. And nonlinear regression has a more appropriate and
accurate statistical significance and explanation. So this method as desirable method has been introduced
for analyzing of drought and oak dieback.
Keywords: Ilam province, oak forest drought, drought, Moran index
Hossein Kianpour, Soolmaz Dashti, Roshana Behbash,
Volume 9, Issue 1 (5-2022)
Abstract

Vulnerability assessment of Miangaran wetland ecosystem

To support the proper management of ecosystems, vulnerability analysis of ecosystems is very important. Vulnerability analysis of ecosystems provides information about weaknesses and capacity of the studied ecosystem for recovery after damage. Considering the degradation status of Miangaran wetland, vulnerability evaluation of this wetland is one of the most important management methods in the region. For this purpose, in this study, after identifying and evaluating the threatening factors of Miangaran wetland, these factors were scored using evaluation matrices. Then, the interaction between these values ​​and threatening factors was examined and the vulnerability of wetland values ​​was obtained by multiplying the scores of all studied factors. Finally, management solutions were presented to deal with the most important threatening factors. According to the results, the most vulnerability is to the hydrological and ecological values ​​of the wetland. The highest effects of threats on the ecological value are also on the birds of Miangaran wetland. The results of the evaluation of Miangaran Wetland show that this wetland has a high potential for ecosystem functions of the wetland. These functions have been neglected in the planning and managing of wetlands at the local, regional and national levels. As a result, ecosystem-based management is suggested as the best management approach. The management in these areas should take action to prevent the vulnerability of Miangaran wetland. Also, the vulnerability evaluation method used in this study can provide a good understanding of the relationship between wetland functions and the resulting services for the management of the ecosystem of Miangaran Wetland.
Key words: Miangaran wetland, ecosystem management, vulnerability assessment


Dr Hassan Lashkari, Dr Zainab Mohammadi,
Volume 9, Issue 1 (5-2022)
Abstract

Synoptic analysis of the changes trend of the share of systems due to the Sudan low
In the cold period of the Persian Gulf coast during 1976-2017


 Introduction
In the Ethiopian-Sudan range forms the low pressure system without front in the cold and transition seasons that is affecting the climate of the adjacent regions by crossing the Red sea. Based on the evidence in the context of Iran, studying Sudan low was first begun by Olfat in 1968. Olfat refers to low pressures which are formed in northeastern Africa and the Red Sea and then pass Saudi Arabia and the Persian Gulf, enter Iran, and finally, cause rainfall. The most comprehensive research specifically examining Sudan low, was the work carried out by the Lashkari in 1996. While he studying the floods that occurred in southwestern of Iran, he was identified Sudan low by the most important cause of such flooding and he explained how they are formed, and how these low-pressure systems were deployed on the southwest of Iran.

 Materials and methods
The study period with long-term variations was considered from 9.5 to 11 years based on solar cycles. Precipitation data for 13 synoptic stations are considered above 5 mm in south and southwestern Iran. With three criteria were determined for the days of rainfall caused by each type of atmospheric system. The visual analysis of high and low altitude cores and geopotential height at 1000 hPa pressure level (El-Fandy, 1950a; Lashkari, 1996; 2002) were considered based on the aim of the study. Accordingly, the approximate locations of activity centers, as well as the range of the formation and displacement of the Sudan system were initially identified based on the location of the formation of low and high-pressure cores. Then, the rainy days due to the Sudan system in January were separated from the precipitation of the other atmospheric system.

 Results and discussion
According to the selected criteria in the forty-year statistical period, 507 precipitation systems were identified with different continuities that led to precipitation in the northern coast of the Persian Gulf. The pattern of independent Sudan low rainfall was responsible for 77% of the precipitation in the Persian Gulf. Decade frequency share of Sudan low was lower in the first decade (16%) compared to the next three decades. This system of rainfall was more activated during the second and third decades compared to the first decade. However, rainfall changes were not evident in the mid-decade. Independent Sudan low precipitation provide 25% and 27% of the cold season precipitation of the Persian Gulf during the second and third decades respectively. In accordance with the 24th solar cycle, at the end of the study period, the Sudan low was more effective on the Gulf coast than ever before. During this decade, 125 cases of Sudan low rainfall was recorded for the Persian Gulf. Thus, the frequency of Sudan low during the fourth decade was about 31%, which was higher than in the rest of the decade. Overall, the Sudan low rainfall was repeated 151 times for 2 days rainfall, during the statistical period studied. This Precipitation has increased over the last decades compared to other periods.

 Conclusion
The severe variability of rainfall along the timing and location of the permanent Persian Gulf coasts can have a significant impact on the economic and agricultural behavior of the Gulf population in the three provinces of Ahwaz, Bushehr and Hormozgan.The purpose of this study was to evaluate the precipitation changes due to Sudan low in the Persian Gulf coastal region during the cold period. The results of this study showed that the role of integration patterns in influencing the precipitation of the Persian Gulf coast has decreased with the strengthening and further activation of the Sudan low system during the last two decades. That way, about 77percent of the region's rainfall is provided by independent Sudan low. At the end of the course (in accordance with 24th solar cycle activity) the Sudan low system was more active than before. Although the Sudan low activity was different at each station during the period studied, but in the historical passage incremental and decade's positive behavior of Sudan low was common to all stations. Evaluation of changes in rainfall duration shows that the pattern of precipitation with 2days duration is more frequent than the patterns of one to several days.

Keywords: Sudan low- Solar cycle- Persian Gulf.


 
Mrs Zeinab Shogrkhodaei, Dr. Amanollah Fathnia, Mr Vahid Razavi Termeh,
Volume 9, Issue 1 (5-2022)
Abstract

Study the Effects of Covid-19 on Air Pollutants by Using Sentinel-5 Satellite Images (Case Study: Metropolises of Tehran, Isfahan, and Mashhad)

Zeinab shogrkhodaei, PHD. Student of Climatology, Faculty of Literature and Humanities, Department of Geography, Razi University
Amanollah Fathnia*, Assistant Professor of Climatology, Faculty of Literature and Humanities, Department of Geography, Razi University
Vahid Razavi Termeh, PHD. Student of GIS, Faculty of Geodesy and Geomantic, K. N. Toosi University.

Introduction
One of the challenges facing the international community right now is Covid-19. This pandemic has caused a comprehensive change in behavior contrary to the usual routine, which can lead to changes in people's lifestyles (Briz-Redón et al., 2021). The prevalence of this disease has not only affected the economy and health, but also the environment (Sohrabi et al., 2020). Among the effects of Covid-19 on the environment are the effects on beaches, noise, surface and groundwater, municipal solid waste, and air quality (Zambrano-Monserrate et al., 2020). The restrictions applied during the Covid-19 era were accompanied by a reduction in greenhouse gas emissions by transport and industry, which affected air quality (Rybarczyk and Zalakeviciute, 2020). Air is a vital element for the survival of all living things, but human activities have caused the release of many harmful pollutants into the atmosphere and endangered human health (Ghorani-Azam et al., 2016). Among the causes of death, air pollution is the fourth leading cause of death in the world after tobacco (WHO, 2020a). Sulfur dioxide, nitrogen oxide, carbon monoxide, and ozone are some of the pollutants that cause short-term or long-term exposure to heart and lung disease (Briz-Redón et al., 2021). Human activities are one of the main sources of air pollutants, so their concentration is expected to decrease during the Covid-19 period (Ghahremanloo et al., 2021).
Materials and methods
In this study, the required data were the average monthly pollutants of sulfur dioxide, nitrogen dioxide, carbon monoxide and ozone before (20 February 2019 to 20 February 2020) and after (20 February 2020 to 20 February 2021) the prevalence of Covid-19 virus. For this purpose, Sentinel-5P satellite images were used to prepare the required data set. The case study included three metropolises of Tehran, Mashhad, and Isfahan. Google Earth Engine was used to access Sentinel-5P satellite images. The final output of the images for each pollutant was interpolated for better display and exposure in GIS software using the kriging method. Then, a T-test was used to compare the differences between the concentrations of contaminants before and after the outbreak of the Covid-19 virus and to evaluate the mean correlation. Based on this test, values that were p-value <0.05 were considered significant. This was considered as a change in the concentration of the contaminant before and after the Covid-19 virus (decreasing or increasing). Those pollutants with a p-value <0.05 were considered unchanged.
Results and Discussion
Analysis of the T-test showed that for pollutants such as sulfur dioxide, nitrogen dioxide, and carbon monoxide in all three metropolises, there was no significant change in their concentration before and after the outbreak of the Covid-19 virus. However, significant changes were observed for ozone pollutants. Also, its concentration trend in all three metropolises has been a decreasing trend. The main sources of emissions of nitrogen dioxide, carbon monoxide, sulfur dioxide, and ozone are related to human activities, including transportation and industry (Ghahremanloo et al., 2021; Cárcel-Carras et al., 2021). Pollutants such as carbon monoxide, nitrogen dioxide and sulfur dioxide are the primary pollutants; It means that they are emitted directly from sources, while ozone is a secondary pollutant and depends on complex and nonlinear atmospheric chemistry (Bekbulat et al., 2021). Given that the concentration of ozone surface decreases significantly with increasing concentration of nitrogen dioxide. When nitric oxide (NO) emissions are high enough, the NO released into the atmosphere converts a large portion of ozone to nitrogen dioxide (Hashim et al., 2021). In addition, in all three cities, when the concentration of nitrogen dioxide increased, we saw a decrease in the amount of ozone concentration. In addition, during the Covid-19 era, many industries that produced primary pollutants, including carbon monoxide, nitrogen dioxide, and sulfur dioxide, were not on the closure list or were telecommuted. Despite the decline in the performance of some activities, important sectors such as manufacturing plants, industrial and mining centers, agriculture, and public transportation have continued to operate even during severe restrictions. The mean difference between the concentrations of nitrogen dioxide before and after the outbreak of Covid-19 was positive. However, this average difference is small. However, the concentration of nitrogen dioxide is slightly increased, especially in cold seasons; Therefore, it can be said that ozone concentration has decreased.

Keywords: Covid-19, Air Pollutants, Remote Sensing, Sentinel-5.


















 
Nader Shohani, Lotfali Kozegar Kalj, Sajad Darabi, Said Yousefi Babadi,
Volume 9, Issue 1 (5-2022)
Abstract

Pandemic Covid-19 (Corona); Tehran's resilience against it

Nader Shohani; Assistant Professor, Department of Geography and Urban Planning, Payame Noor University. Tehran Iran
Lotfali College Potter; Associate Professor, Department of Geography and Urban Planning, Shahid Beheshti University, Tehran, Iran
Sajjad Darabi; PhD Student, Department of Geography and Urban Planning, Shahid Beheshti University, Tehran, Iran
Saeed Yousefi Babadi; PhD student, Department of Geography and Urban Planning, Shahid Beheshti University, Tehran, Iran

Abstract
One of the dangers that has caused cities to face a serious crisis is the outbreak of Covid-19 disease. The corona pandemic has taken cities out of their normal routine. Therefore, cities seek to return to their past conditions and urban resilience as soon as possible. Research Method In this descriptive-analytical study, using field survey, four economic, social, managerial-institutional and infrastructural dimensions in the form of 29 items have examined the resilience of Tehran against Corona pandemic. In research, support and advocacy for affected businesses, insurance coverage, support for affected manufacturing sectors, are in the most unfavorable situation. The results obtained from the final table of Vikor technique show that the economic index with a score of 1 is the most important component of resilience against coronavirus, which is lower than other components of resilience. After that, the managerial-institutional component with a score of 0.94 and the infrastructure component with a score of 0.92 in the next ranks are the most important components of Tehran's resilience against coronavirus. The results show that the metropolis of Tehran is not in a favorable position in relation to the corona virus and is not resilient to selected indicators and the economic index has the most impact and the social index has the least impact on the resilience of Tehran.

Keywords: Urban Resilience, Covid 19, Pandemic, Tehran



Pandemic Covid-19 (Corona);
Tehran's resilience against it

 
Mehrdad Hadipour, Mahdye Heidari, Mohammadali Zahed, Seyedhosein Hoseini Lavasani,
Volume 9, Issue 1 (5-2022)
Abstract

Investigation of Construction Wastes Release in Roadside Using AHP

Introduction
Although construction waste is an integral part of municipal waste, due to the differences between this waste and waste and environmental issues, a suitable model should be designed for optimal productivity and acquisition of resources. The increasing volume of urban materials and rubbish, especially the rubbish from the destruction of their construction and worn-out urban textures, has created many problems in large cities, as well as environmental problems that have arisen due to unprincipled and unprofessional disposal of these materials. Has attracted these materials. Research shows that the amount of this waste is equal to 10 to 15% of the total materials used in construction operations. This amount is much higher than what is estimated by the estimators.

Data and research method
In Iran and other developing countries, construction and construction waste is a major part of municipal waste, which in addition to high costs for its disposal, also has adverse consequences on the environment. The volume of this garbage is so much that now this issue has become a social and environmental problem not only in Iran but also in developed countries due to the limitation of natural resources and preservation of national capital for future generations as well as environmental protection And it is necessary because with proper management and efficient planning and reducing the volume of construction waste, not only the waste of natural resources and national capital is prevented, but also additional and ancillary costs are reduced and it is economically beneficial.
In this study, first, the effective criteria in selecting the burial site in the study area are determined. These criteria are reviewed and used by various standards, including standards related to the Environmental Protection Organization, the Ministry of Interior and international standards, as well as by reviewing resources and studies on the process of locating landfills in the country and abroad and by examining the conditions of the region. The study and the influencing factors are compiled in the study area. The layers related to each criterion in the relevant table will be prepared, processed and converted from the relevant organizations. The method of this dissertation is applied-modeling in terms of purpose, because on the one hand, the concepts and rules related to the field of knowledge are carefully analyzed, and on the other hand, the relationships between these concepts and rules are evaluated and determined by experts. In this study, there is a need to use the decision theory method to evaluate and investigate the status of construction waste disposal along roads to increase trust and confidence in decision making.
The data analysis tools of this research are SPSS, Expert Choice and Matlab for conducting the research. In the research process, after data collection, the next step involves data analysis. Cronbach's alpha coefficient was used to evaluate the reliability of the localization tools of the research components. In order to describe the data, the mean and standard deviation of the research data have been used.

The four-step process of multi-criteria decision-making process and fuzzy logic calculations to investigate the dumping of construction debris along roadsides is as follows:
Step 1 - Modeling causal relationships based on similarity to the ideal solution
Step 2 - Parallel comparisons and determining the weight of causal relationships based on the evaluation of decision options between the criteria for assessing the status of construction debris on the sidewalks,
Step 3 - Prioritize Based on Causal Relationships Based on Evaluation of Decision Options
 Step 4 - Fuzzy Prioritization and Final Analysis Investigation of Construction Waste Disposal Status

Result and Discussion
The most important results of the study of the dumping of construction debris along the roadsides are that,
1- The most important criterion in the cluster "Environmental factors of construction waste disposal" with code (A), "Soil pollution in the city" with code (AB) with fuzzy network weight of 0.096; And
2- The most important criteria in the cluster "Applications of GIS in urban management of construction debris disposal" with code (B), "Urban green space management" with code (BA) with fuzzy network weight equal to 0.191; And "Urban management related to health" with code (BB) with fuzzy network weight equal to 0.120; Were calculated. on the other hand,
3- The most important criterion in the cluster "Economic factors of construction waste disposal" with code (C), "Construction waste management training cost" with code (CD) with fuzzy network weight equal to 0.123; Prioritized,

conclusion
The results of the present study can be said that, after reviewing the theoretical foundations of the research and reviewing the research background, it was found that due to research gaps in the fields of economic factors of construction waste disposal, GIS applications in urban management, construction waste disposal, environmental factors, Utilization of a combined fuzzy multi-criteria decision-making methodology to investigate the status of construction debris dumping along roadsides; It is possible to realize the innovation of the present research in filling the mentioned research gaps.

Key words: Construction Debris, Civil Waste Management, Multi-Criteria Decision Making, Karaj.

 
Dr Fariba Esfandiari Darabad, Dr Raoof Mostafazadeh, Eng. Amir Hesam Pasban, Eng. Behrouz Behruoz Nezafat Takleh,
Volume 9, Issue 1 (5-2022)
Abstract

Soil erosion is one of the environmental problems that is a threat to natural resources, agriculture and the environment, and in this regard, assessing the temporal and spatial amount of soil erosion has an effective role in management, erosion control and watershed management. The main aim of this study was to estimate soil erosion in Amoqin watershed and its relationship with well-known vegetation-based and topographic-related indices. The meteorological data has been used to determine the rainfall erosivity. The rainfall erosivity index was calculated using the modified Fournier index during the 10-year available recorded rainfall data. The value of LS factor has been calculate using digital elevation model. Meanwhile, C and P factors were determined based on the utilization scheme and condition of the study area. Data were analyzed and processed using ArcMap 10.1, ENVI 5.3, and Excel software. In this study, RUSLE model was used to estimate soil erosion, in GIS environment. According to the results, the amount of factor R in Amoqin watershed varies from 12.32 to 50.52 MJ/ha/h per year. The variation of soil erodibility index (K) over the study area is between 0.25 to 0.42. The amount of LS factor varies between 0.19 and 0.38, which is more in high slopes, especially around the waterways and uplands of the study area. The variation of C factor was estimated to be around -0.18 to 0.4. In general, it can be said that the central part of Amoqin watershed has less C value due to the greater area of agricultural activities and the highest amount is related to western areas, especially southwest areas because existing the rangeland areas. Due to the lack of protective measures in the study area, the amount of factor P was considered as unity for the whole region. The base layers of RUSLE factors were obtained and overlayed in GIS to calculate the soil loss in tons per hectare per year. The map of annual soil loss indicate that the erosion amounts varies between 1.21 to 5.53 tons per hectare per year in different parts of the study area. According to the results, the vegetation factor with a coefficient of determination 0.47% had a significant correlation with soil loss. The stream power index with the coefficient of determination of % 0.07% had the lowest correlation with soil erosion values.
Dr. Mostafa Karimi, Norouzi Fahimeh, Dr. Mahnaz Jafari, Dr. Khoshakhlagh Faramarz, Dr. Shamsipour Aliakbar,
Volume 9, Issue 1 (5-2022)
Abstract

Vulnerability assessment of Miangaran wetland ecosystem

To support the proper management of ecosystems, vulnerability analysis of ecosystems is very important. Vulnerability analysis of ecosystems provides information about weaknesses and capacity of the studied ecosystem for recovery after damage. Considering the degradation status of Miangaran wetland, vulnerability evaluation of this wetland is one of the most important management methods in the region. For this purpose, in this study, after identifying and evaluating the threatening factors of Miangaran wetland, these factors were scored using evaluation matrices. Then, the interaction between these values ​​and threatening factors was examined and the vulnerability of wetland values ​​was obtained by multiplying the scores of all studied factors. Finally, management solutions were presented to deal with the most important threatening factors. According to the results, the most vulnerability is to the hydrological and ecological values ​​of the wetland. The highest effects of threats on the ecological value are also on the birds of Miangaran wetland. The results of the evaluation of Miangaran Wetland show that this wetland has a high potential for ecosystem functions of the wetland. These functions have been neglected in the planning and managing of wetlands at the local, regional and national levels. As a result, ecosystem-based management is suggested as the best management approach. The management in these areas should take action to prevent the vulnerability of Miangaran wetland. Also, the vulnerability evaluation method used in this study can provide a good understanding of the relationship between wetland functions and the resulting services for the management of the ecosystem of Miangaran Wetland.
Key words: Miangaran wetland, ecosystem management, vulnerability assessment
 
Masoud Rajaei, Ezatollah Ghanavati, Ali Ahmadabadi, Amir Saffari,
Volume 9, Issue 2 (9-2022)
Abstract

Analysis of the behavior changes of hydrological response units due to Residential development
(Case Study: Cheshmeh Killeh Tonekabon Basin)

Ezatollah Ghanavati *[1]
Ali Ahmadabadi[2]
Amir Saffari[3]
Masoud Rajaei[4]


Abstract                                                                                                                                          
Land use and vegetation changes directly lead to changes in the hydrological regime, especially runoff coefficient and maximum instantaneous discharge changes. Much of the land use change has occurred due to residential development, which has led to a decrease in residential and rangeland lands and agricultural lands in the northern regions of the country; This has led to an increased risk of flooding in these areas and downstream urban areas. Cheshmeh Killeh basin as one of the catchments in the north of the country in the last decade has witnessed the occurrence of various floods; Therefore, in this study, by extracting the hydrological response units of Cheshmeh Killeh catchment in order to identify changes in vegetation and land use of these units and the effect of these changes on the hydrological behavior of the basin, the runoff coefficient is one of these behaviors in this period of 29 years (1991-2018). paid. Therefore, in this research, hydrological response units have been identified and extracted as a working unit to determine the runoff production potential of Cheshmeh Killeh catchment. In order to monitor changes in density and vegetation cover using satellite images of the study area in 1991 and 2018, the normalized plant difference index was used; Then, by combining the layers of hydrological groups and land use, the amount of curve number was determined for each of the hydrological response units. According to the values ​​of the obtained curve number for each hydrological response unit, the amount of soil moisture holding capacity was extracted. Finally, by calculating the average monthly values, the amount of runoff from rainfall for 1991 and 2018 was estimated. The results of the study indicate a decrease in the amount and density of vegetation, an increase in the number of curves, a decrease in soil permeability and also an increase in runoff height during a period of 29 years (1991-2018) in Cheshmeh Killeh catchment (especially the northern parts of the catchment); In other words, settlement development, land use change and weakening of vegetation have intensified flooding in the basin; Therefore, it is necessary to carry out watershed management operations upstream to increase permeability.

 Keywords: Hydrologica response unit, Cheshmeh killeh, Runoff, Normalized vegetation difference index, SCS-CN model.
 
 

Ali Mohammad Khorshid Doust, Ali Panahi, Farahnaz Khorramabadi, Hossein Imanipour,
Volume 9, Issue 2 (9-2022)
Abstract

The effect of climatic parameters on vegetation distribution in central Iran
Introduction
Climate or climate reflects the daily weather conditions in a particular place for a long time. Most climatic elements are closely related to ecological factors, which is why the analysis of the relationship between climate and plant distribution patterns has been discussed in scientific and research circles for many years. And in recent years, scientists have been using a combination of climatic characteristics with other environmental factors to describe vegetation around the world. Climate change and atmosphere condition will change the content and composition of many plant communities.

The Study Area
The geographic coordinates of the studied area are between latitudes 29°32’ to 33°59’ and 51°27’ to 55°5’. The position of the selected provinces of central Iran compared to the neighboring provinces are shown in Figure 1 The annual data of 8 stations have been analyzed during the stations period determined by the National Meteorological Organization. The stations characteristics including latitude, longitude, elevation and specific statistical period are shown in Table 3.

Data and research methods
In this study, the role of temperature changes and relative humidity on vegetation in Central Iran has been investigated using statistical models of analysis of the main components and hierarchical clustering. This research is applied and its method is slightly analytical. In order to investigate the climatic fluctuations of the center of Iran with respect to urban green space, statistical data related to average temperature and relative humidity during the 32-year period (1986 to 2018) selected central stations of Iran to come and statistical deficiencies such as Data loss was performed by reconstructing differential equations using SPSS software. The criterion for selecting stations is the availability of long-term statistics. Using statistical methods and Geographic Information System (GIS), vegetation classification was performed for Central Iran. ArcGIS, Minitab, SPSS and EXCEL software are used in this research. After identifying the stations, climatic variables including temperature and relative humidity were selected from the data of 8 meteorological stations and were analyzed using the techniques mentioned above. Then, using statistical regression analysis, the impact (topography, average temperature and average relative humidity) on how to distribute and distribute vegetation was investigated. Kendall-man non parametric test was used to investigate changes in the vegetation index trend.

Results and discussion
Analysis of temporal changes in climatic parameters and NDVI index
The results show that the distribution of relative humidity in Abadeh and Kerman stations has decreased by 3% and the temperature distribution in these stations has increased by more than one percent. Relative humidity changes in Kashan and Sirjan stations have a weak decreasing trend, while the relative humidity distribution in Isfahan station has decreased by about 2%.The temperature distribution of Shiraz and Yazd stations increased by 3%, Abadeh station increased by 2% and also Isfahan and Kerman stations increased by 1%. The distribution of vegetation in Yazd and Khor Biyabank stations has decreased by one percent, while the growth of vegetation in Isfahan, Abadeh and Sirjan stations is increasing by less than one percent.

Distribution of NDVI vegetation index in Central Iran using cluster analysis
The stations are located in three distinct areas in terms of distribution of vegetation, each group having the same climatic characteristics in the distribution of similar vegetation. Based on this, three climatic zones in the study area can be identified.

Conclusion
The aim of this study was to investigate the effect of climatic parameters (average temperature and relative humidity) on the distribution of vegetation in Central Iran using comparison of statistical models; by examining the distribution and density of vegetation, eight factors were identified. Among the factors, the first and second factors, with 81.57% of the total vegetation variance, have played the most important role in determining the climatic diversity of Central Iran. In total, these eight factors have justified about 100% of the vegetation behavior in the area Also, according to the analysis of images of Modis satellite measuring satellites from the vegetation situation in the last 5 years, Central Iran, the value of NDVI index in Central Iran varies between 0.2 to 0.64, the northwestern parts of Fars province have the highest vegetation density and The central parts of Isfahan, especially Yazd, lack vegetation. Based on the results, altitude has a direct and significant relationship with temperature distribution in plants, especially in the study area. However, the height of Iran's central regions has affected the distribution of vegetation.

Keywords:  climatic parameters, vegetation distribution, central Iran

 
Dr Ahmad Hosseini, Dr Emad Ashtarinezhad,
Volume 9, Issue 2 (9-2022)
Abstract

Predicting the average annual maximum wind speed in Sistan region using spatio-temporal regression method
: Abstract                              
The wind is a quantitative vector that moves from high-pressure centers to low-pressure centers and is measured by two factors, the direction of the wind, which originates from the north and increases in degrees clockwise, and the wind speed, which is the horizontal flow. Air is measured in units of time. The wind speed can move colloidal particles, including clay and silt, from the site of destruction to a distance of hundreds of kilometers. Studies show that most dust days occur in the eastern regions of the country so that in the range of 120-day winds in Sistan, the frequency of dust per year reaches more than 150 days. Moreover, the prediction of numerical values ​​of maximum annual wind speed using the Spatio-temporal regression method was considered in this study. Error variance and alignment analysis using variance inflation index showed that numerical models of the Spatio-temporal regression of data could predict the Average maximum wind speed in the coming years. The results also show that regression Spatio-temporal until 2022 can predict wind speed.
The numerical model indicates that the lowest annual average wind speed from 2019 to 2022 is related to the Ghaen station. Its forecast trend shows that by 2022, the average annual wind speed will decrease. The highest annual average wind speed is related to Zabol station, in which the forecast trend of this station shows that the average annual wind speed will decrease by 2022.

Keywords: Spatio-temporal regression, Wind speed prediction, Sistan region
 
Eng. Ebrahim Asgari, Eng. Mahboobeh Noori, Dr Mohammadreza Rezaei, Dr Raoof Mostafazadeh,
Volume 9, Issue 2 (9-2022)
Abstract

 Determining Strategies for Improving Environmental Resilience in Gharehshiran Watershed in Ardabil using SOAR Analysis Technique
Ebrahim Asgari - PhD Student of Watershed Science & Engineering, Yazd University, Yazd, Iran. Email: ebrahim.asgari90@yahoo.com
Mahboobeh Noori - PhD Student of Geography & Urban Planning, Yazd University, Yazd, Iran. Email: mnori@stu.yazd.ac.ir
MohammadReza Rezaei - Associate Professor of Geography and Urban Planning, Yazd University, Yazd, Iran. Email: mrezaei@yazd.ac.ir
Raoof Mostafazadeh - Associate Professor Department of Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. Email: raoofmostafazadeh@uma.ac.ir (Corresponding author)

Extended Abstract
Introduction: New approaches of crisis management have changed from the concepts of vulnerability to resilience and emphasize on strengthening the system's ability to deal with the risks of natural disasters. Therfore, the aim of this study was identifying the watershed capabilities of Qarahshiran and crisis management planning with emphasis on environmental resilience.
Methodology: The SOAR analytical technique and expert opinions of 52 experts were used to formulate the strategy, determine the strengths, opportunities, ideals and measurable results. The results of SOAR technique and crisis management prevention and preparedness strategies were compared with the environmental resilience of the field.
Results: Based on the results, reducing direct and indirect flood damage with 51.9% and low amount of soil erosion and water loss with 42.3%, were the most important results of the SOAR model. Out of 15 components of environmental resilience, the performance of 5 components was accepted as significant (α<0.05 confidence level). The evaluation of environmental resilience using one-sample t-test showed that the environmental dimension of resilience (2.67) with a significant level (α=0.003) has a significant that indicates high vulnerability and low resilience.
Conclusion: Considering site selection of watershed management structures, creating more opportunities and using the private sector potentials, and local NGOs will be useful in crisis management. Analysis of watershed resilience components in achieving integrated watershed management, proper knowledge of watershed function, possibility of self-regulation and recovery of balance and acceptance of adaptation to natural hazards, co-design of watershed residents, preparedness and coping with crisis can be more effective over the study area.
Key words: SOAR Model, Strategic Planning, Prevention and Preparedness, Resilience, Gharehshiran Watershed

 
Maasoud Akhavan Kazemi, Parvanh Azizi, Mohammadbagher Khoramshad Khoramshad, Mohammad Abolfathi,
Volume 9, Issue 2 (9-2022)
Abstract

New Social Movements: A Case Study of Emerging Environmental Movements

Abstract
The term modern social movements is used to describe movements that were active in France in the late 1960s through collective action in the social sphere. The most important new social movements are the civil rights movement, the women's movement, the peace movement and the environmental movement. The rapid growth of industrial and capitalist societies, regardless of environmental degradation, has created many problems. The most important problems are soil erosion, resource reduction, ozone depletion, greenhouse effects, extinction of animal and plant species and various types of soil and climate pollution. The combination of these factors has provided the basis for the formation and activation of environmental movements. The present paper tries to answer the question of how emerging environmental movements can be analyzed in the form of new social movements? And what are their effects on new social movements? Therefore, with the qualitative interpretive method, and the method of case studies, it examines the nature and why of emerging environmental movements. The research findings show that environmental crises and the need to solve environmental problems that have become a pervasive and global crisis, have provided the basis for the formation, activity and impact of emerging environmental movements. Therefore, in order to deal with the existing crises, emerging environmental movements first informed and increased public awareness, and then created pro-environmental organizations and groups, and finally, by entering In the field of politics, and using new tools and methods, they have expressed their demands and protests in a peaceful and non-violent way, in order to force governments to respond and finally enter directly into The field of politics as influential groups and political parties in the field of public policy. As a result, the volume and scope of social power and the political influence of emerging environmental movements have led to the revitalization and enrichment of new social movements; in a way that today they can be identified and analyzed as powerful social forces and influential actors in the field of political sociology.

Keywords: New Social Movements, Emerging Environmental Movements, Social Forces, Methods of Action, Political Nature.

 
Hamed Heidari, Darush Yarahmadi, Hamid Mirhashemi,
Volume 9, Issue 2 (9-2022)
Abstract

Revealing surface reflection forcings of land cover in Lorestan province using MODIS sensor products

Introduction
Human interventions in natural areas as a change in land use have led to a domino effect of anomalies and then environmental hazards. These extensive and cumulative changes in land cover and land use have manifested themselves in the form of anomalies such as the formation of severe runoff, soil erosion, the spread of desertification, and salinization of the soil. The main purpose of this study is to reveal the temperature inductions of the land cover structure of Lorestan province and to analyze the effect of land use changes on the temperature structure of the province. In this regard, the data of land cover classes of MCD12Q2 composite product and ground temperature of MOD11A2 product of MODIS sensor were used. Also, in order to detect the temperature inductions of each land cover during the hot and cold seasons, cross-analysis matrix (CTM) technique was used. The results showed that in general in Lorestan province 5 cover classes including: forest lands, pastures, agricultural lands, constructed lands and barren lands could be detected. The results of cross-matrix analysis showed that in hot and cold seasons, forest cover (IGBP code 5) with a temperature of 48 ° C and urban and residential land cover (IGBP code 13) with a temperature of 16 ° C as the hottest land use, respectively. They count. In addition, it was observed that the thermal inductions of land cover in the warm season are minimized and there is no significant difference between the temperature structure of land cover classes; But in the cold season, the thermal impulses of land cover are more pronounced. The results of analysis of variance test showed that in the cold period of the year, unlike the warm period of the year, different land cover classes; Significantly (Sig = 0.026) has created different thermal impressions in the province. Scheffe's post hoc analysis indicated that this was the difference between rangeland cover classes and billet up cover.   
                                                                                                                  
materials and Method                                                                                                                
 In this study, to reveal the relationship between land cover levels and different land use classes, cross-information matrix analysis was used in the ARC-GIS software platform. Since one of the main objectives of the study was to investigate and reveal the albedo inductions of land cover classes in Lorestan province, so the relationship between these two factors was investigated by cross-matrix analysis technique. In this regard, two sets of data were used. The first set of data was related to land cover classes of MODIS sensor composite product with a spatial resolution of 1 km and hierarchical data format (MCD      
   12(Q2 (MCD product) which was obtained from the database of this sensor

Conclusion
 Land cover classes or perhaps it can be said that land use is one of the most important shapers and determinants of climate near the earth. In this study, it was observed that in general, 5 major land cover classes in the province are separable, among which rangeland and forest lands account for 85% of the total land cover of the province. On the other hand, it was seen in this study that the average spatial albedo of the province in spring, autumn and winter is about 0.2, which is very close to the global value of this component, but in winter the average value of this index in the province reaches 0.3, which can be increased Shows attention. The five land cover classes in the province had their own unique albido induction in winter, which was separable and distinct from each other, but in spring, summer and autumn, no significant distinction of albido induction of these land cover was revealed.                                                                                                                                       

Keywords: Land cover changes, Land surface temperature, Cross-information analysis matrix, Lorestan province












 
Fatemeh Dargahian, Mehdi Pourhashemi, Samaneh Razavizadeh,
Volume 9, Issue 2 (9-2022)
Abstract

Evaluation of occurrence, tracing and origin of dust phenomenon in Zagros forest degradation monitoring sites of Chaharmahal and Bakhtiari province
Abstract
Decay and drought of oak has occurred in more than 40 countries, including Iran. Numerous factors have contributed to the drought and oak decay. Among the natural causes of climate change is common in all countries, but dust has played an important role as a contributing factor to the decline of the Zagros forests, which are adjacent to and the passage of dust currents. In this study, with the aim of investigating the occurrence of dust and its direction in Zagros deterioration monitoring sites in Chaharmahal and Bakhtiari province, meteorological statistics and data of the nearest synoptic station were used. Dust event codes were extracted from 100 phenomenon codes (0-99) and the frequency of dust events with different horizontal field of view was investigated. In order to identify the direction of dust entry, the graph diagram was used and to draw the dust, WR-PLOT software was used. Data related to wind direction and speed were extracted and wind direction and speed corresponding to dust days were extracted to enter the dust drawing software and converted to a special format of this software. HYSPLIT simulation model was used to identify the source of incoming dust sources in the area of deterioration monitoring sites. The results showed that the occurrence of dust in decay monitoring sites has an increasing trend and the path of dust entering the decay sites from the west and southwest and northwest have been important, respectively. And being in the path of incoming atmospheric currents has been affected by dust mites inside and outside the country. Tracing the origin of dust particles at three altitudes of 1000, 500 and 1500 meters showed that the most important sources of dust entering the region are from Iraq and Saudi Arabia, which has been strengthened by passing through the centers of domestic dust in Khuzestan province. Considering that the occurrence of dust and its entry path can be one of the factors contributing to the decline of Zagros oak trees and the extent of its effects is different in the south-north and west-east slopes, help decision makers and planners of forest ecosystems. At the macro level, with the control programs of domestic centers and international cooperation with neighboring countries to make fruitful and fruitful efforts to preserve and rehabilitate forests.

Keywords: Oak decay, Internal and External dust, Golghobar, WR-PLOT software, HYSPLIT model

 
Behrooz Mohseni, Kaka Shahedi, Seyyed Mohsen Manavi, Narjes Mahmoodi-Vanolya,
Volume 9, Issue 2 (9-2022)
Abstract

The sedimentation, sediment transport, erosion and sedimentation problems are important discussions in the planning of wisdom and macro watershed strategies and management of watershed basins. The sediment collection in lower areas causes regional damage, the destruction of the pathway of the waterways, the flow of water pollution, the accumulation of streams of sediment and reducing the capacity of reservoirs of dams and environmental bottlenecks. The sediment resulting from the watersheds erosion, in addition to soil loss and its degradation results in a decrease in water quality and endangers the useful life of dams due to the accumulation of deposits in their reservoirs. In this research, Spatiotemporal variations of suspended sediment load were investigated at three hydrometric stations of Sefidchah, Gelevard and Ablou located on the main channel of the Nakaroud Basin using sediment rating curves and linear regression model through applying MINITAB and EXCEL softwares. In order to determine the best model, determination coefficient (R2) was used. The results of this study showed that in seasonal variations of spring season in all three stations with a determination coefficient of at least 82% and a maximum of 89% as the most suitable model for estimating suspended sediment load among the models studied. In spatial studies, the Ablou station located at the outlet of the watershed has the highest determination coefficient (0.934) between sediment discharge and streamflow discharge.
 
Dr. Homayoun Motiee, Mrs. Saba Ahrari,
Volume 9, Issue 2 (9-2022)
Abstract

Glaciers are one of the most important water resources in the world, which are heavily affected by global warming and climate change. This paper investigates the effects of global warming on the changes in the snow cover level of the Takht Suleiman region located in Mazandaran province during the warm months of the year through the past three decades using remote sensing. For this purpose, the images from June to August of the Landsat-5 and 8 satellites in the period of 1990 to 2021, as well as the data of the air temperature product of the ERA5 sensor were processed on the Google Earth Engine. In this research, NDSI index (Normalized Snow Cover Surface Index) was used to detect snow covered surfaces and the Mann-Kendall test was used to evaluate the trend of the data. The results of the overall accuracy and Kappa coefficient in the Google Earth Engine system show an overall accuracy of 94% and a Kappa coefficient of 89% in 2021, which shows the high compatibility of this method with real data.
The results obtained during the investigated period show an increase of about 1.5 degrees in temperature during the last three decades at a significant level of 95%. The snow and ice cover of the Takht Suleiman region in June month decreased from 127 square kilometers( in 1990) with a decrease of 82% to 22 square kilometers( in 2021). The trend of changes in the level of snow cover in June was analyzed with the Mann-Kendall test, which shows a decreasing trend at a significance level between 80 and 90%. In general, these results indicate an increase in temperature and a decrease in the level of this glacier during the statistical period studied, and the continuation of the gradual depletion of the glaciers of this region in the future is a serious threat to the downstream water source and the surrounding environment.

 

Page 14 from 18     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb