Search published articles



Tofigh Jasem Mohammad, Mohammad Rahmani, Komeil Abdi,
Volume 9, Issue 3 (12-2022)
Abstract

Changes in ground surface temperature in the city of Halle and its relationship with changes in the NDVI index
abstract
The temperature of the urban environment is one of the parameters that citizens are in contact with at any moment. Studies show that the global temperature is constantly increasing due to environmental changes. One of these parameters that affect the increase in temperature; The physical growth of the city and its consequent destruction and loss of vegetation. In this study, using Landsat satellite images for the years 2001, 2011 and 2021; and the implementation of the single-channel algorithm, the surface temperature of the ground in the Iraqi city of Halla was calculated and its changes were investigated and analyzed. On the other hand, the NDVI index was calculated as a vegetation index on the mentioned dates and its changes were analyzed with the temperature changes of the earth's surface. The general results of this research showed that the area of the city of Halle has doubled during the study period, and this has caused a decrease in the amount of vegetation and an increase in the temperature of the earth's surface. In the end, the correlation between the surface temperature and the NDVI index was calculated, which was equal to 46.92, 44.35 and 52.98% for the years 2001, 2011 and 2021, respectively. This issue shows the strong relationship between these two parameters and the effect of the reduction of vegetation on the increase in the temperature of the earth's surface.

Key words: Earth surface temperature, vegetation, NDVI, city growth, Halle city
 
Dr. Jamal Mosaffaie, Dr. Amin Salehpour Jam, Dr. Mahmoudreza Tabatabaei,
Volume 9, Issue 3 (12-2022)
Abstract

Landslide risk assessment is essential for all landslide damage mitigation plans. The purpose of this research is to assess the risk of landslides in the Shahrood watershed of Qazvin province. First, the landslide susceptibility map was prepared using fuzzy operators. the landslide distribution map and also 11 effective factor layers including slope, slope direction, altitude, land use, lithology, distance to road, distance to stream, distance to fault, earthquake acceleration, precipitation, and maximum daily precipitation were first prepared. After determining the frequency ratio and fuzzy membership values for the map classes of different factors, the landslide susceptibility map was prepared using different gamma values. Then, after preparing the fuzzy map of vulnerability for different land use units, the amount of landslide risk was determined from the product of two maps of landslide susceptibility and vulnerability. In general, 104 landslides with a total area of 1401 hectares were recorded in this region, 70% of which were used for modeling (73 landslides with an area of 982 hectares) and the remaining 30% (31 landslides with an area of 418 hectares) were used to assess the accuracy. The evaluation results showed that the highest value of Qs index (equal to 1.34) belongs to the gamma equal to 0.93 and therefore this model has higher accuracy than other gamma values. The importance of features at risk ranges from 0.05 (no coverage) to 1 (residential and industrial areas). To deal with landslide damages, three general policies including suitable for development, prevention, and treatment were proposed, which should be applied based on the two factors of risk and vulnerability for different areas of landslide risk. Finally, in order to reduce landslide damages, suitable land uses for high-risk regions were introduced. 
Dr Alireza Mohammadi, Dr Lotfollah Maleki, Mr Ghasem Fathi,
Volume 9, Issue 4 (3-2023)
Abstract

Spatial analysis models provide a single model and solution to solve various problems in the field of study, one of the applications of these models is in measuring urban risks. In recent years, with the occurrence of various crises in urban communities, the urban management system and development plans are seeking access to models of prevention and dealing with these crises. The purpose of this research is to review the literature about the use of spatial analysis models in measuring urban risks in a meta-analytical way, so this research is conducted by reviewing and summarizing foreign articles (research statistical community) in relation to this issue in order to identify, analyze and Analyzing and summarizing the solutions of the investigated backgrounds.
The statistical population is discussed with four standard criteria of spatial analysis, including description and identification of hazard dispersion, hazard dispersion argument, interpolation, and spatial planning. The statistical population is research, studies, and articles indexed in Sciencdirect, Willey, Web of Science databases in the period 2021-2000. Out of 99 articles, 78 articles have been selected and analyzed by screening method according to research objectives and indicators. The analysis was performed in two ways: descriptive statistics in SPSS software and inferential statistics in CMA2 comprehensive meta-analysis software.
The results indicate that in the component of hazard dispersion descriptions, most of the researches in their used models have not been able to provide a tangible and appropriate general description, but in the three components of hazard dispersion, interpolation, and spatial planning of urban hazards based on score The average effect size, the applied models used in the research, have been able to provide a proper justification and tangible results with the applied model of spatial analysis in their studies.

 
Ms. Sousan Heidari, Dr. Mostafa Karimi, Dr. Ghasem Azizi, Dr. Aliakbar Shamsipour,
Volume 9, Issue 4 (3-2023)
Abstract

Explaining the spatial patterns of drought intensities in Iran

Abstract
Recognition of spatial patterns of drought plays an important role in monitoring, predicting, confronting, reducing vulnerability, and increasing adaptation to this hazard. This study aims to identify the spatial distribution and analyze the spatial patterns of annual, seasonal, and monthly drought intensities in Iran. For this purpose, the European center Medium-Range Weather Forecast (ECMWF) data for the period 1979-2021 and the ZSI index were used to extract the drought intensities. To achieve the research goal and explain the spatial pattern of the frequency of drought intensities (Extreme, severe, moderate, and weak), spatial statistical methods such as global Moran’s I, Anselin local Moran’s Index, and hot spots were used. The results of the global Moran’s I showed that with increasing intensity, the spatial distribution of drought events has become clustered. The spatial distribution of the local Moran’s Index and hot spots also confirms this. Very clear contrast was observed in the local clusters of high (low) occurrence as well as hot (cold) spots of severe (Extreme) yearly droughts in the south, southeast, and east. In autumn, weak to Extreme droughts show a southeast-northwest pattern. But in spring and winter, the spatial pattern of drought is very strong as opposed to severe and moderate drought. Despite the relatively high variability of maximum positive spatial Autocorrelation of severe and Extreme monthly droughts, their spatial pattern is almost similar. The spatial clusters of severe and very severe droughts in the northwest, northeast, and especially on the Caspian coast, are a serious warning for the management of water resources, especially for precipitation-based activities, such as agriculture.
Introduction
Drought or lack of precipitation over some time is the most widespread natural hazard on the earth compared to its long-term average. This risk negatively affects various sectors such as hydropower generation, health, industry, tourism, agriculture, livestock, environment, and economy. To reduce these negative or destructive effects, it must be determined how often drought occurs during the period and in which areas it is most severe. Doing so requires determining the characteristics of the drought. These characteristics include area, intensity, duration, and frequency of drought. Discovering the geographical focus, recognizing the pattern governing the frequency of occurrence and temporal-spatial distribution as well as changes in the dynamics of this hazard facilitate an important role in drought monitoring, early warning, forecasting, and dealing with these potential hazards; this information can be used to create a drought plan by providing analysts and decision-makers with ideas about drought, helping to reduce the negative and vulnerable effects and ultimately make it easier to protect or replace for greater adaptation. Many researchers have been led by these approaches to the use of statistical analysis. Numerous studies have been conducted in the study of climatic phenomena such as drought with space statistics techniques in various regions, including China, India, South Korea, and even Iran. Part of the domestic research on spatial patterns of drought is without the use of spatial statistics and a limited number of others who have used these analyzes have only studied the overall intensity of drought and have not studied the spatial patterns of different drought intensities. The main purpose of this study is to identify the distribution and spatial patterns of drought intensities in Iran using spatial analysis functions of spatial statistics based on the frequency of drought intensities (Extreme, severe, moderate, and weak) with yearly, seasonal and monthly multi-scale approach. Therefore, this study will answer the questions: a) What is the spatial distribution of drought intensity data in Iran? And b) What is the variability of spatial patterns of Iranian droughts at different time scales?
Material &Method
ERA5 monthly precipitation data for a period of 43 years from 1979 to 2021 were used for this study. an array of dimensions of 78×59×504 of data were formed in MATLAB software in which 78×59 is the number of nodes with a spatial resolution of 0.25 degrees and 504 represents the month. After creating the database, the ZSI index was used to calculate the severity of drought in annual, seasonal, and monthly comparisons. Finally, to achieve the research goal and explain the spatial pattern governing the frequency of drought intensities (Extreme, severe, moderate, and weak), spatial statistical methods such as global Moran’s I, Anselin local Moran I and hot spots was used.
Discussion of Results
Due to its ecological conditions, geographical location, and location in an arid and semi-arid region of the world, Iran is among the most vulnerable countries due to natural hazards, including drought. It has experienced many severe droughts in the last century. The occurrence of drought and its effects is one of the major challenges of water resources management in this century. The results of the Global Moran’s Index for all three annual, seasonal, and monthly scales showed a highly clustered pattern of drought events in the country. Spatial clustering of the occurrence of severe and Extreme yearly droughts in the eastern, southeastern, and southern regions is also an interesting result. These conditions are due to low precipitation and high spatial variation coefficient in these areas. This contrast of spatial clusters of drought intensities indicates the relationship between drought and temporal-spatial anomalies of precipitation so that with increasing precipitation, spatial variability of precipitation decreases, and consequently spatial homogeneity of precipitation increases. severe and moderate-intensity spots in the south-southeast in autumn and spring can be affected by fluctuations in the beginning and end of the monsoon season in South Asia due to the high variability of atmospheric circulation at the beginning and end of precipitation in these areas. Some studies have also shown the relationship between precipitation in these areas and the monsoon behavior of South Asia. Extreme drought events in winter and spring have had a positive spatial correlation pattern in the southwest, west, and northwest. However, precipitation at this time of year is concentrated in these areas. Warm clusters or concentrations of very severe drought events in the northern strip of the country, especially in the Caspian region, can be due to the high variability of precipitation at the beginning of the annual precipitation season (late summer and early autumn).  Observations of these conditions in the northern strip indicate that an event with a high frequency of severe droughts, even in rainy areas, should not be unexpected. Spatial clusters of Extreme, severe, moderate, and weak drought every month using both local Moran and hot spots statistics show the fact that in Iran, the most severe droughts have occurred in the western, northwestern, and coastal areas of the Caspian Sea. However, the absence of severe droughts or spatial clusters has been the occurrence of low drought in the southeast and to some extent in the south. On a yearly scale, the south, southeast, and east have played a significant role in the spatial cluster of severe and extreme droughts. So that these areas of the country have had positive spatial solidarity. However, in these areas, negative spatial correlation prevailed in the autumn for severe drought. This may indicate an anomaly and a tendency to concentrate more precipitation in Iran, as well as many changes in seasonal and local precipitation regimes. According to the research results, a high incidence of severe and extreme drought on all three scales (monthly, seasonal and annual) even in the wettest climate of the country (northern Iran, especially the southern shores of the Caspian Sea) shows that High-intensity droughts can occur in all parts of the country, regardless of the weather conditions.
Keywords: Natural hazards, spatial patterns, Moran statistics, spatial autocorrelation, hot spots


 
Roya Poorkarim, Hossein Asakereh, Abdollah Faraji, Mahmood Khosravi,
Volume 9, Issue 4 (3-2023)
Abstract

In the present study, the data of the ECMWF for a period of 1979 to 2018 was adopted to analyze the long term changes (trends) of the number of cyclones centers of the Mediterranean Sea.There are many methods (e.g. parametric and non- parametric)  for examining changes and trends in a given dataset. The linear regression method is of parametric category and the most common nonparametric method is Mann-Kendall test. By fitting the Mann-kendall model and the linear regression model, the frequency of the cyclone centers of the Mediterranean basin was evaluated in seasonal and annual time scales. Analyzing the trend of changes of the number of cyclone centers on a seasonal scale showed that the five-day duration have had a significant trend in spring, autumn and summer. Whilest on an annual scale, there was no significant trend in any of the duration. By fitting the regression model on seasonal and annual scale, one- and two-day duration have a positive regression line slop.
Alireza Khosravi, Mehdi Azhdary Moghaddam, Seyed Arman Hashemi Monfared, Hamid Nazaripour,
Volume 9, Issue 4 (3-2023)
Abstract


Comparison of Results of GIS-Based Multicriteria Decision Analysis and Remote Sensing Indicators in Kahir River Basin, Iran.

Alireza Khosravi1, Mehdi Azhdary Moghaddam2*, Seyed Arman Hashemi Monfared3,
 Hamid Nazaripour4

1. M.Sc. Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
2. Professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
3. Associate professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
4.Assistant professor, Department of Physical Geography, University of Sistan and Baluchestan, Zahedan, Iran.


Abstract
Flood risk maps and Flood zoning techniques are useful tools to manage this hazard in the catchment and mitigation of flood impacts. In South Baluchestan and Kahir Basin, due to the existence of winter and summer precipitation regimes, the occurrence of flash floods is inevitable due to the establishment of rural communities and settlements in flood-prone areas, the flooding has caused many damages to the region's vulnerable population. In order to zone flood risk and prepare flood risk maps, climatic data, hydrological, land cover, and topography of the basin were prepared from reliable sources and according to scientific studies, 12 variables affecting flood risk in the form of five main components (Hydrology, vegetation, land cover, climate, and topography) were prepared. According to the regional conditions of the basin, using the opinions of experts based on scientific methods, the weight of each variable and component was determined by Analytical Hierarchy Process(AHP). Using two methods of fuzzy overlay, Weighted Overlay, and the Geographical Information System facilities, a map of variables and components was prepared after reclassification and fuzzy membership function with appropriate operators. The results showed that the fuzzy overlay method concerning its dominant logic has a better distinction of flood-prone areas and can help determine flood hazard micro-zonation in the drainage basins like the Kahir basin. By comparing the results from the real data of the January 2020 flood obtained from satellite images. Due to poor infrastructure and high economic, the risk of flooding may be more harmful and widespread in the future.

Keywords: Flood, Fuzzy logic, Weighted overlay, Southern Baluchestan, GIS.
 
Fateme Emadoddin, Dr Amir Safari,
Volume 9, Issue 4 (3-2023)
Abstract

 Vulnerability assessment of karst aquifer using COP and PI model (Case study: Bisotun and Paraw aquifers)


 Introduction
Drinking karst water resources, especially in arid and semi-arid regions, like Iran, are considered as valuable and strategic water resources. A sharp decrease in rainfall reduces the quality and quantity of karst water sources (Christensen et al., 2007). On the other hand, urban and industrial development, which is accompanied by the increase in population growth, increases the risk of underground water pollution caused by the dumping of chemicals, waste and change of use (McDonald et al., 2011). Protection of karst aquifer is one of the most important measures in the management of karst water resources due to its vulnerability and high sensitivity to pollution (Khoshakhlagh et al., 2014, Afrasiabian, 2007). Therefore, With the advancement of geographic information system technology, rapid progress was made in the ability to identify and model groundwater pollution, as well as the vulnerability of water sources from these pollutants (Babiker et al., 2004, Rahman, 2008). The pollution potential decreases from the center to the periphery (Saffari et al., 2021).

 Materials and methods
In this study to evaluate the vulnerability of Bisotun and Paraw aquifer which is karstically developed and has, crack and fissure and various landforms; COP and PI vulnerability models have been used to identify areas at risk of contamination. The COP model includes three main factors including concentration of flow (C), overlaying layers (O) and precipitation (P). Factor C, which indicates surface features (Sf), slope and vegetation (Sv). It was obtained between 0.8-0.0 in 5 classes. From the overlap of the subfactores soil, layer index and lithology, the O factor map was prepared in three classes, including class 2 with low protection value, 2-4 with medium protection value and 4-8 with high protection value.  The P factor, which is the temporal distribution of precipitation along with the intensity and duration of precipitation, can show the ability of precipitation to transfer pollutants from the surface to the underground water. P factor was 0.8 in 2 layers in the northwest of the study area and 0.8-0.9 with low protection value. Furthermore, top Soil, precipitation, net recharge, fracture density, bedrock and lithology maps were used for the protective cover factor (P) in the PI model. The zoning of the P factor showed 2 classes such as very low and low most of the study area is in the low class. The infiltration condition factor (I) using the characteristics of the soil, the slope layer, and the land use in four layers showed high, aamedium, low, very low, which due to the high slope of the area of ​​the high layer has the highest dispersion, which causes the reduction of the protective cover.

 Results and discussion
Consequently, COP vulnerability map in 5 classes with very high vulnerability (0-0.5) equal to 38774.74 hectares (41.4%) and very low vulnerability (4-9-4) with 57.86 hectares (0.06%) of the largest and smallest area respectively. Also, the PI vulnerability map of the combination of these two factors showed very high vulnerability with the largest area of ​​about 68,783 hectares and 72.9% scattered throughout the study area and the high vulnerability class with an area of ​​about 25,526 hectares and 27%.

 Conclusion
The results of this research showed that the simulation performance of each COP and PI vulnerability model is closely related to the amount of pollution in the environment. It seems that the COP vulnerability model can better and more accurately showed the level of vulnerability in the karst aquifers of Bisotun and Paraw.



Keywords: karst aquifer, Bisotun and Paraw, COP model, PI model, vulnerability.


 

Dr Moslem Savari,
Volume 9, Issue 4 (3-2023)
Abstract

This regard, this research was conducted with the general purpose of designing a proposed sustainable food security model in drought conditions. The statistical population consisted of a number of food safety experts and agricultural experts. Therefore, for selecting the samples, targeted snowball sampling (chain referencing) was used. Sampling continued until data saturation, in the end, the number of participants in the study reached 31 . The research method was of qualitative type based on the data theory method of the foundation. The research data were collected using a deep interview and group discussion and analyzed with three open, axial and selective coding methods.
The results of the review of the requirements of sustainable food security in the form of data approach of the foundation consisted of 68 initial codes. Finally, in order to design a safety improvement model, the improvement of food security in drought conditions was subject to 8 requirements (managerial, technological, policy and supportive, infrastructure, cultural and empowerment requirements, Diversification, conservation, stabilization) and were inserted into the Strauss and Corbin model.
Access to adequate nutrition and nutritional health is one of the main pillars of development and is the basis for the future development of the country. According to studies on the role of nutrition in health, its efficiency and its relation with economic development has been confirmed. Also, access to adequate and desirable food is one of the earliest human rights, but various studies show that rural communities, which themselves are responsible for food security, face food insecurity, which is in a drought condition much more inferior to the situation. Because rural households are always at the forefront of drought vulnerability and, in the absence of risk mitigation systems, they quickly lose their resilience and go out of the agricultural sector. Therefore, measures must be taken to enable them to continue to operate in agriculture in drought conditions and to maintain the backbone of food security in the country.
A Mahmoud Ahmadi, J Jamal Karami,
Volume 9, Issue 4 (3-2023)
Abstract

One of the most important issues that has always affected the Iranian climate and has left many socio-economic consequences and financial losses climate change is. On the other hand  Sea level pressure is one of the most important climatic elements that can affect other climatic elements such as temperature, humidity and wind. The study aimed to evaluate CMIP5 models based on CORDEX and Verdai dynamics Seasonal pressure anomalies in Iran among CMIP5 models based on CORDEX project dynamic models BCC-CSM, HadGEM2-ES, GFDL and MIROC model HADGEM2-ES had a higher level of correlation and efficiency than other models.
The data of 36 synoptic milestones during the statistical period (1960-2005), the data of the HadGEM2-ES model were applied by using the CORDEX model and the RCPs scenarios for the two historical periods (1960-2005) and predicted during Three periods of near future (2040-2011), middle future (2070-2041) and distant future (2099-2071) were used. Six methods R2, MAE, MBE RMSE, t-Jacovides and t-Jacovides / R2 ratio were used to evaluate the model performance. The results showed that the model has good performance in low altitude areas. Seasonal anomalies in all seasons, scenarios and time periods studied are positive and winter shows the maximum pressure anomalies between seasons.
The maximum seasonal pressure anomaly of Iran in all seasons, scenarios and periods studied corresponds to the altitudes, including its epicenter in the Alborz and Zagros heights and high geographical offerings and the minimum pressure anomaly corresponding to low and low areas such as Khuzestan plain and The southern coast of the country.
Dr Ebrahim Yousefi Mobarhan, Dr Mansor Ghodrati, Dr Mohamad Khosroshahi,
Volume 9, Issue 4 (3-2023)
Abstract

In the study of the trend of dust storm index, the results showed that the study period of 2003-2007 in Semnan province has an increasing trend and has shown significant changes in the 95% confidence range, but the lack of significant changes in the last decade shows the effects of various events. In cross-cutting decisions in the field of dust in the region. The zoning of the DSI index changes in different regions of the province in a 15-year statistical period indicates that from the west to the east of the province due to the increase in the frequency of stormy days with moderate dust (MDS), dust has increased. The correlation between drought and DSI index in Semnan province showed that although DSI index increased during the period under analysis with increasing drought intensity and its correlation with drought during the 15-year period was not significant, but the pattern of DSI index is consistent with It is the pattern of the drought process. According to the results, it can be acknowledged that the dust situation has always been affected by climate, but the relationship between drought and the DSI index has always fluctuated with respect to droughts and wetlands. However, different climatic parameters are different and their impact is different. In addition to human activities, the main role of wind in the amount of dust or the existence of another source of dust should be considered.
 
Dr Kiomars Maleki, Dr Mostafa Taleshi, Dr Mehdi , Dr Mohammad Raoof Heidari Far,
Volume 9, Issue 4 (3-2023)
Abstract

The results of pathological evaluation of seismic zones in the terrestrial space indicate a significant concentration of residential spaces, especially cities. It has been economic and human. Therefore, one of the desirable models in identifying, analyzing and reducing damage in urban spaces is to use the structural and functional framework of passive defense. In many recent studies, the subject of reducing earthquake damage in the territory of the physical-spatial field has been to increase the building's resistance to earthquakes. While this study by recognizing environmental components, physical-spatial, social, economic and effective indicators in each component (45 indicators) to determine the pathology and risk areas of earthquakes in a comprehensive and desirable and based on that reduction strategies Redefines risk. In other words, by recognizing and analyzing the basic concept of threat network and risk ring with passive defense approach in earthquake assessment and vulnerability in Kermanshah metropolis to form the required database structure in appropriate software environment, appropriate policy and urban crisis management measures It is designed in proportion to the earthquake risk.
 
Seyyed Mohammad Khademi Nosh Abadi, Dr Maryam Omidi Najaf Abadi, Dr Seyyed Mehdi Mirdamadi,
Volume 9, Issue 4 (3-2023)
Abstract

Industrial and agricultural activities in the world have led to an increase in the concentration of greenhouse gases such as carbon dioxide, methane and nitrogen oxide and have caused the earth's climate to become warmer. This phenomenon has caused climate change and has changed the thermal and rainfall patterns. Climate change in Iran in recent years has caused a decrease in rainfall and an increase in temperature and continuous droughts. Agricultural production in Iran has been affected by climate change and has faced a decrease in the production of crops such as wheat. Therefore, according to the government's policy of self-sufficiency in wheat production and the establishment of sustainable food security in the country, it is necessary to use climate smart agricultural technologies to sustainably increase agricultural productivity, Adapting and resilience of agriculture to climate change and reduction greenhouse gases emission from agriculture. The purpose of this study was to design a behavioral model for the use of climate smart agricultural technologies with an emphasis on motivation. The research method was quantitative, in terms of practical purpose, and research data was collected through a cross-sectional survey.The conceptual model was designed using the theory of planned behavior and the theory of norm activation. Bayesian structural equation modeling was used to test the model and hypotheses. The statistical population of this research was 800 wheat farmers of Nazarabad city, Alborz province. The sample size was calculated using Cochran formula 260 people, and stratified random sampling method with proportional assignment was determined as the sampling method. A researcher-made questionnaire was used to collect research data. The validity of the questionnaire was confirmed through agricultural extension and education experts, and its reliability was also confirmed through the pre-test and calculation of Cronbach's alpha coefficient. The findings of the research show that subjective norms, personal norms and perceived behavioral control related to the use of climate smart agricultural technologies have a significant effect on the intention to use these technologies. While the attitude towards the use of climate smart agricultural technologies do not have a significant effect on the intention to use these technologies. The variable of intention to use climate smart agricultural technologies also has a significant effect on the behavior of using these technologies.

Dr Bromand Salahi, Mrs Mahnaz Saber, Dr Abbas Mofidi,
Volume 9, Issue 4 (3-2023)
Abstract

evapotranspiration is one of the most important components in water balance and management. In this research, to evaluate the effects of climate change on the amount of potential evapotranspiration in the southern part of the Aras River Basin using the downscaled data of the GFDL-ESM2M model in the CORDEX dynamic downscale under the RCP8.5 scenario during the period of 2021-2050 and its comparison. It is treated with the values ​​of the base period (1985-2005). Data with a horizontal resolution of 22 x 22 km from the GFDL-ESM2M model were used in this research. The findings of the research showed that the minimum and maximum temperature and, accordingly, the ETp of the future period will increase compared to the base period in all six studied stations of Aras Basin (Ardebil, Ahar, Jolfa, Khoi, Mako and Pars-Abad). The value of this minimum temperature increase is estimated between 1.4 and 3.8 ºC and for the maximum temperature between 1.7 and 2.2ºC. The range of annual ETp increase varies from 133 mm to 189 mm. In the monthly ETp scale of all stations from January to July with an increase between 3.9 and 1.64 mm and from August to December with a decrease of 0.7 to 38.2 mm. Estimating the increase of ETp in the future period in the basin, especially in the months of spring, which is very important in terms of water demand, requires special attention to the possibility of this estimated increase in the planning of the water and energy sector.
 
Dr. Aliakbar Shamsipour, Dr. Hadis Sadeghi, Prof. Hosein Mohammadi, Dr. Mostafa Karimi,
Volume 9, Issue 4 (3-2023)
Abstract

Climate is one of the determining factors in the quantity and quality of agricultural products, therefore, in this study, the relationship between precipitation and temperature (as explanatory variables) with rice yield in 40 cities and wheat yield in 30 cities (as dependent variables) was investigated in the Caspian coastal area during 2000-2017. Spatial statistical analyses were performed with using the Moran autocorrelation test and geographically weighted regression. Based on the results (Moran index, z = 0.4342121 for rice and z = 0.719571 for wheat, respectively), it was revealed that the spatial distribution pattern of rice and wheat yield had a cluster pattern. The results of the geographic weighted regression analysis showed that the temperature increase was more desirable than the precipitation increase so the increasing temperature could lead to yield increases. In the eastern parts of the study area, the positive effect of precipitation on rice yield (with 0.020 to 0.540 regression coefficients) was remarkable; the results also revealed a negative relationship between temperature and rice yield in the southeast and eastern parts and a positive effect on rice yield in other areas. Also, the effect of precipitation on wheat yield was negative in the west and central parts of the study area (with -0.481 to -0.871 regression coefficients). According to the results, a negative relationship was dominant between temperature and wheat yield in the east and southeastern parts of the study area and a positive relationship was detected in other areas. Finally, the results indicated that in the western and central parts, due to heavy rainfall and a low number of sunny hours, an increase in temperature is more favourable than an increase in rainfall. In the eastern and southeastern regions of the region, where the amount of precipitation is lower than the threshold required for rice and wheat, an increase in precipitation is more desirable.
Dr Mohammad Mahdi Hosseinzadeh, Dr Ali Reza Salehipor Milani, Mis Fateme Rezaian Zarandini,
Volume 10, Issue 1 (5-2023)
Abstract

Introduction
A flood is a natural disaster caused by heavy rainfall, which causes casualties and damage to infrastructure and crops. Trend of floods in the world increasing due to climate change, changing rainfall patterns, rising sea levels in the future, and in addition, population growth and urban development and human settlements near river have caused floods to become a threat to humans. One of the most important and necessary tasks in catchments is to prepare flood risk maps and analyze them. In recent decades, researchers have been using remote sensing techniques and geographic information systems to obtain flood risk maps in an area. Due to the numerous floods that have occurred in the Neka river catchment, it is necessary to conduct a study entitled zoning of flood sensitivity in Neka river catchment for more effective management in this area.

Materials and methods
Study area: Neka river catchment area with an area of ​​1922 Km2 is part of Mazandaran province in terms of political divisions. This basin is between 53º 17´ 54 º44´ east and 36 º 28 ´to 36 º 42´ of north latitude. The highest point of the basin is 3500 m (Shahkuh peak) and the height of the lowest point of the basin in the Ablo station is about 50 m and at the connection to the Caspian Sea is -27 meters. The seven sub-basins of this basin are Laksha, Golord, Burma, Metkazin, Kiasar, Alarez and Sorkh Griyeh. Geologically, the basin is mostly of calcareous and marl formations. In the south and southwest of Neka River, the rock material is mostly clay and calcareous marl, which makes this basin has a high erosion potential
To study the flood zoning of the area using a multi-criteria decision model, 1: 25000 maps of the surveying organization and a digital elevation model with a resolution of 12.5 meters (Alos Palsar) were extracted. In order to study the flood risk in Neka river, 4 criteria of height, distance from the river, land use and slope have been used. In the present study, modeling and preparation of flood risk zoning map in 4 stage including descending valuation, normalization of each class, normalized index weight and integration of criteria has been done by the following linear weighting method. Performing linear weighting operations depends on the weighted average of a number of selected parameters in the opinion of the expert. According to the weight assigned to each criterion based on the expert opinion, each of the criteria was multiplied by the assigned weight and at the end the criteria were added together and the final zoning map was obtained.

Results and Discussion
In this study, using a multi-criteria decision-making system model, a flood risk zoning map in the Neka river catchment was prepared. According to the weight assigned to each criterion based on expert opinion, the final risk probability map has a value between 0.02 to 0.2, which is ultimately divided into 5 classes in terms of flood risk. Value range 0.02 to 0.06 component of very low risk zone, range 0.08 to 0.11 component of low-risk zone, range 0.11 to 0.13 component of medium-risk zone, range 0.13 to 0.16 component of high-risk zone, and finally domain 0.16 to 0.20 components of the area with very high risk potential have been obtained. According to the final divisions in the flood risk zoning map of the catchment area, a safe area means areas where the probability of flooding is very low and close to zero, and in contrast, the area with a high and very high risk potential for flooding has the probability of high-risk floods. According to the final flood risk zoning map, about 982 Km2 (51%) has high and very high vulnerability, as well as about 510 Km2 (26.69%) has medium vulnerability in Neka catchment area.

Conclusion
The results obtained from the model indicates that the highest risk of flooding points are located in the western parts of the Neka catchment area and the end of the catchment area that reach the city of Neka. According to the research findings, the most important factors in increasing the risk of floods were the slope in this area and the distance from the drainage network. According to the results of the model, a large area of ​​the basin is a component of high risk zone, that means the Neka river watershed has a high potential for floods. Evidence and documented reports show that the Neka river Basin has experienced several floods in the last two decades. The major part of the occurrence of floods is due to the natural conditions of the basin, thus it is necessary to reduce flood damage by changing the locations of various land uses based on flood vulnerability maps. Using multi-criteria decision making method can be used to prepare flood risk zoning maps in basins that do not have hydrometric data; It is also a more cost-effective method in terms of time. One of the important issues in the final result of this model is due to the weight of the layers, which should be used by experts, who are familiar with the region and this method and adapt to field evidence.

Keyworlds: Flood, Multi-criteria decision making system(MCDA), Hazard zoning, Nekarod, Natural hazard.



 
Arastoo Yari Hesar, Bahram Imani, Samaneh Sarani,
Volume 10, Issue 1 (5-2023)
Abstract

1. Introduction
The geographical study of the corona virus shows that this virus is like the global cholera disease, whose first homeland was Wuhan (the vast capital of central China's Hubei province) and then it was transferred to other countries. The spread of this virus in a very short period of time has become one of the biggest international challenges after World War II, and examining the economic consequences of the spread of this disease is also very important and necessary for policy making.The Covid-19 virus has been able to change the lifestyle of people in different societies, and people finally changed their activities accordingly (Werf et al, 2021); (Staton et al, 2021) The visual and to some extent auditory consumption pattern has had a special place in the lifestyle of Iranians during the Covid-19 virus (Trabels, 2020). During the days of quarantine, social networks became very popular. People could not visit their family or friends and many of them kept in touch with each other using virtual networks. In fact, the spread of the corona virus has led to the further development of online social life. . Individual isolation and quarantine and the increase in consumption and tendency towards virtual and video entertainment media have intensified in this era (Staton & et al, 2021).

2. Methodology
Leading research is applied in terms of purpose and based on descriptive-analytical nature. The method of collecting data to answer the research questions was library and questionnaire. The tool used in the survey method was a questionnaire. Face validity has been used to determine the reliability and validity of the questionnaire, and the face validity of the research tool was confirmed using the opinions of professors (fifteen people) in the field of rural development and experts in the field of health (ten people).

3. Results
The statistical description of the characteristics of the sample in terms of gender showed that there were 302 men (83.4%) and 60 (16.6%) of them were women. Also, 56.9% of participants were married. The number of 146 people from the studied sample was between 41 and 50 years old, and the highest frequency was 40.3%.


4. Discussion
To evaluate the effects of covid-19 on the lifestyle of the border villagers of Zabol city compared to before and after the disease outbreak, first one-sample T-test was used. The above test was performed at the 95% confidence level. In this regard, according to the 6-spectrum of the items (not at all = 0, very much = 5), the measurement and analysis of the indicators was evaluated at an average level (average 3). The results showed that lifestyles in media-oriented, community-oriented and livelihood indicators were below average before the outbreak of the Covid-19 disease, and after the outbreak of the disease, they were above average. In the health-oriented index of style status. Before the outbreak of the disease, life was below average and after that it was in an almost average state. In the leisure-oriented index, the life style before the outbreak of the disease was in an almost average state and after that it was in an above average state, and in the culture index The axis of lifestyle status changed after the outbreak of the Covid-19 disease and was in a higher than average status. To investigate the existence of differences between lifestyle indicators among the border villagers of Zabol city, before and after the outbreak of the Covid-19 disease, the paired or dependent t-test was used at the 95% confidence or significance level.

5. Conclusion
Limiting communication and face-to-face interactions of people with each other, closing down gatherings, improving the level of personal and public hygiene such as frequent hand washing, using masks and sanitary gloves, maintaining distance from others and observing other protocols. health services, reforming the society's consumption pattern, improving social capital and increasing the level of empathy and social harmony and paying more attention to the lower classes of society, changing the type of entertainment, closing religious centers and holy places, modern social life in the context of virtual space and improving the level media literacy, reduction of air and ground travel traffic, internet shopping and sales, more convergence of family members, The growth of the culture of reading books, watching more series and movies, moving sports from group type to individual type, reducing fashion trends, holding distance education courses and many other such things, many changes. has created in the lifestyle of people. Of course, these changes are relative and are not the same in all societies and for all social strata, and not everyone has been equally affected by these changes.

Keywords: Corona, lifestyle, community-oriented, subsistence





Leyla Babaee, Nahideh Parchami, Raoof Mostafazadeh,
Volume 10, Issue 1 (5-2023)
Abstract

Changes in the hydrological response due to climatic parameters and human induced activities can be derived from indicators based on the analysis of flow duration curves. The purpose of this research is to determine the flood and the low flow parameters using the flow duration curves. The trend detection technique can be used as a useful tool in deterimining the temporal changes of the different hydro-meteorological parameters. The river gauge stations of the Ardabil province were used for the analysis of high and low flow occurrence in this study. The spatial variations of the flood events can be used as a preliminary guideline for the prioritization of the watershed in the vulnerability assessment and management-oriented measures. Also, the assessment of low flow condition is a useful tool in the allocation of environmental flow allocation and utilization of river surface water resources.
Methodology:
In this research, temporal and spatial changes of Q10, Q50, Q90, Q90/50 and Lane indices in 31 hydrometric stations of Ardabil province during the period from 1993- 2014 were evaluated. The flow duration curve of each river gauge stations was derived. The flow duration curves also were plotted based on the dimensionless flow divided by the mean discharge and the upstream area of each river gauge station. Also, the temporal variations of the of Q10, Q50, Q90, Q90/50 and Lane indices were analysed using non-parametric Man Kendall trend test. Then the significant level of upward and downward trend directions were determined. In this study, the results of 5 river gauge stations were presented as example based on the the river flow ranges, which includes low, medium and high river flow discharge (Hajahmadkandi, Nanakaran, Shamsabad, Polesoltani, and Booran).
 
Results:
Based on the results, the trend of Q10 (Flood flow index) was significant at the stations located on the main trunk of the Qarehsou river. Meanwhile the Q50 (average flow index) has a significant decreasing trend in most of the studied river gauge stations. In addition, Q90 and Q90/50 indices have a significant decreasing trend in most stations. In addition, Q90 and Q90/50 indices had a significant decrease at (p<0.05) regarding the Lane index as a flood related indicator in the Arbabkandi and Dostbeglo stations, which are affected by the dam construction there is a significant decreasing trend.
Conclusion:
I summary, the values of flood flow index in the upstream rivers of the Ardabil province had a increasing trend.
Prof Bohloul Alijani,
Volume 10, Issue 1 (5-2023)
Abstract

Abstract
During the recent decades the discipline of geography has lost its priority and position to some degree in Iran. Most of the graduates could not enter into the work in the universities and other organizations. The human-environment system, the main area of geographical specialty - has experienced many crises and hazards among which the global warming and climate change being the most destructive.  This means that the ongoing curriculum is not working well and needs to experience a fundamental change. To implement this operation some points should be cleared out: The hazardous condition of the world and especially Iran, the education history and state of geography in Iran, and the relation between geography and sustainable development of the world. The discipline of geography has changed its approach according to the circumstances of each period several times. For example, at the beginning of the twenty-century due to the dominance of the environmental determinism, the dominant approach of geography was the relation between man and environment. But since the 1970’s the earth has encountered with different hazards and crises to the extent that it is named as the period of Anthropocene. Accordingly, the dominant approach of geography during this Anthropocene era is to identify and solve the hazards and crises and lead the man- environment system towards the sustainability as once was requested by the secretary general of the United Nation.  In this regard the geography should adopt the sustainable development concepts and goals. For this reason, the geography of Iran should make a switch from its very specialized approach to a relatively wholistic view and pay more attention to the human- environment paradigm. To implement this order, the following assumptions should be considered.
  1. The applied objective of the discipline should be defined as “locating the suitable place for the living and activities of man without endangering the sustainability of the natural environment.  This objective is not clear at the present curriculum. Defining this objective will clearly show students what is their job after finishing the career.
  2. The main vision of geography education is the creation of the sustainable geographical space or environment.
  3. The research approach is problem solving. Because most of the laws and concepts are identified and defined. Due to the hazardous nature of the earth system geographers should identify the problems and research to solve them via geographical thought and knowledge.
  4. The terrestrial unit for working is region. This is very important concept in geography. We cannot prescribe one sustainability procedure for all of the world. But we do one for each region. When regions became sustainable, all the world will be sustained.
  5. In any region the hazards and crises will be identified and described through the spatial analysis methods and will be conducted towards sustainable human – environment system. This monitoring is composed of the stages of spatial analysis, spatial planning, and spatial managing.
  6. All of the geography subjects and materials are necessary for sustainable development goals. The only criteria will be added is the environmental ethics in all of the geography activities and applications.
  7. Instructors and students should be familiar with the techniques of integration and multi-dimension modelling.
  8. All geography graduates will respect the nature and its resources and should consider the environmental ethics during their academic career. They should be able to identify and solve the environmental problems through the geographical thinking. Geographical thinking means asking geographical question, gathering geographical data, processing the data with geographical (spatial) methods, and presenting the results in the geographical forms, i.e., maps. All the graduates should be creative and critical and should have the power of scientific challenging and discussions.
  9. Geography is one independent and overarching discipline and we will offer only one total geography in bachelor level. The master career can be specialized according to the applied objectives of the societies. The doctoral program is also one integrated discipline. The specialty of graduates will be defined according to their dissertation.
  10. The subjects include the fundamental courses such as physical geography and sustainable development, regional courses such as the human geography of Iran, technical courses such as remote sensing, GIS, and statistics, the applied courses such as evaluating the natural resources, and so for. The students with any high school background should pass all the courses with high quality so that after graduation they have the potential to analyze the human- environment problems and recommend the required solutions.

Key words: geography curriculum, sustainable development, geography of Iran, twenty first century, environmental ethics, geographical thinking, Geography and sustainable development.

 
Dr. Seyed Amirhossein Garakani, Dr. Fatemeh Falahati,
Volume 10, Issue 1 (5-2023)
Abstract

Abstract
Many villages in the country are faced with a series of dangerous factors and elements due to their location and settlement method, the most important of which are natural disasters such as earthquakes, floods, landslides, subsidence, rockfalls, avalanches and snadstorms. A set of biological, environmental, social, economic, and physical factors and processes can also increase the level of risk and vulnerability of villages.. Therefore, it is necessary to take steps to reduce the effects and consequences of accidents by using scientific methods of crisis management based on risk management. Experience shows that the huge costs of reconstruction after disasters can be reduced with prevention, prediction and preparation and according to the sixth development plan, 30% of villages and 20% of the border villages must be secured. The current plan is carried out referring to the sixth development program (clause 8th of article 27th) with the aim of securing villages exposed to the risk of natural disasters in order to identify the villages with the characteristic of being exposed to natural hazards, prioritizing and presenting suggestions regarding how to reduce the risk at the villages are exposed the risk of natural disasters in cooperation with the Islamic Revolution Housing Foundation and the National Disater Management Organization. The priority natural disasters in this plan are: floods, subsidence and sinkholes, earthquakes, sandstorm and slope movements (including landslides, rockfalls, creeping and mudflows) in rural areas. At first, a list of villages at risk of natural disasters was prepared and reviewed through inquiries from provincial disaster management and housing foundations. This project was based on appropriate models and methods and with using of disaster risk zoning maps, screening and selecting the list of villages that are more at risk than others  and by combining risk assessment indicators and criteria with environmental, physical, demographic indicators and risk incident records, the villages with the first priority of risk are extracted separately for each province, and then the results of this stage were checked for accuracy in a collaborative process with related organizations at each province and the project entered the phase of field collection and providing implementation solutions. In this plan, out of 48,857 villages with more than 20 households across the country, about 9,000 villages are at risk with high risk categorized in 5 classes and 1,418 villages across 31 provinces with the first priority visited after verification, in order to local check and providing solutions for risk reduction. These villages were visited by experts from different fields and detailed risk assessment was done. In order to obtain the same and comprehensive information by the referring experts for the field visiting, field evaluation forms were designed with a multi-risk management approach.
 The results of the field visits and the proposed solutions were prepared separately for each village according to the environmental characteristics with the aim of reducing the risk and securing and presented to the Islamic Revolution Housing Foundation, the Disaster Management Organization and the Program and Budget Organization. Also, by designing and establishing a spatial information system for monitoring and evaluating rural settlements at risk, on the web-GIS platform (WEB GIS) at the same time as visiting the mentioned villages, the information collected according to the field collection forms was loaded into the system and according to the characteristics This system, such as designing in the Oracle environment, defining the access level for different stakeholders from national to local levels, the possibility of updating information, having different modules, reporting, spatial analysis of risks and producing thematic and combined maps, it is possible to use this system as a decision support system in all stages of crisis management, before, during and after the disaster, at the country level. Increasing and completing the required information in analyzes related to risk assessments, simultaneously with entering the information collected during field visits, as well as updating the information, will lead to an increase the empowerment of the society regarding the risk management of natural disasters and an increase Speed and accuracy in the analysis of the effects, management decisions and as a result reduce the costs of reconstruction and rehabilitation. It is worth mentioning that in order to create the ability to register information collected online, the mobile application system of rural settlements at risk was also designed and operated.

Key words: villages at risk of natural disasters, immunization,identification, prioritization, webGIS

 
Hasan Jems, Saman Maleki, Abuzar Nasiri, Soraya Derikvand,
Volume 10, Issue 1 (5-2023)
Abstract

1- Introduction
Desert dust is formed under the influence of the special weather and environmental conditions of desert areas, enter the atmosphere. Localized hurricanes caused by ground air instability and sweeping dry deserts clear silt and sand particles enter the atmosphere from the surface. Ecologically as well as physically desert dust Effects such as pulmonary heart disease, disruption of plant physiological circulation, and erosion of growing structures include heavy metals deposited on soil surfaces, water surfaces, and canopies Plant surfaces that cause chemical changes and physiological damage to environmental ecosystems. Difficult Metal generally refers to a group of metal elements with a specific gravity of 6g/cm3 or more. Atomic weight greater than 50 g. Heavy metals important from an environmental point of view Cadmium, arsenic, cobalt, vanadium, zinc, mercury, iron, manganese, nickel, lead, chromium, copper, that do not decompose naturally. In addition, the long life of heavy metals is also considered. In the studies that have investigated the effect of dust on citrus fruits, it has been very few and even garden plants have been done on a case-by-case and limited basis. Citrus and especially oranges are one of the important and economic garden products in Iran, which are cultivated in tropical areas with mild and cold winters. Khuzestan plain, especially Dezful, is one of the poles of citrus and orange cultivation. But in Khuzestan, it is under the influence of many environmental stresses, which can be mentioned as drought stress and air pollution in the region. The rising trend of the phenomenon of desert dust in recent years has been shown as a danger and its effect on the environmental health and economy of the region is very severe, and the most damage has been reported to the agricultural sector. Although the damage caused by micro-pollens to the agricultural sector is expressed as an economic figure, the effect on plants, especially citrus fruits, remains unknown. Although researchers have studied the effect of fine dust on sugarcane, grapes, legumes, nectarines and peaches in Iran, India and Pakistan, the effect of fine dust on vegetative traits and orange fruit has not been investigated in Khuzestan. Considering that the first step in controlling the effect of air pollution on plants and horticultural crops is to know how it affects the plant, on this basis, the main goal of the current research is to reveal and evaluate the effect of micro-pollens. Desert is on vegetative and reproductive characteristics of Thomson orange in Dezful.


2- Methodology
In order to evaluate the effect of desert pollen on the quantitative and qualitative yield of orange fruit, Thomson variety, a field experiment in the form of randomized complete block design with four treatments and three replications was carried out in Dezful in 2018-2019. The treatments included 1) road dust and desert fine dust, 2) desert fine dust, 3) washing after the occurrence of fine dust and 4) control away from fine dust. The chemical and functional characteristics of the trees were measured after applying the treatments, which included chlorophylls a and b, relative water content of the leaves, number of fruits, diameter and weight of the fruit, soluble solids of the fruit and the final yield of the tree.

3- Results
The results showed that chlorophyll a decreased by 21% and 11%, respectively, in the road dust and desert fine dust treatments compared to the control. Chlorophyll b also decreased to the same amount compared to the control. The diameter of the fruit also decreased by 20% in the desert dust treatment compared to the control. The number of fruits per tree also decreased by 22 and 20% in the treatments of pollen and fine desert dust compared to the control. In the product yield of each tree, in the treatments of road dust combined with desert fine dust and the second treatment, which was only desert fine dust, it decreased by 22 and 17 percent, respectively, compared to the control. Tukey's mean comparison showed that the difference of all quantitative and qualitative characteristics between the treatments was significant and Desert dust has a negative and decreasing effect on the yield of Thomson orange trees; However, washing the trees after the occurrence of micro-pollen removed the effects of micro-pollen on the performance of trees and it even increased compared to the control; So, washing increased the yield of oranges by 40, 35, and 12 percent compared to the first and second treatments of road dust and fine dust, as well as the control.

4- Discussion & Conclusions
Plant growth cycle and biochemical interactions of plants show different reactions under the influence of environmental stresses. The results of previous studies indicated that fine dust and dust storms have been identified as an environmental stress for plants that have a negative effect on grapes, medicinal plants, sugarcane, nectarines, peaches and legumes. The effect of fine dust on the plant can be investigated in several characteristics and periods of plant phenology. In the first stage, the deposition of desert fine dust on the leaves of the plant causes shading and reducing the light received by the leaf pigments. Fruit formation is the most important phenological period of the plant, and the occurrence of environmental stress can affect the yield and products of the plant. The present research showed that the number of fruits in orange trees showed sensitivity to desert pollen and the settling of soil particles on orange flowers reduced the amount of fruit formation and finally the number of healthy and ripe fruits in the trees treated with road dust and Desert fine dust decreased compared to the control. Finally, the yield of control orange trees decreased by 17% and 22%, respectively, compared to desert dust and road dust treatment with desert dust. The yield of cotton plants in China decreased by about 28% compared to Desert dust. It can be concluded that although desert dust and road dust reduce the yield of Thomson orange fruit, washing it compensates for the damage and will be economical from the economic point of view.

Key words: Citrus, Photosynthetic pigments, Fruit yield, Dust, Dezful

 

Page 16 from 19     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb