Search published articles


Showing 29 results for Risk

Dr Moslem Savari, , , ,
Volume 5, Issue 2 (9-2018)
Abstract

Farmers frequently cope with risks due to the uncertainty of climatic conditions. Population growth, changes in agricultural policies, environmental regulations and the degradation of natural resources such as soil and water also present farmers with numerous challenges. Although farmers have experience in coping with a certain degree of uncertainty, increased climate variability and changes may cause severe problems. Drought in particular is a climatic disaster that creates substantial costs for farmers and affects their agricultural systems extensively. Drought is the most complex of all natural hazards, making the arid and semi-arid regions of the world vulnerable. Although drought has not been well documented, the resource-dependent sectors such as agriculture are the most vulnerable to the impact of this phenomenon. A review of the long-term annual precipitation trends indicated that drought had a worldwide return frequency of every 20e30 years. However, in the last 50 years, some countries such as Iran and Bangladesh have experienced approximately 27 and 19 drought events, respectively. Therefore, for arid and semiarid regions, drought is a recurrent feature that could lead to the loss of crop production, food shortages and starvation) if not managed appropriately. According drought impacts could be managed at macro (national), meso (local) and micro (village and household) levels. However, the micro-level management (i.e., what the farmers do in response to drought) is of great importance. A review of the studies of farmers’ decision-making in response to climate variability revealed that most research has focused on the decision event and not on the entire process argued that the wrong assumption of farmers’ homogeneity neglected different aspects of decision-making in response to drought. Also indicated that farmers made different decisions when utilizing the same data. Additionally, many studies have focused on single strategies that were used to mitigate drought. However, there is a lack of knowledge about the combination and sequence of coping strategies that are used to mitigate drought. Concentrating on the decision-making process could help policy makers assess the needs and prioritize interventions, as well as enable farmers to efficiently manage drought. Farmers utilize various strategies to reduce the impacts of drought. Some strategies have a limited impact on drought mitigation. Some practices also increase farmers’ woes during drought. In addition, when resources (natural, physical and financial) are scarce, the need for an accurate appraisal of coping strategies becomes acute. Therefore, outcome prediction (i.e., the efficacy of mixed coping strategies) is a critical issue in drought management. Consequently, this study is concerned with the description of the farmers’ decision-making process and decision outcomes. First, the impacts of drought on the agricultural production in arid or semi-arid countries, specifically Iran, are described. Then, the farmers’ decision-making process during drought is explained then, the farmers’ decision-making process during drought is explained. The focus then shifts to the design and explanation of the proposed research methodology, followed by an analysis of the results and concluding remarks. Approximately $84 million. Under such conditions, Iran imported significant amounts of wheat and rice, and it seemed likely that continuous drought would lead to import expansion. Furthermore, dairy production also experienced a decrease of 8.2 percent during this same period. The drought of 2008e2012 was one of the worst on record. This drought drastically reduced the cultivation area, even in irrigated lands. During this time, the river waters fell to critical levels. Most of the traditional ground water irrigation systems (qanats) either completely dried up or experienced a reduced water release. In the central and southern regions of Iran, the cultivation areas were reduced by half during the spring-summer seasons due to these low water levels. During this period, farmers experienced rising costs due to the use of management strategies such as deepening wells and constructing water storage in order to cope with the drought. Other economic impacts that were experienced by the farmers were increased livestock feeding expenses, increased interest rates, and increased debts. These depleted resources and diminished incomes forced those in rural areas to migrate to the cities in pursuit of jobs. Important factors, as previously mentioned, are livelihood risks that so far have not been given much attention so this research was to Patterns Design Out of the Challenges of Livelihood Sustainability of Small-Scale Farmers in Drought Conditions in Kurdistan Province.
The statistical population consisted of small farmers in Kurdistan province who were in drought conditions. The research paradigm is qualitative in two ways: Grounded theory and phenomenology.  Using theoretical sampling, 29 of them were selected for study. The research data were collected using a deep interview and group discussion and analyzed with three open, axial and selective coding methods.
The results of the research in the phenomenology of Livelihood Behavior Behaviors included 16 primary codes and classified into adaptive behaviors, resiliency and non-response. Also, the results of studying the livelihood sustainability challenges of small scale farmers in the form of foundation data methodology included 61 initial codes. Finally, in order to design a model out of the challenges of the stabilization of 9 mechanisms (economic, productivity, production factors, services and facilities, Education and information, management and capacity building, culture, technology, formations, and equilibrium) were designed based on the challenges of sustainability and incorporated into the Strauss model. 
 
Keyword: Sustainability, Sustainable Livelihoods, Climate Risks, Small Scale -Farming
 
 
 
Samira Jafariazar, Gholam Reza Sabzghabaei, Mortaza Tavakoly, Soolmaz Dashti,
Volume 5, Issue 4 (3-2019)
Abstract

Introduction: Wetland ecosystems, especially marine coastal wetlands of the most important and also the most vulnerable are the world's environmental resources. Which has always been sensitive to the fragility of coastal areas, high population density and intensive human activities are faced with the threat of destruction. Based on this, monitoring the trend of the changes in wetlands and their surrounding lands can be effective in the management of these valuable ecosystems. Investigating the environmental risk is a suitable instrument for evaluating and ensuring understanding of the relationships between stressor factors and environmental effects especially in wetland ecosystems. In general, application of methods of evaluating environmental risk is one of the important tools in studying environmental management along with identifying and mitigating potential environmental damaging factors in wetland regions in order to achieve sustainable development. Today, multi-criteria decision-making methods are employed in evaluating the risk in many studies.This study is based on multi-criteria decision-making methods to identify and analyze the risks threatening Tyab- Minab International wetland located in Hormozgan province was conducted.
Materials and methods: Based on the methodology to identify and prioritize risks Delphi, AHP and TOPSIS techniques were used to determine the risk priority number. In the first phase of this study, to identify and screen the main criteria of project selection, Delphi method was used. In this study, the panel of interest was determined based on a combination of experts with different expertise and out of a sample of 20 individuals, in which experts with various expertise gave a score from 1 to 5 (Likert scale) to each criterion. In this way, 32 criteria were identified as the most important and considerable risk for Minab Wetland and further proceeded to the second phase for prioritization and analysis. In this stage, multi-criteria decision-making methods were used, in which hierarchical analysis process was employed for prioritizing the criteria using Expert Choice 11 software. The indices of risk evaluation including the impact intensity, incidence probability, and the sensitivity of the receptive environment in environmental risk evaluation of wetlands do not have an equal value and significance. For this purpose, to weight the factors effective in estimating risk level and for prioritization of risk options, the technique for order of preference by similarly to ideal solution (TOPSIS) and Excel software were benefited from for calculations. The spectrum of scoring to each of the indices of incidence probability, impact intensity, and the sensitivity of the receiving environment was chosen from very low (1) to very high (9) based on hour spectrum. Following investigation of the types and frequency of indices along with the method of score determination of these indices, three indices of risk intensity (C1), risk incidence probability (C2), and the sensitivity of the receiving environment (C3) were chosen for risk ranking using TOPSIS model. Next, after determination of risk priority number using TOPSIS, the risk levels were calculated and evaluated using normal distribution method for each risk. To determine the degree of risk-taking, risks are organized in a descending order, where the elements of the number of the class and the length of the class are determined based on Relations 1 and 2 (n is the number of risks). Next, the risks are categorized based on these classes. Considering the concept of ALARP, the risks under investigation are divided into high risks, medium risks, and low risks. In this study, considering the number and length of classes, the studied risks were categorized in six levels (critical, intolerable, considerable, medium, tolerable, and trivial risks).
 

(2)
(1)

the number of classes=1+3.3 log (n)
the length of the classes= the greatest risk value - the smallest risk value/the number of classes
Results and discussion: In the first step, the final indices of the wetland's environmental risk were identified and the development of hierarchical tree and classification of the risks threatening wetlands along with their incidence probability in two groups of natural and environmental criteria was performed. Eventually, the final weight of criteria resulting from paired comparisons was obtained in Expert Choice 11 to achieve the score of incidence probability of each risk. Based on the results, among the natural, social, economic, physiochemical, biological, and cultural criteria, drought and climate change, increase urban and rural development, Smugling of fuel, oil pollution, reduce the density of vegetation, indiscriminate exploitation of groundwater were of high priority. The results obtained from ranking the the risks threatening Minab Wetland using TOPSIS suggest that oil pollution, dam construction upstream, persistent drought and climate change, and sometimes alcohol and fuel smuggling and illegal overfishing the priorities are first to fifth. Also Results showed that the respectively based on (Cj+) oil pollution (0/9109), dam construction (0/8121), the drought and climate changes (0/8063) and the smuggling of fuel (0/7520) are in Unbearable level.
Overall, the results indicated that same as this research, wetland ecosystems are subject to many threatening factors, resulting in ecological imbalance and abnormal appearance of the wetland, putting the wetland entity into danger of extinction in terms of fauna and flora.
Conclusion: Nowadays, for assessment of environmental risk, various methods are used, each of which has positive and negative points given the studied environment and the conditions governing it. Therefore, one cannot reject or approve one method with total confidence. By employing novel methods in risk evaluation, the intensity of risk incidences and, in turn, the damages and losses incurred to the environment can be prevented or at least mitigated. Further, it is also possible to move in line with proper and optimal management of environmental resources, especially wetlands and with sustainable development. Undoubtedly, understanding and recognition of the factors threatening wetlands, according to the importance and the impact of them, Prevent and cope with the threats and accurate project preparation and implementation of wetland conservation plans and environmental management.


Gholamreza Janbazghobadi,
Volume 6, Issue 3 (9-2019)
Abstract

Abstract 
Fire in natural resources is one of the crises that causes irreparable damage to ecosystems and the environment every year. The purpose of this research is to attempt to study areas of risk aversion and to prepare a map of forest fire hazard area by integrating topographic data and other additional information from a GIS system for Golestan province. In order to carry out this research, firstly, with the removal of the recorded data related to the situation of fires occurred in 2009 and 2010, the domain of all natural resources of Golestan province was carried out. In order to identify areas with high fire potential, static parameters were used to control the burning of forest forests (elevation, slope, slope direction, land use / land cover, evaporation rate). Each of the static parameters is divided into different classes And to each class, using bachelor's knowledge and review of research, ground data and the results of the above studies are weighted from one to ten. In the following, by using overlap of these layers with different weights, areas with high fire potential were identified for the forests of Golestan province. Finally, all weights were summed up, the final weight was obtained and a fire hazard map was prepared. The Arctic GIS9.2 software has been used to generate a fire hazard map. Also, The fire risk index (FRSI), the Normalized Difference Vegetation Index(NDVI), and the zoning map, have a fire hazard in the risk category (very low to high) ). The results showed that most of the fires occurred in hardy and covered with forested areas, as well as in the forested areas with a crown and an intermediate cover, and in the next stage, in the woods and shrubland areas. In calculating the calculation of fire density in altitudes, the results showed that approximately 90 percent of fires occurred in average altitudes between 700 and 1500 meters. Overall, the findings showed that 90 percent of burns occurred continuously in areas With fire hazard, 30% in hazardous areas and 60% in extreme areas, so that its Galikesh, Minoodasht, , Azadshahr has high risk of high fire.                  

Mrs Elham Fahiminezhad, Dr M Ohammag Baaghide, Dr Iman Babaeian, Dr Alireza Entezari,
Volume 6, Issue 3 (9-2019)
Abstract

Changes in the mean and the extreme values of hydroclimatic variables are two
prominent features of the future climate. Therefore, simulating the climatic
behavior of Shandiz catchment area, an important tourist area in the northeast of
the country, will play an important role in identifying the climate condition and
potential vulnerability of these areas in the coming decades of climate change.
In this study, we will
evaluate the effects of climate change on extreme values of the basin micro scaling
precipitation and temperature in CanESM2 model using SDSM model and
simulating runoff with SWAT model in future decades.
To achieve this goal, the daily temperature and precipitation statistics of the 30
statistical years (1961-1990) of Mashhad synoptic station have been
used. The data of the CanESM2 general circulation model under RCP2.6, RCP4.5
and RCP8.5 scenarios are also used to predict precipitation, the minimum and
maximum temperature for 2041 to 2100.
According to the results, the annual precipitation rises 37 to 54 percent from 2041
to2070 compared to the observation period, and the increase in rainfall of the
2071-2100 rises 52 to 66 percent. Precipitation extreme values, the mean of
maximum and minimum temperatures in future periods in all seasons of Mashhad
station will increase compared to the observation period (1961-1990).In future decades, the average maximum temperature in Mashhad will increase from 4.6 to 0.65 degrees Celsius
and the average minimum temperature will increase 53/1 to 22/4.
By introducing micro scaled time series of the maximum temperature, temperature,
and micro scaled precipitation by SDSM model to SWAT model, the monthly time
series of Shandiz watershed runoff at Sarasiab Station was simulated for the two
periods of 2041-2070 and 2071-2100 under three distribution scenarios of RCP2.6,
RCP4.5 and RCP8.5. For this purpose, first, the model was calibrated and validated
using Shandiz hydrometric station runoff for 2003-2012, and the values of R2 were
65 and 52, respectively. Subsequently, with the introduction of micro scaled time
series of maximum and minimum temperatures, and micro scaled precipitation by
SDSM model to SWAT model, the average annual trend shows that runoff
increases in the coming decades. The lowest average annual increase for runoff is
in 2041-2070 and RCP4.5 scenario, with an increase of 56.1% over the observation
period. The highest increase of average annual monthly runoff is from 2071 to2100
under RCP 2.6 scenario with 53% to 104% runoff compared to the observation period.


 
Reza Reza Borna, Shahla Shahla Ghasemi, Farideh Farideh Asadian,
Volume 6, Issue 3 (9-2019)
Abstract

Today, the impact of climate is considered on the life, health, comfort, activity and behavior in a form of the branch of science   such as human biology. Due to difference of frequency people with each other, the sensibility of every one from weather can be different from the other one that's why the climate can’t be totally undesirable or the climate can be totally desirable for all the people, so we can say that all of climatic elements are affected on human comfort but the effect of some of them is quite cleared and the effect of the others is mild and sometimes invisible. The greatest effect on comfort and discomfort can be included temperature, humidity and solar radiation. The aim of this research is to investigate and determine    the area risk of climatic comfort. For this purpose, the temperature, precipitation and humidity data have been extracted for Khuzestan province form Esfarazi database. In this approach, first different properties of the temperature, precipitation and humidity for the area with climatic discomfort   have discussed   based on the conditional probability distribution. This study has been identified the areas of climatic comfort in Khuestan province using multivariate analysis (Cluster analysis and Discriminant analysis) and spatial autocorrelation pattern (Hot Spot index and Moran index) with an emphasis on architecture. The results showed that the risk area of climate comfort is included mostly  of  the western parts of  Khuzestan province namely the border areas with Iraq and some parts of  southern  of  province .On the other hand ,trend analysis the  range of this area to climatic discomfort indicated that it has increased significantly  in  recent periods .The results also  showed that  the local distribution of   precipitation  in all periods in the areas of climatic discomfort  has  been   a high  the coefficient of  variations.
Roghayeh Jahdi, Ali Asghar Darvishsefat, Hossein Badripour,
Volume 7, Issue 3 (11-2020)
Abstract

Wildfires have proven to cause considerable damage to natural environments in Ardabil in the last years, and the prevalence of such events is anticipated to increase in the future. Fine scale wildfire exposure and risk maps are fundamental to landscape managers and policy makers for prevention, mitigation and monitoring strategies. In this paper, we provided 100 m resolution wildfire risk and exposure metric raster grids for the fire-prone municipalities in South Ardabil province corresponding to a fire simulation modeling and a geospatial analysis with a geographic information system, along with complementary historic ignition and fire area data (2005-2018). Fire risk parameters (burn probability (BP), conditional flame length (CFL) and fire size (FS)) were generated with FlamMap Minimum Travel Time (MTT) algorithm considering fire weather conditions during the last 14 wildfire seasons. Moreover, we estimated fire potential index (FPI) to spatially analyze where large fires likely initiate. Average BP, CFL and FS ranged from 0.00007 to 0.0025, 0.05 to 1.6 m, and 54.7 to 360.3 ha, respectively, that highlighted a large variation in the fire exposure factors in the study area. The calculated FPI showed two major areas with the highest values, where historic ignitions were high, and where large areas of faster burning fuels were present. The results of this study can be useful for analyzing potential wildfire risk and effects at landscape scale, evaluating historical changes and future trends in wildfire exposure, as well as for determining fuel treatment strategies to mitigate wildland fire risk.
 

Khabat Derafshi,
Volume 7, Issue 3 (11-2020)
Abstract

In this study, the risk map as an index to define the said complexity was prepared in 5 categories of risk by combination of Tehran metropolis flood hazard and vulnerability maps. To analyze the risk varieties, the hydrological catchments of Tehran were extracted by Arc Hydro model and 12 catchments were selected. Using land use, roads network, and the percentage of residential floor area, bridges, altitude, slope and drainage density variables, the flood hazard map was calculated. Dilapidated urban blocks, population density, land use, bridges, slope and drainage density layers were used as variables which affecting the flood vulnerability. Covariance index was applied for matched variables and considering the locational coherence between the values of them. Based on the new raster layers, flood risk variability in Tehran metropolis as well as in each of the catchments were analyzed using stepwise regression model. Explanation of locational changes of risk between the catchments needs to calculate the weighted average risk and the independent variables in 12 catchments that obtained by zonal statistics. Based on these average values the factor analysis used to determine the varifactors or main components of the variability in flood risk between the catchments. Finally, fractal geometry models (perimeter-area and cumulative number-area) were used to demonstrate the chaos of the flood risk value in 5 categories of risk. According to the flood hazard zoning map of Tehran metropolitan area, the extent of high hazard zone is 129.6 square kilometers. High risk zone covers 28.6% of Tehranchr('39')s area, indicating that most of the citychr('39')s extents (174.4 square kilometers) are located in the high flood risk zone. After that, the moderate hazard zone is 28.5% of the city area. Very low zones with 3.53% of the total area are the smallest zones in the city, which are only 21.5 square kilometers. Overall, 78.3 percent of the total area of the city is located in the moderate to very high zones of flood hazard, reflecting Tehranchr('39')s challenge to flooding. The vulnerability map defines that 138 km2 of the Tehran city area is located in high and very high zones of the flood vulnerability. According to Tehran metropolitan flood risk zoning map, 163.1 km2 of Tehran city area is located in high risk zone which has the highest rate among flood risk categories in Tehran metropolis (26.9%).

Iraj Ghasemi, Sheida Ebrahimi Salimi,
Volume 7, Issue 4 (2-2021)
Abstract

Introduction
The development of the tourism industry, in addition to paying attention to the infrastructure of this industry, requires comprehensive planning of persuasive factors, as well as reducing the environmental and natural risks of tourism destinations. According to research, tourists are affected by four types of risks, including health, cultural, political and economic, but among the natural hazards that endanger the health of tourists is of particular importance.
 Among the tourist destinations, ecotourism has a significant success, which causes many hazards in these areas. Maranjab desert for the relative temperament of temperature, tourist attractions, diversity of animal species and vegetation, and the existence of typical and prominent forms of desert is one of the most visited areas of desert ecotourism. Therefore, many problems and dangers are threatening. In this research, an attempt has been made to identify and analyze the main natural and environmental hazards of the Maranjab desert with a descriptive-analytical method based on library and field studies.
methodology
The general approach of mixed-method with the priority of quantitative method is based on qualitative studies. For this purpose, after identifying the risks, a questionnaire for prioritization was collected through interviews with experts and then evaluated and analyzed through the FMEA technique. The method of FMEA is one of the tools for continuous improvement of product and service quality. The purpose of the FMEA is to identify the risks and risks of the product and process that may be latent or obvious. Once identified, the next step is to make decisions that can be addressed. This method is used in medicine, manufacturing and services industries. In recent years, the use of this model for risk assessment in the humanities and tourism has also become popular. This method is based on three key components of probability of occurrence, severity of occurrence and probability of discovery.
 After returning the questionnaires and evaluating the quality of response, a random sample of 100 questionnaires was selected and analyzed based on the method of analysis of failure factors and its effects. According to the purpose of the study, half of the audience had an individual trip and half of them traveled to the area with the group. Audiences were asked to assign a score between 1 and 10 for each component of the method. Accordingly, each factor will have a score in each case, which is obtained from the average score of the audience and has been between 1 and 10. After identifying and evaluating the risk perceived by the audience, in an interview with professors and

Saeed Fathi, Ph.d. Ali Mohammad Khorshiddoust,
Volume 8, Issue 1 (5-2021)
Abstract

Zoning and Spatial Analysis of Potential Environmental Hazards
Case study: Silvana District
Abstract
Natural hazards can be considered as one of the most important threats to humankind and nature that can occur anywhere in the world. Natural hazards are one of the main obstacles to sustainable development in different countries and one of the important indicators of the development of world countries is their readiness to deal with natural hazards. Therefore, it is important to pay attention to it and appropriate measures should be taken to reduce the vulnerability of human settlements. Nowadays with increasing population growth, population dynamics and the large number of people exposed to various types of disasters, the need to identify environmental potential hazards and identification of hazardous areas are felt more and more. Meantime, some people may not be aware of potential hazards of their place of residence. So by identifying and evaluating potential hazards and their Risks before the occurrence, we can significantly reduce the severity of the damages and contribute to sustainable regional development. The negative effects of natural disasters can be minimized by the availability of comprehensive and useful information from different areas and Multihazard mapping is one of the most effective tools in this regard.
According to the above mentioned, in this study, the spatial analysis of potential hazards in Silvana district in Urmia County has been studied. This study area due to specific geographic conditions such as position, complexity of topographic and ecological structures, in general, the existence of environmental factors for hazards has been selected as the study area. There have been a number of hazards in the past and assessing of this area is necessary, because of the lack of previous studies. For this purpose, by reviewing various reports and doing field observations, three hazards including Flood, Landslide, and Earthquake are identified as potential hazards of the study area.
For assessing hazards, 12 factors in 6 clusters such as Slope, Aspect (Topographic factors), Lithology, Soil type, Distance to Faults (Geological factors) Precipitation (Climatological factors), River Network Density, Groundwater Resources (Hydrological factors), Land use, Distance to Roads (Human factors), Observed Landslide Density and Seismicity (Historical factors) as the research factors has been selected. For weighting factors, Analytic Network Process (ANP) Method in Super Decisions 2.6.0 software environment has been used. The results of the analysis show that Slope (0.201), Precipitation (0.161), Lithology (0.112), Distance to Faults (0.106), Land use (0.096), Rivers (0.078), Seismicity (0.06), Soil Type (0.055), Landslide Density (0.047), Aspect (0.033), Groundwater (0.03) and Distance to Roads (0.016), Respectively have maximum to minimum relative weight. Then, weighted maps are standardized with using FUZZY functions. For this purpose, Fuzzy membership functions such as Linear, Large and Small has been selected based on each factor. For some factors such as Slope, Aspect, Lithology, Soil type, Rivers density, Land use, Seismicity and Landslide density, Fuzzy linear function has been used. For some others such as Groundwater and Precipitation, Fuzzy large function has been used and for distance to Faults and distance to Roads, Fuzzy small function has been used. Finally, weighted maps were overlay in ArcGIS 10.4.1 environment with Fuzzy Gamma 0.9 operator and potential hazards zoning maps is obtained.
Final results indicate that major parts in the Northwest, West and South of the study area located in high risk zones and 59 percent of the total area exposed to high risk. Based on hazard zoning maps, 44 percent of the area exposed to Flooding, 48 percent exposed to Landslide and 44 percent exposed to Earthquake. Also, 61 percent of the population or 37394 people exposed to one hazard, 7 percent or 3817 people exposed to two hazard and 8 percent or 4914 people exposed to three hazard. According to surveys, only 21 percent of the study area is considered as a low risk area but that does not mean that environmental hazards will never happen in these areas. In general, and based on results, it is concluded that Silvana district has a high potential for environmental hazards. Final results of the research show that potential hazards identifying and preparation of hazard zoning maps can be very useful in reducing damages and achieving sustainable regional development. Therefore, considering the ability of hazard zoning maps to identify areas exposed to risk and assess the type of potential hazards, These analyzes should be considered as one of the most appropriate and useful tools in different stages of crisis management that can be the solution to many problems in preventing and responding to natural disasters and therefore, it is recommended that they be used in the crisis management process.
Keywords: Spatial Analysis, Environmental Hazards, Silvana, ANP Method, Risk
 
Dr. Shahrokh Pourbeyranvand,
Volume 8, Issue 2 (9-2021)
Abstract

Seismic risk investigation by Strain rate variation study in central
 Alborz by using GPS data
Abestract  
The Alborz Mountains, South of Caspian Basin and separates Central Iran from Eurasia.  Talesh and Kopeh Dagh bound the Alborz as major thrust belts in the west and east respectively. The tectonic evolution of this important region is still unsolved and there are many questions to answer, such as the origin of the Alborz Mountains as well as its crustal structure. The Alborz is of great important in natural and most particular, seismic hazard investigations, because of the existence of Tehran megacity. This importance resulted in development of a relatively dense network of GPS stations in this regions and adjacent areas. The Alborz Mountains formed successively during the collision of Central Iran with Eurasia in the Late Triassic (Cimmerian Orogeny) and the collision of Arabia with Eurasia. Tectonic activity in this belt is currently thought to be controlled by two motions with different velocities, the 5 mm/yr northward convergence of central Iran to Eurasia causing a compression from 7 Ma and the 4 mm/yr left‐lateral shear northwestward motion of the South Caspian Basin resulting in a left lateral transpressive tectonic environment in the Alborz . Since middle Pleistocene transtensional motion is also observed in the region because of acceleration of SCB motion toward North West.
GPS studies in the Zagros started in 2000 and are continuing by gradual expansion of the permanent GPS network and several GPS campaigns and temporary stations. These studies have significantly improved our understanding of the surface deformation in the Alborz. In this study the interpolation of GPS velocity vectors in a rectangular grid and calculation of the strain at the center of each grid cell, were used for the study of the strain rate variations in the central Alborz. We used velocity vectors from Djamur et al. (2010) to estimate the strain rate field in the Alborz. To avoid edge-effects in the strain calculation, we only showed the results for the central part of the dataset. The GPS velocities are interpolated onto a rectangular north-south grid of 0.2 by 0.2 degrees and strains are calculated at the center of each grid cell, following the methodology of Haines et al. (1998) and Beavan & Haines (2001). The study of the strain rate variations can help in understanding the tectonic settings of the region and the obtained results, combined with other geodetic, geological and seismological studies, already performed in the region, can provide a comprehensive insight into the geodynamic evolution of the range.
The results showed spatial variations in principle strain rate axes directions and areal strain rate or dilation, which in combination with seismicity data, reveals important information about the fault movement mechanisms in the area. Observed anomalies in dilation, showed important correlations with seismicity, subsidence and uplift, dip slip and strike slip movements on the faults in the region and confirmed deformation partitioning which takes place due to tectonic forces, acting on pre-existing faults and weak fracture planes. The partitioning of the deformation causes dominant strike slip motion in some parts of the Central Alborz, while shortening occurs dominantly on other parts of the mountain range. These different parts are spatially separated in the region and correlate with the seismicity with regard to the faulting mechanisms expected from the orientation of the major faults and the directions of strain rate axes.
 
Key words: areal strain rate Central Alborz, deformation partitioning, dilation, faulting mechanisms, GPS, seismic ris

 
Dr Fariba Esfandiary Darabad, Sedigheh Layeghi, Dr Raoof Mostafazadeh, Khadijeh Haji,
Volume 8, Issue 2 (9-2021)
Abstract


The zoning of flood risk potential in the Ghotorchay watershed with ANP and WLC multi-criteria decision making methods
 
 
Extended Abstract
Introduction
Flood is one of the most complex and natural destructive phenomena that have many damage every year. The northwestern region of the country, due to its semi-arid and mountainous climate and thus of high rainfall variability, is one of the areas exposed to destructive floods. Flood risk zoning is an essential tool for flood risk management. Therefore, the purpose of this research was to determine the flood risk zones in the Ghotorchay watershed by using the analytical network process (ANP).
 
Methodology
In this research,, with geographic information system (GIS), satellite images, synoptic station data, analytical network process and the combination of layers, the flood potential of has been modeled in the Ghotorchay watershed. The final map of flood risk based on a combination of factors and climatic and physical elements including land use, geology, vegetation, topography, slope and land capability was prepared. The weight of each criterion was determined by ANP method and used by weighted linear composition (WLC) method for spatial modeling and incorporation of layers.
 
Results
The results of flood risk zoning showed that the Qal layers from geology, slopes of less than 3 precent, land capacity of units 5, 6 and 7, and as well as poor vegetation cover were identified as flood zones. The results obtained from the analytical network process model indicate the fact that part of the watershed is affected by the risk of flooding with the very high potential, which is mainly located in the downstream of watershed. For this reason, the streams of rank 3 and 4 are considered as flood zones and flood guide areas to the downstream areas. Also, river networks of 5 and higher ranks are in the range of floodplains or river coastal and usually have surface and extensive floods.
 
Conclusion
The flood prone areas and providing effective solutions for flood management is one of the main steps in reducing flood damage. Therefore more precise management and control of basins with multiple dams, embedding flood alert systems in flood plain areas and performing basic measures is one of the most urgent measures to prevent, improve and control this natural disaster.
Key words: Analytical network process, Biological protection, Floodplain, Flood risk assessment, Ghotorchay
 
Changiz Seravani, Gholamhossein Abdollahzadeh, Mohammad Sharif Sharifzadeh, Khalil Ghorbani,
Volume 8, Issue 2 (9-2021)
Abstract

Zoning map Vulnerability of Flood Spreading areas
(Case study: Musian Flood spreading station in Ilam province)
 
 
 
Introduction
One of the flood plain hazards is a change in the pattern of surface flows due to natural factors or human activities. Changes in the stream pattern are the changes that occur due to the surface stream patterns in terms of the shape of the drains, drainage form and quantitative morphological indices of the basin. These changes ,by formation of flood, submersibility, erosion, longitudinal and transverse displacements of rivers and streams, environmental degradation, etc., have a great deal of risk and harm to residents of the land adjacent to the watersheds, including the demolition of residential buildings,  valuable agriculture lands, facilities, river structures, buildings and relation routes, etc. There are several watersheds in the Musian Plain Basin that regularly change the direction of surface streams and, while displacing large volumes of sediments of erosion-sensitive structures, degrades crops, rural dwellings, connection paths, facilities, Irrigation canals obstruction, water supply and a lot of financial and physical damage to the residents of the region. Therefore, in order to solve these problems, in 1997, the Dehloran flood spreading plan was carried out at a level of 5000 hectares from the Basin of Musian Plain. Although some of the changes in the dynamics of the region, such as stream pattern, flood control, supllying groundwater aquifers, etc., have been caused by the implementation of this plan, but the problem of the concentration of watersheds behind the embankments composed of sensitive formations ,and the release of these areas will have many financial and even physical losses. Therefore, with the implementation of this research, it is attempted to identify the domain and risks that threaten the lowlands and to identify the appropriate measures to prevent them from happening with the zoning and inspection of the vulnerable areas of the Musain Plain.
 
 
Methodology
This study was conducted in five stages to prepare a vulnerability map of the flood spreading area of ​​Mosian plain. First, the implementation phases of the flood distribution plan were separated. In the second stage, information layers of effective factors in changing the flow pattern and concentration of surface currents behind the flood spreading structures were prepared. These layers included elevation, slope, and direction classes, which were prepared based on the Digital Elevation Model (DEM) extracted from the 1: 50,000 topographic maps of the Armed Forces Geographical Organization, as well as the layers of geological formations and land use changes. The lands were prepared based on the maps of the Geological Survey of Iran and the processing of Landsat satellite images of eight OLI sensors in 2013, respectively, by the method of determining educational samples. In the third stage, each class of effective factors in changing the flow pattern (mentioned layers) was given a score based on the range of zero to 10. The basis of the scores of the classes of each factor was according to the number of classes and the average of the total classes of that factor. The fourth stage in the GIS environment was created by combining the weight layers created, the vulnerability layer of the study area (quantitative map of vulnerability areas) of the basin. Then, by analyzing the vulnerability layer (filtering), the pixels and small units were removed or merged into larger units. The last (fifth) step was to classify the quantitative layer and then extract the qualitative map of the vulnerability zoning according to the range of scores based on the five very low, low, medium, severe and very severe classes. A summary of the research steps is shown in the form of a diagram.
 
Results and Discussion
The results showed that the most important threat and danger factor is the concentration of waterways behind erosion-sensitive embankments. Also, the study area in terms of vulnerability includes three classes with medium risk, high and very high and covers 16, 62 and 22% of the area, respectively. Flood and upland Spreading areas, risk areas and lowland lands are the most vulnerable parts of the basin in terms of floods and sedimentary deposits.
 
Conclusion
Based on the results obtained by combining the information layersof the factors influencing the stream pattern change, the zoning map of vulnerable areas of the region was created in 5 classes. Except for very few and very small classes that are not present in the region, there are other cases at the basin level:
Medium class:Includes about 16% of the basin. The existing watersheds in this part are ranked 1th class, and some of them are entering the rivers of Dojraj and Chiqab in the eastern and western parts. The formations of this part are often Bakhtyari and limitedly Aghajari. The floors have a height of 100 to 400 meters and the gradient is from 0-2 percent to 20 percent.
Medium class: About 62% of the basin level. The watersheds that flow in this section are in 1to 5 class. The formations of this part are often alluvial and bakhtiari of lahbori sections. It has a height of less than 100 meters to 300 meters and a gradient of 2-0 percent to 20 percent.
very intense: it covers about 22% of the basin's surface. The existing watersheds are of of class 2 and 3. The formations of this part are often alluvial and bakhtiari of lahbori sections. They have height classes of 100 to 300 meters and the gradient is 5-2 percent and is limited to 5 to 10 percent in the slopes.
 
Keywords: Vulnerability, Aquifer, zoning, Satellite imagery, Environmental hazards, Musian
Fatemeh Arsalani, Bohloul Alijani, Sabereh Arsalani,
Volume 8, Issue 4 (1-2021)
Abstract

Dust fall means the dust that in the air fall down on the ground (Hai et al, 2008). it is important to study the extent of heavy metal contamination of dust fall due to their threats that could affect human health. Due to the fact that the metropolis of Tehran has a population of over eight million people and One of the major cities in the world is currently facing a severe air pollution problem. The purpose of the present study was to determine  the level of pollution and health risk of heavy metals such as Cd, Cr, Cu, Ni, Pb in the dust falling of Tehran city. the Dust fallout samples were collected using Marble Dust Collector (MDCO) from 28 different locations across Tehran during the statistical period (2018/03/21- 2018/06/21). We used XRF analysis To identify and determine the concentration of heavy metals (Cd,Cr,Cu,Ni,Pb,Fe) in the collected dust. we used to spatial analysis to  determine Dispersion of pollution levels and health risk in different Zone of Tehran  city. In order to determine the level of pollution and Health Risk Assessment we used the pollution index (PI), integrated pollution index (IPI), Non-Carcinogenic Risk and Carcinogenic Risk. Based on the results of the calculations performed in the statistical period studied, the values of pollution index (PI) and integrated pollution index (IPI) are Pb> Cd> Cu> Cr> Ni, respectively. Accordingly, the regional trend of pollution from west to east is increasing. Therefore, Tehran's pollution index is high level of pollution in the most zone and and extremely high level of pollution in the eastern zone, which is a more worrying situation. Probably one of the reasons is the western winds, which are faster in the west than in the east. Also, Tehran's topographic pattern plays a role in this issue. Health risk assessment (HQ, HI, CR) showed that the contamination of the heavy elements studied was lower than the acceptable threshold for carcinogenic and non-carcinogenic risks. Therefore, it is not dangerous in terms of carcinogenicity. The risk of carcinogenicity and non-carcinogenicity in children and adults is higher in the southern and eastern zone of Tehran. Probably one of the reasons is the establishment of metal industries, cement production, sand mines and combustion processes in the south and west of Tehran metropolis.
Mohammad Sharifikia, Ali Mosivand, Maral Poorhamzah,
Volume 9, Issue 3 (12-2022)
Abstract

Risk assessment of Maroun gas and oil pipelines due to land sliding hazard

based on D-InSAR technique

Mohammad Sharifikia, @ Associate professor, Tarbiat Modares University, Department of Remote Sensing-

Iran

Meral Poorhamzah, postgraduate in Remote Sensing, Tarbiat Modares University

Abstract
It is importance to note that Iranian oil company have to transfer this valuable enrage from one side to other side of
country passing form several ridge and valley prone with several natural hazard. This is because the natural sources
of oil and gas generally lied in south west part of Iran locally calling Manathegh Nafte Khize Jonoub (south oil field
area). This area is closed to one of most active geological zone of Iran (Zakrose) covering thousands of kilometer
from south east to north west. Supplying natural enrages to central port of country need to crossing from this zone
which is suffering with several difficulties as well as neutral hazard. Out of neutral hazards can found to excite in
this area, the landslide hazard is a main restriction for pipeline crossing over.
The present research is dale with radar interferometry techniques applying for risk assessment and mapping over the
oil and gas pipelines suffering to landslides hazard in the part of Central Zagros (Maroun-Esfahan). For this purpose,
two individual radar dataset in C (ASAR) and L (PALSAR) band with deferent time were collected. Furthermore,
the D-InSAR technique was applied for land surface movement and land displacement detection. The outcome map
was showed the maximum rate of land displacement in this region is about 7.4 cm uplifted and 3.9 cm subsidence
with duration of almost one year. this is due to shape of landslide over the area’s slop. Overlying the landslide map
with the pipeline crossing route shown at lies three active landslides over the Maroun-Esfahan gas and oil pipelines.
For investigation about this three landslide and damage estimation over the pipeline the field study has been done
for accuracy assessment and land movement rat measuring and evaluation. Which, successfully identified and
mapped 3 landslides were located across the pipeline and damage it. Furthermore, map surveying by DGPS in RTK
method over the one of landslide shown that sliding transfer 20 m with falling 10 m over the length of 45 m of gas
pipeline. moreover, the press of landslide made curvatures on straight pip hogging pipe 43 cm. continued this
landslide activation and more pressing in close further can make a fracture and pessimistic pipe expulsion. With can
a kind of disaster if the event be close to settlements are.
The outcome landslide map shown the active landslide points (small area) very well, but the main think need to
suffusion information about interred area. For this exigency have to convert points data map to area as prediction
hazard. For this proses and to understanding the amplitude of landslide hazard in area the information value model
was applied for hazard zonation and mapping. The landslide hazard map resulting from D-InSAR technique as
inventory map along with 8 data set maps namely, lito-logy, soil, land cover, lineaments, faults, roads, derange
pattern and slop, has been interred to model for zonation and hazard estimation over the area. Furthermore, this map
was reclass in 5 individual hazard and risk class from low to high risk. The hazard map analyses and calculation was
show about 20 percent of area study was marked as high and very high risk zone. This is mainly because of
morphological and lito-logical exclusivity of area resulting by active tectonics. Crooning and overlaying the
landslide hazard map with pipeline track has been shown 28.5 percent of line length crossing over the high and very
high risk zone, where the 52 percent was prone with low and very low risk zone. This mine that near 1/3 of mention
pipeline length suffering from hazardous area which can classified as high risk part of pipeline.
Interpreting the hazardous classes on the prediction map is an important concern in landslide prediction models. For
this purpose, the prediction-rate curve was generated using validation group of landslide locations to validate the
prediction map obtained. This rate curve explains how well the model and factors predict the landslide. Results from
the success-rate curve are very promising, since the 3% area predicted as the most hazardous, includes 42.35% of
the total area affected by landslides, and this value grows to 90%, when about 25% area of highest susceptibility is
considered. The prediction accuracy can be assessed qualitatively by calculation the area under cover. The total area

equal to one means perfect prediction accuracy. In this model ratio area was 0.633 that means the prediction
accuracy was 63.3%.
Keywords: Differential SAR Interferometry, PALSAR, ASAR, Landslide, Oil and Gas Pipeline risk
Dr. Jamal Mosaffaie, Dr. Amin Salehpour Jam, Dr. Mahmoudreza Tabatabaei,
Volume 9, Issue 3 (12-2022)
Abstract

Landslide risk assessment is essential for all landslide damage mitigation plans. The purpose of this research is to assess the risk of landslides in the Shahrood watershed of Qazvin province. First, the landslide susceptibility map was prepared using fuzzy operators. the landslide distribution map and also 11 effective factor layers including slope, slope direction, altitude, land use, lithology, distance to road, distance to stream, distance to fault, earthquake acceleration, precipitation, and maximum daily precipitation were first prepared. After determining the frequency ratio and fuzzy membership values for the map classes of different factors, the landslide susceptibility map was prepared using different gamma values. Then, after preparing the fuzzy map of vulnerability for different land use units, the amount of landslide risk was determined from the product of two maps of landslide susceptibility and vulnerability. In general, 104 landslides with a total area of 1401 hectares were recorded in this region, 70% of which were used for modeling (73 landslides with an area of 982 hectares) and the remaining 30% (31 landslides with an area of 418 hectares) were used to assess the accuracy. The evaluation results showed that the highest value of Qs index (equal to 1.34) belongs to the gamma equal to 0.93 and therefore this model has higher accuracy than other gamma values. The importance of features at risk ranges from 0.05 (no coverage) to 1 (residential and industrial areas). To deal with landslide damages, three general policies including suitable for development, prevention, and treatment were proposed, which should be applied based on the two factors of risk and vulnerability for different areas of landslide risk. Finally, in order to reduce landslide damages, suitable land uses for high-risk regions were introduced. 
Dr Moslem Savari,
Volume 9, Issue 4 (3-2023)
Abstract

This regard, this research was conducted with the general purpose of designing a proposed sustainable food security model in drought conditions. The statistical population consisted of a number of food safety experts and agricultural experts. Therefore, for selecting the samples, targeted snowball sampling (chain referencing) was used. Sampling continued until data saturation, in the end, the number of participants in the study reached 31 . The research method was of qualitative type based on the data theory method of the foundation. The research data were collected using a deep interview and group discussion and analyzed with three open, axial and selective coding methods.
The results of the review of the requirements of sustainable food security in the form of data approach of the foundation consisted of 68 initial codes. Finally, in order to design a safety improvement model, the improvement of food security in drought conditions was subject to 8 requirements (managerial, technological, policy and supportive, infrastructure, cultural and empowerment requirements, Diversification, conservation, stabilization) and were inserted into the Strauss and Corbin model.
Access to adequate nutrition and nutritional health is one of the main pillars of development and is the basis for the future development of the country. According to studies on the role of nutrition in health, its efficiency and its relation with economic development has been confirmed. Also, access to adequate and desirable food is one of the earliest human rights, but various studies show that rural communities, which themselves are responsible for food security, face food insecurity, which is in a drought condition much more inferior to the situation. Because rural households are always at the forefront of drought vulnerability and, in the absence of risk mitigation systems, they quickly lose their resilience and go out of the agricultural sector. Therefore, measures must be taken to enable them to continue to operate in agriculture in drought conditions and to maintain the backbone of food security in the country.
Dr Kiomars Maleki, Dr Mostafa Taleshi, Dr Mehdi , Dr Mohammad Raoof Heidari Far,
Volume 9, Issue 4 (3-2023)
Abstract

The results of pathological evaluation of seismic zones in the terrestrial space indicate a significant concentration of residential spaces, especially cities. It has been economic and human. Therefore, one of the desirable models in identifying, analyzing and reducing damage in urban spaces is to use the structural and functional framework of passive defense. In many recent studies, the subject of reducing earthquake damage in the territory of the physical-spatial field has been to increase the building's resistance to earthquakes. While this study by recognizing environmental components, physical-spatial, social, economic and effective indicators in each component (45 indicators) to determine the pathology and risk areas of earthquakes in a comprehensive and desirable and based on that reduction strategies Redefines risk. In other words, by recognizing and analyzing the basic concept of threat network and risk ring with passive defense approach in earthquake assessment and vulnerability in Kermanshah metropolis to form the required database structure in appropriate software environment, appropriate policy and urban crisis management measures It is designed in proportion to the earthquake risk.
 
Dr. Seyed Amirhossein Garakani, Dr. Fatemeh Falahati,
Volume 10, Issue 1 (5-2023)
Abstract

Abstract
Many villages in the country are faced with a series of dangerous factors and elements due to their location and settlement method, the most important of which are natural disasters such as earthquakes, floods, landslides, subsidence, rockfalls, avalanches and snadstorms. A set of biological, environmental, social, economic, and physical factors and processes can also increase the level of risk and vulnerability of villages.. Therefore, it is necessary to take steps to reduce the effects and consequences of accidents by using scientific methods of crisis management based on risk management. Experience shows that the huge costs of reconstruction after disasters can be reduced with prevention, prediction and preparation and according to the sixth development plan, 30% of villages and 20% of the border villages must be secured. The current plan is carried out referring to the sixth development program (clause 8th of article 27th) with the aim of securing villages exposed to the risk of natural disasters in order to identify the villages with the characteristic of being exposed to natural hazards, prioritizing and presenting suggestions regarding how to reduce the risk at the villages are exposed the risk of natural disasters in cooperation with the Islamic Revolution Housing Foundation and the National Disater Management Organization. The priority natural disasters in this plan are: floods, subsidence and sinkholes, earthquakes, sandstorm and slope movements (including landslides, rockfalls, creeping and mudflows) in rural areas. At first, a list of villages at risk of natural disasters was prepared and reviewed through inquiries from provincial disaster management and housing foundations. This project was based on appropriate models and methods and with using of disaster risk zoning maps, screening and selecting the list of villages that are more at risk than others  and by combining risk assessment indicators and criteria with environmental, physical, demographic indicators and risk incident records, the villages with the first priority of risk are extracted separately for each province, and then the results of this stage were checked for accuracy in a collaborative process with related organizations at each province and the project entered the phase of field collection and providing implementation solutions. In this plan, out of 48,857 villages with more than 20 households across the country, about 9,000 villages are at risk with high risk categorized in 5 classes and 1,418 villages across 31 provinces with the first priority visited after verification, in order to local check and providing solutions for risk reduction. These villages were visited by experts from different fields and detailed risk assessment was done. In order to obtain the same and comprehensive information by the referring experts for the field visiting, field evaluation forms were designed with a multi-risk management approach.
 The results of the field visits and the proposed solutions were prepared separately for each village according to the environmental characteristics with the aim of reducing the risk and securing and presented to the Islamic Revolution Housing Foundation, the Disaster Management Organization and the Program and Budget Organization. Also, by designing and establishing a spatial information system for monitoring and evaluating rural settlements at risk, on the web-GIS platform (WEB GIS) at the same time as visiting the mentioned villages, the information collected according to the field collection forms was loaded into the system and according to the characteristics This system, such as designing in the Oracle environment, defining the access level for different stakeholders from national to local levels, the possibility of updating information, having different modules, reporting, spatial analysis of risks and producing thematic and combined maps, it is possible to use this system as a decision support system in all stages of crisis management, before, during and after the disaster, at the country level. Increasing and completing the required information in analyzes related to risk assessments, simultaneously with entering the information collected during field visits, as well as updating the information, will lead to an increase the empowerment of the society regarding the risk management of natural disasters and an increase Speed and accuracy in the analysis of the effects, management decisions and as a result reduce the costs of reconstruction and rehabilitation. It is worth mentioning that in order to create the ability to register information collected online, the mobile application system of rural settlements at risk was also designed and operated.

Key words: villages at risk of natural disasters, immunization,identification, prioritization, webGIS

 
Masoomeh Hashemi, Ezatallah Ghanavati, Ali Ahmadabadi, Oveis Torabi, Abdollah Mozafari,
Volume 10, Issue 2 (9-2023)
Abstract

Introduction
Earthquakes as one of the most important natural disasters on earth, have always caused irreparable damage to human settlements in a short period of time. Severe earthquakes have led to the idea of developing an infrastructure plan to reduce the risks and damages caused by it. The urban water supply system is the most important critical infrastructure that is usually damaged by natural disasters, particularly earthquakes and floods; hence, the function of the pipelines of the water system determines the degree of resilience and design of the infrastructure against multiple natural and man-made hazards. Considering the inability to prevent earthquakes and the inability of experts to accurately predict the time it is necessary to know the status of earthquake-structure and seismicity in Tehran to determine the amount of earthquake risk in order to make the necessary planning for structural reinforcement. Theoretical and field studies of tectonic seismicity in the Tehran area show that this city is located on an earthquake-prone area around the active and important faults of Masha, north of Tehran, Rey and Kahrizak. The occurrence of 20 relatively severe earthquakes illustrates this claim. Regarding the location of faults in Tehran city, it is necessary to assess the vulnerability of Tehran water facilities.
Research Methodology
The present study is a practical-analytic one. Considering the severity of earthquake damages, it is necessary to conduct earthquake hazard zonation studies in different urban areas and to determine important indicators of damage assessment such as maximum ground acceleration, maximum ground speed, maximum ground displacement. Three indices were considered for mapping earthquake seismic zones and their integration into the GIS presented a seismic hazard map. In the analysis of earthquake risk, it is necessary to evaluate two indicators of risk and vulnerability. To prepare the general hazard power mapping the weights obtained from the ANP model were applied to the existing raster layers via the Raster Calculator command. In this way, the standardized layers are multiplied separately by their respective weights and finally overlapped. In order to evaluate the vulnerability, a series of evaluation indices are introduced and ANP techniques are used. The relative value of each index is then calculated using the multivariate approach using the SAW technique. In order to calculate the earthquake risk based on R = H * V relation, the values ​​of these two components were multiplied. This calculation was performed in GIS software on the risk and vulnerability raster layer and the final result of this calculation was displayed on the map.
Description and interpretation of results
In this study, we tried to estimate the relative risk and risk of seismic hazard on the water supply lines in Tehran, using available data and scientific methods, and map the risk level. These lines should be prepared first by the amount of earthquake hazard risk and then by the risk map, to estimate the earthquake risk on the water supply network. first the earthquake risk then the status of the hazard lines should be calculated. The vulnerability of the water supply lines was calculated using the ANP model by multiplying the total potential hazard risk then substrate transfer network vulnerability risk map obtained transmission network. The highest risk was in the west and north of Tehran. The maps showed the risk potential and the vulnerability of the lines. These areas had high seismic potential and the density of the lines was higher in these areas. Water transmission facilities are at risk and earthquake hazards may be affected by damage to the transmission lines, drinking water to a large population will be difficult, as well as performing necessary zoning to prevent future expansion of the facility in place. These analyzes are a prelude to applying corrective techniques to pipelines to reduce their vulnerability and prevent newly created pipelines from locating in vulnerable areas. Since the results of this study are risk maps along the route of the water supply lines, so in order to prepare a risk control program, we can identify the high risk pipeline map and identify the pipeline vulnerability. And, depending on its location, provided an appropriate prevention and control plan for the conditions surrounding the pipeline environment.

Farzin Mahmoudi, Hamed Ghadermazi, Dr Leila Mafakheri,
Volume 10, Issue 3 (9-2023)
Abstract

Introduction
Every year, natural hazards occur with great severity and sometimes they destroy people completely Today, science has proven that natural hazards cannot be avoided. He simply considered a natural event and did not pay attention to their complex causes. Most of these causes are attributed to a combination of socio-economic factors. But it is possible to reduce their consequences by carefully planning against such accidents. When these hazards and disasters have a human aspect and affect humans, human activity and human environment, they are introduced as crisis.
According to the statistics of the Food and Agriculture Organization of FAO, 5-15% of agricultural products are lost annually due to damage caused by frost and frost, this number reaches more than 40% for some sensitive garden products, especially almonds, pistachios and apricots. . The amount of damage caused by this complication in Iran is more than 500 million dollars. Rural settlements suffer the most damage after a drought. Thus, there is a significant relationship between the risk management of agricultural activities with most environmental components and natural disasters such as drought, flood, frost, etc. up to the 99% confidence level. In order to reduce the effects of natural hazards in rural areas, there are various strategies that can be used to manage the risk of natural hazards , diversification of agricultural productio, contract farming and increasing farmers' awareness of natural hazards.
Gardens are one of the most important sources of livelihood in rural areas in Tuysarkan city in Hamadan province. Tuysarkan city has 7600 hectares of garden lands, which includes 14% of all gardens in Hamadan province. Due to its geographical location, weather conditions and geological structure, this city is exposed to various natural hazards. Among them, we can mention drought, land subsidence, frost and earthquake. Identifying natural hazards in Tuiserkan city and the effects of these hazards, as well as the actions of the local community to reduce existing hazards, are among the most important goals of this research.
Research Method
In the current research, we tried to use different methods so that the subject can be better investigated from different angles of research. This research is applied in terms of purpose and based on a descriptive-analytical research plan and is considered analytical-exploratory in nature. The research data has been collected through questionnaires and official statistics of institutions such as Iran Water Resources Management Company and the country's Meteorological Organization. Data analysis has been done descriptively and analytically using Excel and GIS software.

Research Results
The results of the research show that the most important hazards in the field of horticulture in the central part of Tuiserkan are frost in the first place and drought and hail in the second and third places. Also, other results show that the most important risk that affects the livelihood and income of the local community is the annual frost of gardens, which has caused the migration of some family members, and the amount of income is also affected by this risk. Regarding the solutions proposed by the local community to reduce the effects of natural hazards on walnut orchards, providing financial facilities, using information technology, and planting cold-resistant species were among the most important solutions proposed by the local community. Regarding the analysis of open questions and conducted interviews, Netaj shows that the most important measures to reduce the effects of natural hazards (freezing, drought and hail) on walnut orchards are: heating the orchard environment, using resistant and using drip irrigation. Also, the evaluation of the analysis of local knowledge and the experience of the past regarding measures to reduce the effects of frost on walnut orchards shows that the actions of the past are not very popular with the current generation and they are doing the same thing that the past did. With this difference, the ancients believed more in luck and destiny than in practical action. Finally, from the point of view of the local community, the best measure to reduce the effects of frost on the walnut orchards in the central part of Tuiserkan is genetic modification of the orchards and cultivation of resistant species.

 


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb