Search published articles


Showing 31 results for Vulnerability

Dr Manouchehr Farajzadeh, Miss Zahra Kazemnezhad, Dr Reza Borna,
Volume 5, Issue 4 (3-2019)
Abstract

Abstract

Climate change in one area has severe impacts on water resources and, consequently, agriculture in that area. Therefore, studying the extent of the vulnerability of regions to adopting policies to reduce or adapt to new conditions is of particular importance. One of the methods for assessing the extent of damage to agricultural activities is the calculation of the vulnerability index. In this study, with the aim of assessing agricultural vulnerability to climate change, The CVI index was calculated for 16 cities in Guilan province.

The results showed that the cities of Rasht (61.58) and Talesh (55.21) had the highest vulnerability and, accordingly, had the least adaptive power to climate change compared to other cities. And Langrood County (29.51) has the lowest number of vulnerabilities. The average value of the calculated index is 40.42 in Guilan province. In component R, the most vulnerable were Talesh (99.66) and lowest for Lahijan (2.27), In component M, the highest vulnerability was for Rudbar (97.21) and the lowest for Talesh (24.30), In component A, the most vulnerable were Rasht (89.99) and the lowest for Anzali (2.21), In component C, the most vulnerable were Shaft (66.66) and lowest for Anzali (1.89), In component U, the most vulnerable were Rasht (67.55) and the lowest for Astara (28.92), In component E, the highest vulnerability was for Talesh (76.49) and lowest for Lahijan (22.69), In component G, the most vulnerable was reported to Rasht (53.05) and the lowest vulnerability was reported for Sunnelk (23.24).


Abdol Hamid Nazari, Mostafa Taleshi, Mohammad Mirzaali,
Volume 6, Issue 1 (5-2019)
Abstract

Analysis and Measurement of Environmental Resilience of Villages in Gorganrud Watershed against Flood (Golestan province, Iran)
 
Abstract
Environmental hazards are inevitable phenomena that always place serious risks on the development of human societies, especially rural development. In the recent years, however, significant changes have been made in crisis management approaches, and the prevailing view has shifted from the "reduction of vulnerability" approach to "resilience improvement". Resilience is a new concept often used in the face of unknowns and uncertainties. Therefore, along with this change of attitude, it is important to examine and analyze natural hazards in terms of resilience. According to global statistics, floods, as one of the most devastating natural disasters, have caused the greatest losses and casualties to human settlements, which is true both in our country and in Golestan province. Investigations show that only in the statistical period of 1991-2014, 106 rainfall cases have led to the occurrence of floods in this province. These floods have damaged natural resources, the environment and the prevalence of environmental pollution; In addition, other natural and human factors have contributed to the heightened risk of flood damage. But if it was planned for the restoration of villages, then the damage could be reduced. Therefore, this research was conducted with the general purpose of determining the relationships between environmental factors and factors of rural communities of Gorganrud watershed on their resilience and numerical values. Finally, the residual spatial analysis of rural limited settlements was studied. Accordingly, the research questions are as follows: a) What is the relationship between environmental factors and factors in the villages of Gorganrud watershed in Golestan province with the resilience of the communities living in them in the face of flood? b) What are the resiliency values ​​of these communities in the environmental dimension and which zones? This is an applied research with descriptive-analytical method. A library of researcher-made questionnaires was used for collecting data using library resources. The statistical population consisted of 106 villages with 22,942 households. First, 31 villages were selected by cluster sampling. Then, using Cochran formula, 318 families were selected as sample size and selected by simple random sampling method. Also, for assessing the validity of the questionnaire, using Delphi collective wisdom methods, it was determined by using historical studies and opinions of experts in rural areas. The reliability of the questionnaires was also determined by using the Cronbach's alpha coefficient in the pre-test method. The value for the household questionnaire was ra1=0.841 and ra2=0.862, respectively. All steps for statistical analyzes have been performed by Excel and SPSS software. Additionally, the development of mapping, risk-taking, risk and resilience was also done with the help of ArcGIS software and the weight of each criterion was determined by the Super Decision tool; Then, using the weighted and linear overlapping methods, each of the sub-criteria of the main indexes was multiplied in its weights. The study area is divided into two distinct sections in terms of geological and geomorphological structure. The southern and eastern parts of it are the ripples of the eastern Alborz mountains, which are taller in the southern part and extend along the east-west direction. Also, the northern part of the studied basin is the Gorgan plain, in which the main branch of Gorganrud flows from east to west and all branches of the south and east are drained. Following the general slope of the main branch and its long-standing walls in the mid-east, it is usually not flooded; but as far as the west is concerned, its slope is very low and one of the flood plains is considered as the basin. The results of the research show that there is a significant relationship between the environmental factors of the studied basin villages and the resilience of the communities inhabited by them in the face of floods. Also, the average environmental resilience of the whole region was lower than the average (2.76 average), rural households in the sub-basins of TilAbad and ChehelChai with an average of 3.24 and 3 had relatively good environmental resilience, But most of the rural households in the sub-basins of Ghurechai and Lower of Gorganrud, Mohammad Abad-Zaringol, Madarsoo and Sarisoo, with an average of 2.89 to 1.85, had a poor environmental resilience. In addition, According to the flood risk resilience map, it can be said that of the total 31 sample villages studied, about 29 percent of sample villages have "medium upward" resilience in facing flood risks; conversely, most of these villages (71%) also have relatively low degree of resilience. Also, comparing the findings of this study with the results of most other researches, such as the studies of Olshansky and Kartes (1998) regarding the necessity of considering the environmental factors of settlements, observing the necessary environmental standards and the necessity of using proper land use management tools to reduce risk hazards and improve resilience, Center of Emergency Management Australia (2001) on the need to consider the state of the infrastructure, including the level of communications and accesses, biological conditions, including the status of pollution, as well as geographical characteristics, such as distances and proximity, climate, topography, as well as the general results of studies by Rafiean et al. (2012) in special selection of the most suitable model of resilience based on the combination of carter and socioeconomic model due to the simultaneous attention of this model to its geographical features and its comprehensiveness, as well as attention to the local communities' participation, Rezaei (2010), Shokri Firoozjah (2017) and Anabestani et al. (2017) Regarding the low value of the calculated population, the resiliency number of the society is consistent and consistent with the lack of attention to infrastructure issues, locations, etc., which is below the baseline (3). As a result, all of the aforementioned components of the resilience of inhabitants of sample societies have been affected by its environmental dimension, which is often due to insufficient attention and insufficient handling of them, which reduces resilience of rural residents to flood risks.
 
Keywords: Environmental hazards, Flood, Vulnerability, Resilience, Spatial analysis, Golestan Gorganrud basin.
 
Hossein Hosseinekhah, Asghar Zarrabi,
Volume 6, Issue 2 (9-2019)
Abstract

  
 
Role mode combination decision Waspas in Identify zoning Seismic
 (Case study: Population center, township Bahmaei in Kohgiluyeh and Boyerahmad province)
Hossein,Hosseinekhah[1], Asghar Zarrabi [2], Hamid Reza Varsi[3]
 
According placement Country of iran On the belt earthquake Alpine - Himalayas and Placement Partial of Iran Plateau Between two pages of Saudi Arabia (south) And Eurasia (north) And consequently the existence of active faults And the existence of seismic point And most importantly, record high intensity earthquakes, Etc in the township of Bahmei, in The present study will try, with Using the WASPA model, Identified and reviewed The Seismic zones. The main purpose of this study is Identify and zoning Earthquake risk in township Bahmaei and Secondary objectives research:
- Review and Assessment City Likak against earthquake risk.
- Identify and zoning district township Bahmaei against the danger of earthquakes.
- provide strategies to Reduce Damage and and physical and financial vulnerabilities of citizens.
According the nature of the subject and research objectives, Research Methodology Based on descriptive – analytical and functional. Collect dates provided in two part, weights and layers of information, based on Documentary method and using satellite images, Mapping organization, USGS organization. The statistical population of the research, the entire limits township Bahmaei based on dividing the national. Indicators used in the study, 10 key indicators, including Active faults, seismic areas, rivers, urban and rural settlements, the elevation, slope and more. To collect data Of the America Geological organization, National mapping organization, Satellite imagery and as well as to review and analyze data used is of ARC GIS software and Wapas model.
Results of the research show that from area 1245 square kilometers of Bahmei Township, there are 252.228 square kilometers, equivalent to 20 percent of the Township in an unsafe zone. 149 square kilometers equivalent to 12 percent is in the high risk zone and 167 square kilometers, equivalent to 13 percent in area with the high-risk. Also, of the area of 1245 square kilometers in the Township of Bahmei 386 square kilometers, equivalent to 31 percent is in the zone with low risk of the earthquake. The final weights achieved by each Propeller (weaknesses, strengths, opportunities and threats) in a separate and individual weighting with one another, have dominance of the dominating role of the matrix threat.
Results Research shows, 252 square kilometers, equivalent to 40 perecnt of Bahmaei township in zone safe, 386 square kilometers in the zone with low-risk, 289 square kilometers of the township In the zone with middle danger, 149 square kilometers of the township Equivalent with 12 percent of the township In zone with high risk and 167 square kilometers, equivalent to 13 percent is in the zone whit high-risk of ​​the earthquake
The city Likak as Bahmaei township center is in zone with low very risk Compared to the risk of earthquakes. Also The results showed The 160 sq. Km  of The central part of township Equivalent to 18 percent in zone with low-risk And 137 square kilometers, equivalent to %15 in zone whit high risk and 15 percent of central city The zone have very high hazard. Also the results showed of area 506 square kilometers Section Garmsar, 30 percent in the zone safe, %44 in the zone with low risk and 6 percent is in zone with the very high risk. The also results showed that 15 villages and villages (6%) are very vulnerable, 20 villages (8.43%) are in high danger zones and 112 villages are in zone with low risk.
Keywords: Waspas model, earthquake, Likak city, township Bahmae.
 

 

Dr Abolfazl Meshkini, Mr Ali Mohammad Mansourzadeh, Mr Zeynab Shahrokhy Far, ,
Volume 6, Issue 3 (9-2019)
Abstract

Identifying spatial patterns in vulnerability involves a comprehensive look at vulnerable points. And provides analytical power to the authorities. Therefore, it is necessary to recognize patterns of vulnerability so as to minimize the amount of damage to them in the event of a crisis. The city of Tehran, as the political and administrative center of the country, is faced with a variety of risks due to demographic burden and physical development. In this research, we tried to analyze the spatial distribution pattern of urban vulnerability to natural hazards in social and physical dimensions in Tehran's 7th region. The method of this descriptive-analytic study and the model used for trigonometric fuzzy logic. The results indicate that: According to the z score, the positive values are 1.96 up, which form the clusters of hot spots in the southeastern region of the arena; It is a sign of more vulnerability in these areas. Also, negative values of 1.96 and less, which are statistically significant and blue, have formed cold spots, And it is interpreted that low vulnerability zones are clustered in space and are mainly located in the northwest. Therefore, the lower the color range in the red and blue areas was less statistically significant  to the point where this positive net worth is 1.65 that in this situation, the spatial behavior of the vulnerability is considered to be non-significant in terms of hot or cold clusters with high and low values and spatial autocorrelation that the map is also displayed in yellow.
 
Mohammad Javanbakht, Hosein Hoseini,
Volume 6, Issue 3 (9-2019)
Abstract

Abstract
Introduction
Vulnerability is the limitation of a society to a risk and to dominate it for all physical, economic, social and political factors, which adversely affects the ability of the community to respond to those events. An earthquake is a natural phenomenon that will be irreversibly damaged. It has caused severe humanitarian earthquakes in the minds of a compilation of an infrastructure program to reduce the risks and damage caused by it. The country's geostationary characteristics have suggested earthquakes as one of the most destructive factors in the destruction of human life. Historical surveys show that vast areas of our country suffered financial and financial losses due to this natural disaster. According to the United Nations, in 2003, Iran ranked first in the number of earthquakes with a high intensity of 5.5 millimeters among the countries of the world.
Earthquake is a natural hazard that often causes too many losses and casualties. Iran is  country with a lot of earthquakes and  and Khorasan Razavi province which is studied in this study also experiences a large number of this natural hazard and 71% of the surface area of this province is in the range of medium, high and too high hazard of earthquake. One of the important sectors in which the effect of the earthquake damage very large is power transmission lines. Transmission of oil and gas products by pipelines is one of the most appropriate, inexpensive, fast and reliable methods. These lines are mostly buried in terms of safety and social considerations. In engineering collections, such structures are considered as vital arteries. Due to the fact that pipelines are spreading widely, therefore, due to the vulnerability of the transmission lines, it can damage the economy of the country.
 
Methodology
 In this study the vulnerability of the network lines of power transmission of Khorasan Razavi province against earthquake were studied.  The aim of the present study was applicable and method of study was descriptive-analytic. To prepare a map of the extent of the vulnerability, the fuzzy gamma method was used. Effective parameters for this research include proximity to a fault line, geological structure, land slope, population density of urban and rural areas, distance from the communication lines. One of the most important fuzzy operators for overlapping indices is the GAMMA operator. Gamma operator is the general mode of multiplication and addition operators.
 
 
Mousa Kamanroodi, Moohamad Solemani, Mohamad Ghasemi,
Volume 6, Issue 4 (2-2020)
Abstract

 

 
Ecologically-based Management Factors and criteria of River-Valleys in Tehran metropolis-Case Study: River-Valleys of Kan
 
Abstract:
Iran has seasonal rivers because of dry climate, low rainfall and different topography. These river- valleys have main role in forming, genesis, and sustainability of human settlements and provide different ecological services. The main services include beauty, store of green spaces, water supply, reduce and create temperature differences, local air flow and natural ventilation which are part of the functions. Tehran is roughly the same area as 730 square kilometers and its population is 8.7 million people. It is located in51° and 17´ to 51° and 33´ east longitude and 35° and 36´ to 35° and 44´ north latitude. The height of this city is 900 to 1800 meters. The north and north east of this city are located in peculiarity range of the southern part of the middle Alborz. This city includes 7 river valleys to the names Darabad, Golabdareh, Darband, Velenjak, Darakeh, Farahzad and Kan. The ecological role of these river valleys is reduced because of non- ecological axis developmental interventions by urban management and citizens. These interventions have changed river valleys to high risk space of skirt movements and flood. Kan is the most important river valley because of the breadth of the basin and permanent water discharge rate. The part of this river valley has changed to park (Javanmardan) by municipality. The purpose of this research is that to provide factors and criteria of ecosystem based management to organize this river valley.
ANP has been used in this research. To use this method for analyzing   factors and criteria of ecosystem based management to organize this river valley, firstly, these factors have been identified by library studies and scrolling. These factors include 4 criteria (natural: 15 sub criteria, social: 3, management:  6, economic: 2). the books, journals, reports, maps, aerial photos, satellite images and internet sites have been studied in library studies. In site studies, some information from library studies have been edited. After that, the findings of these two methods in form of questionnaire called factors and criteria of ecosystem based management to organize Kan River valley, was in charge academics and professionals. They were elected among pundits of urban management science, urban planning, geography and environment in Tehran. At first the number of them was 30 people came to agreement in two process about 4 factors and 18 criteria and determined importance and priority by Delphy method. Findings in Delphy method were analyzed through ANP and SUPER DECISIONS. In this process, firstly, a conceptual model and relation inter and intra clusters and nodes determined. These relations in this process are very important because paired comparison depends on this process. Assumption of equality of effects and similar relations in these factors is illogical because there are the grading of effects and relations in this research. Second, the factors have been compared to each other to create a super matrix based on paired comparison. Generally, in this process decision makers compare two different factors to each other and paired comparisons have grading of between1to9. In double- sided valuation, each factor is used to show initial inverse comparison. Inconsistent rate in paired comparison must be less than 0.1 like AHP. Third initial super matrix is created. It is the weights created from paired comparison and identified the importance of each factor in each cluster. Forth, the weighted super matrix was created. The weights of clusters was calculated in this process to identify the weight of final super matrix. Fifth, limited super matrix was created. The weighted super matrix reached for infinity band each row convergenced to a number and that number was the weight of factor. By this way limited super matrix was reached.
Based on ANP and table 1, management: 46%, natural – ecological: 26% and economic and social factors: 14% are important respectively in ecosystem based management to organize Kan River valley. Based on reached results, inconsistent rate is 0.003 and it shows that the weight is valid and review is not necessary. Among sub criteria in management factor, organizational pattern: 32%, method of management: 23% and policies: 21% are the most important respectively in ecosystem based management to organize Kan River valley. Among sub criteria in natural- ecological factor, flood, domain movements and building and texture of soil are the most important respectively 23%, 18% and 11.5% also in social factor, participation, security and public trust have the importance respectively equal to 49% 31% 19%. In economic factor, environmental assets and stakeholder’s economic participation have the same importance.
Based on this research, management factor (organizational pattern and the method of management) is the most important in ecosystem based management. But this approach, the management pattern and intervention to organize this river valley, need comprehensiveness and integrity of the subject (nature, society, management and economic), purpose (protection, resuscitation and use), factors (government, city council, municipality, private sector and people), duties (policy making, planning, designing and perform), method (collaborative), tools (knowledge, skill, rule, program, budget, machinery and materials) and management domain. Use of these factors and criteria need some infrastructure and reforms. The most important reform is reform of management structure, production of subject matter and topical program special to organize river valleys by ecological approach to release Kan of loading and contradictory grabbing.so this management can follow protection, resuscitation, sustainable use and continuity of ecological services.
 
Key words: ecosystem, ecosystem based management, analytic network process, river valley of Kan
 
 
 


Mohammadreza Jafari, Shamsullah Asgari,
Volume 8, Issue 2 (9-2021)
Abstract

One of the causes of environmental hazards is the change in the pattern of surface water flow in floodplains following the construction of flood Spreading networks. The purpose of this study is to prepare a zoning map of vulnerable areas of the flood Spreading station of Musian plain  in Ilam province after the implementation of the aquifer project in this plain. To prepare this map, five factors influencing the change in flow pattern including elevation, slope, flow direction, geological formations, and landuse change were examined. Then, in the GIS environment, each class of the mentioned factors was given a score of zero to 10 based on the range and the corresponding weight layers were created. Then, by combining the created weight layers, the vulnerability zoning map of the area was created based on 5 classes: very low, low, medium, high and very high. The results showed that the most important threat and danger factor is the concentration of waterways behind erosion-sensitive embankments. Also, the study area in terms of vulnerability includes three classes with medium risk, high and very high and covers 16, 62 and 22% of the area, respectively. Flood and upland Spreading areas, risk areas and lowland lands are the most vulnerable parts of the basin in terms of floods and sedimentary deposits.
Narges Kefayati, Khalil Ghorbani, Gholam Hossein Abdollahzade,
Volume 8, Issue 2 (9-2021)
Abstract

Regional leveling of drought vulnerability in Golestan province
Narges Kefayati*1-  Khalil Ghorbani2- Gholamhossein Abdollahzadeh 3-
 
1- PhD student of irrigation and drainage, Department of Water Engineering, College  Of Water   Engineering, Gorgan University of Agricultural Sciences and Natural Resources,Gorgan,Iran. (Corresponding Author)*
2- Associated Professor, Department of Water Engineering, College  Of Water   Engineering, Gorgan University of Agricultural Sciences and Natural Resourcesm, Gorgan, Iran.
3- Associated Professor, Department of Agricultural Promotion and Training, Faculty of Agricultural Management, Gorgan University of Agricultural Sciences and Natural Resources
 
Abstract
Drought is one of the natural phenomena that causes a lot of damage to human life and natural ecosystems. In general, drought is a lack of rainfall compared to normal or what is expected, when it is longer than a season or a period of time and is insufficient to meet the needs. Drought causes damage to the agricultural sector. The vulnerability of the agricultural sector in each region depends on three factors: the degree of drought exposure, the degree of sensitivity to drought and the capacity to adapt to drought. A review of previous studies indicates the diversity of indicators and methods used to assess vulnerability, which indicates the importance of the issue. Institutions responsible for agricultural management can only manage drought properly if they have the appropriate tools to measure the vulnerability of the agricultural sector to drought. Therefore, the first step in drought studies is to identify vulnerable areas and assess the vulnerability of areas. Vulnerability measurement in geographical dimensions and measurement of indicators by main vulnerability components have received less attention. Based on this, the present study has investigated drought vulnerability in Golestan by scientific method and by combining the three mentioned components and has compared the exposure situation, sensitivity level and level of drought adaptation capacity among the cities of Golestan province. Golestan province as one of the important agricultural hubs is highly dependent on the amount of annual rainfall. Due to fluctuations in rainfall and drought in some parts of the province, there have been 4 outbreaks and as a result, 7-12 and 10 days of drought have occurred, which has caused severe damage to the livelihood of farming families. Therefore, the aim of the present study was to compare drought vulnerability among cities in Golestan province by three components (exposure, sensitivity and adaptation). First, by reviewing the sources, the effective indicators on drought vulnerability are identified separately by the three components and judged by experts (faculty members of water engineering, agriculture and plant breeding, agricultural extension and education, and agricultural economics and experts of water engineers). 55 appropriate indicators in three main dimensions of vulnerability, namely: a) exposure (14 indicators), b) sensitivity (26 indicators) and c) compatibility (17 indicators) were developed and data related to the indicators were collected. The weights of the indices were extracted by Shannon entropy model and by the TOPSIS method the combined index was compiled separately into three vulnerability components. The final result of the combined index was combined with the GIS layers of the cities of Golestan province, and the level of vulnerability of the cities was determined separately for the desired components. The results showed that in terms of exposure to Bandar-e-Gaz, Bandar-e-Turkmen and Aq Qala are in the first to third ranks, respectively, and are exposed to drought. Azadshahr, Galikesh and Bandar-e-Turkmen counties are in the first to third ranks with the highest sensitivity to drought, respectively. The cities of Gomishan, Galikesh and Maravah Tappeh are the most adapted to drought, respectively. Finally, the results of calculating the total vulnerability index showed that the cities of Marwah Tappeh and Bandar-e-Turkmen are the most vulnerable areas to drought in Golestan province. The findings of this study showed that rainy areas can be more exposed to drought at the same time than other areas and there is no direct relationship between rainfall and drought exposure. This confirms the findings of other studies such as Kramker et al. And O'Brien et al. On the other hand, the findings of this study showed that there is no direct relationship between rainfall and vulnerability to drought and the most  rainy areas of a region at the same time can be the most vulnerable to drought. This is in line with the findings of Tanzler et al. And Salvati et al. On the relationship between rainfall and drought vulnerability. Due to the fact that the rainy areas of this province are more exposed to drought than other areas and farmers in these areas have shown a higher degree of sensitivity to drought and are more vulnerable to drought than other areas, it is recommended Measures should be taken to reduce the sensitivity and increase the adaptation capacity of farmers in these areas.
 
Keywords: Drought, Vulnerability, Exposure, Sensitivity, Compatibility, Regional Leveling
Changiz Seravani, Gholamhossein Abdollahzadeh, Mohammad Sharif Sharifzadeh, Khalil Ghorbani,
Volume 8, Issue 2 (9-2021)
Abstract

Zoning map Vulnerability of Flood Spreading areas
(Case study: Musian Flood spreading station in Ilam province)
 
 
 
Introduction
One of the flood plain hazards is a change in the pattern of surface flows due to natural factors or human activities. Changes in the stream pattern are the changes that occur due to the surface stream patterns in terms of the shape of the drains, drainage form and quantitative morphological indices of the basin. These changes ,by formation of flood, submersibility, erosion, longitudinal and transverse displacements of rivers and streams, environmental degradation, etc., have a great deal of risk and harm to residents of the land adjacent to the watersheds, including the demolition of residential buildings,  valuable agriculture lands, facilities, river structures, buildings and relation routes, etc. There are several watersheds in the Musian Plain Basin that regularly change the direction of surface streams and, while displacing large volumes of sediments of erosion-sensitive structures, degrades crops, rural dwellings, connection paths, facilities, Irrigation canals obstruction, water supply and a lot of financial and physical damage to the residents of the region. Therefore, in order to solve these problems, in 1997, the Dehloran flood spreading plan was carried out at a level of 5000 hectares from the Basin of Musian Plain. Although some of the changes in the dynamics of the region, such as stream pattern, flood control, supllying groundwater aquifers, etc., have been caused by the implementation of this plan, but the problem of the concentration of watersheds behind the embankments composed of sensitive formations ,and the release of these areas will have many financial and even physical losses. Therefore, with the implementation of this research, it is attempted to identify the domain and risks that threaten the lowlands and to identify the appropriate measures to prevent them from happening with the zoning and inspection of the vulnerable areas of the Musain Plain.
 
 
Methodology
This study was conducted in five stages to prepare a vulnerability map of the flood spreading area of ​​Mosian plain. First, the implementation phases of the flood distribution plan were separated. In the second stage, information layers of effective factors in changing the flow pattern and concentration of surface currents behind the flood spreading structures were prepared. These layers included elevation, slope, and direction classes, which were prepared based on the Digital Elevation Model (DEM) extracted from the 1: 50,000 topographic maps of the Armed Forces Geographical Organization, as well as the layers of geological formations and land use changes. The lands were prepared based on the maps of the Geological Survey of Iran and the processing of Landsat satellite images of eight OLI sensors in 2013, respectively, by the method of determining educational samples. In the third stage, each class of effective factors in changing the flow pattern (mentioned layers) was given a score based on the range of zero to 10. The basis of the scores of the classes of each factor was according to the number of classes and the average of the total classes of that factor. The fourth stage in the GIS environment was created by combining the weight layers created, the vulnerability layer of the study area (quantitative map of vulnerability areas) of the basin. Then, by analyzing the vulnerability layer (filtering), the pixels and small units were removed or merged into larger units. The last (fifth) step was to classify the quantitative layer and then extract the qualitative map of the vulnerability zoning according to the range of scores based on the five very low, low, medium, severe and very severe classes. A summary of the research steps is shown in the form of a diagram.
 
Results and Discussion
The results showed that the most important threat and danger factor is the concentration of waterways behind erosion-sensitive embankments. Also, the study area in terms of vulnerability includes three classes with medium risk, high and very high and covers 16, 62 and 22% of the area, respectively. Flood and upland Spreading areas, risk areas and lowland lands are the most vulnerable parts of the basin in terms of floods and sedimentary deposits.
 
Conclusion
Based on the results obtained by combining the information layersof the factors influencing the stream pattern change, the zoning map of vulnerable areas of the region was created in 5 classes. Except for very few and very small classes that are not present in the region, there are other cases at the basin level:
Medium class:Includes about 16% of the basin. The existing watersheds in this part are ranked 1th class, and some of them are entering the rivers of Dojraj and Chiqab in the eastern and western parts. The formations of this part are often Bakhtyari and limitedly Aghajari. The floors have a height of 100 to 400 meters and the gradient is from 0-2 percent to 20 percent.
Medium class: About 62% of the basin level. The watersheds that flow in this section are in 1to 5 class. The formations of this part are often alluvial and bakhtiari of lahbori sections. It has a height of less than 100 meters to 300 meters and a gradient of 2-0 percent to 20 percent.
very intense: it covers about 22% of the basin's surface. The existing watersheds are of of class 2 and 3. The formations of this part are often alluvial and bakhtiari of lahbori sections. They have height classes of 100 to 300 meters and the gradient is 5-2 percent and is limited to 5 to 10 percent in the slopes.
 
Keywords: Vulnerability, Aquifer, zoning, Satellite imagery, Environmental hazards, Musian
Mis Sedigheh Hashemi, Dr Ahmad Taghdisi, Dr Farhad Azizpur,
Volume 8, Issue 4 (3-2022)
Abstract


Introduction
Rural areas are more vulnerable to earthquake hazards than urban areas but the vulnerability of rural areas has always been neglected and few studies are worrying about it. Given the importance of villages and played the crucial role in socio-economic development and national security, providing adequate housing for villagers and addressing the problems in this area, in particular, providing them with security and relieving their vulnerability are of particular importance. One of the policies of Iran to reduce the risk of damage; improvement and rehabilitation of rural housing by the Housing Foundation of the Islamic Revolution Which has become one of the most important strategies in Iran due to the extent of natural disasters and their financial and financial losses and their expectations beyond ensuring security against accidents are also a continuation of rural life. neyriz Township is subjected to major and minor faults that the existence of these faults and the probability of earthquake causes vulnerability of the villages of the region. The housing estate of the Islamic Revolution of the Islamic Republic of Iran, from 2004 to 2013, has provided 5255 villagers of more than 20 households with facilities for the renovation and renovation of houses. The number of facilities was paid to 66 villages of more than 20 households in the city and supervision of the construction process was carried out. So what seems to be important is the activity that the Housing Foundation has had in its housing estate, its impact on the rural areas, and how much it has been able to achieve resistance and stability in rural housing; in addition to what degree, they have been able to influence their satisfaction. Therefore, the present study addresses the vulnerability of rural dwellings. In this regard, vulnerability is initially studied then the satisfaction of the villagers is examined finally, the share of each vulnerability level criterion is measured on the satisfaction of the villagers and appropriate solutions.

Data and Methodology
 The research methodology is based on its descriptive-analytical nature. Data gathering was conducted through surveying, library and field method. A small portion of the sample includes 230 households from 18 rural in the Neyriz Township. Reliability of the questionnaire was calculated using Cronbach Alpha (alpha = 0.79). In the qualitative section for the implementation of grounded theory, an interview was conducted with 40 villagers.

Results and Discussion
By studying the vulnerability of rural nursing homes in the Township of Neyriz, the villages of the studied villages are in an unfavorable position in terms of economic and social dimensions. Objective satisfaction indicators show that 51.8% of the villagers' homes were constructed responsive to concrete. 80.4% of the walls of the houses are made with bricks. The roofs of the houses are covered with 75% block and block. Of the studied rural households, 94.6% have personal housing and only 5.4% of the tenants. In the area of providing services in residential units, all the studied villages have water, electricity, telephone and 2.05 villagers are satisfied with the crop of agricultural products, parking lots, agricultural machinery and heating and cooling equipment for their housing.

Conclusion
 Findings showed that the vulnerability of rural housing is not only physical and environmental in nature, but also in social, economic and institutional-organizational dimensions. Meanwhile, vulnerability in physical and environmental dimensions in the study area is lower than other dimensions. Therefore, the existence of unstable housing in rural areas has led to a decline in their quality of life. This situation is strongly influenced by internal and external factors and forces. The lack of financial support, the traditional housing structure, poor design, poor monitoring and enforcement, social constraints, lack of building facilities, weaknesses in government support and regulatory policies, and government institutions are among the main problems of rural dwellings.
According to interviews with villagers, the following solutions can be made to reduce rural housing problems:
 - The costs of facilities and infrastructure are not at the expense of villagers. Therefore, the creation of continuous financial resources for councils and departments can be open.
 - Reducing the problems and obstacles facing applicants for loan use (through increasing credit, decreasing profits and raising the age), providing welfare services and reducing the total poverty of the rural community, granting loans or with benefits and installments Low for women-headed households; increasing the number of borrowers and creating rural people's interest and motivation for living in the countryside.
 - Preserving indigenous architecture, using indigenous materials, avoiding blind imitation of urban housing, etc., are unfortunately much neglected, and new rural houses have become homogeneous and adapted to the natural and physical environment of the countryside.
- In anti-poverty programs, the problems of villagers have been underestimated, which has led to their vulnerability. Therefore, investing in villages, creating complementary agricultural businesses, increasing production and, consequently, increasing rural incomes, can accelerate the growth and development of this sector.Energy saving is considered to be a problem with rural housing problems in terms of access to fossil fuels and mechanical equipment for heating and cooling buildings.

 Key words: Vulnerability, pathology, Earthquake, Neyriz Township

 
Mis Vajihe Gholizade, Dr Amir Saffari, Dr Ali Ahmadabadi, Dr Amir Karam,
Volume 8, Issue 4 (1-2021)
Abstract

Introduction: Assessing the vulnerability and pollution of the aquifer is necessary for the management, development and allocation of land use, quality monitoring, prevention and protection of groundwater pollution. The purpose of this research is to identify and analyze the qualitative vulnerability of the Mashhad plain aquifer in order to monitor and manage underground water resources and prevent its future pollution.
Methodology: Mashhad plain is located in the northeast of Iran between Binaloud and Hezarmasjed mountains and in the watershed of the Kasfroud river, and its area is 2527 square kilometers. In this research, the vulnerability of the Mashhad Plain aquifer was evaluated with DRASTIC and SI models, and ArcGIS was used to analyze the parameters and prepare the vulnerability map. DRASTIC model is one of the overlap and index methods. In this method, the seven measurable parameters for the hydrogeological system include the depth of the groundwater level(D), net recharge(R), aquifer environment(A), soil environment(S), topography(T), Impact of the unsaturated Zone(I) and hydraulic conductivity(C) is used. The ratings for the sub-layers of each criterion vary from one to ten depending on their impact on the vulnerability potential. In SI method, five parameters of groundwater depth(D), net recharge (R), aquifer lithology(A), topography(T) and landuse(LU) are used for aquifer vulnerability. After preparing the SI model layers and weighting each of the layer classes using the functions available in the ArcGIS, the sensitivity index is obtained from the weighted sum of the mentioned parameters.
Conclusion: Study area is divided into four zones with very low vulnerability(21.85%), low(32.09%), medium to low(31.05%) and medium to high vulnerability(14.59%). Also, based on the results of the SI model, the study area is divided into five areas with very low vulnerability(0.4%), low(24.63%), medium to low(23.98%), medium to high(18.71%) and high vulnerability(32.25%). In general, the vulnerability of the aquifer increases from the southeast to the northwest.For verification, statistical method and calculation of correlation coefficient between vulnerability maps and TDS layer was used in TerrSet software and the results showed that both DRASTIC and SI models have high accuracy in zoning the vulnerability of Mashhad plain aquifer, so that the correlation coefficient of vulnerability maps with index The quality of TDS in Drastic model is (0.996) and in SI model (0.995); Therefore, the results of the following research can be used in environmental assessments and analysis of various pollutions and can be used as a basis for management decisions.
Hossein Kianpour, Soolmaz Dashti, Roshana Behbash,
Volume 9, Issue 1 (5-2022)
Abstract

Vulnerability assessment of Miangaran wetland ecosystem

To support the proper management of ecosystems, vulnerability analysis of ecosystems is very important. Vulnerability analysis of ecosystems provides information about weaknesses and capacity of the studied ecosystem for recovery after damage. Considering the degradation status of Miangaran wetland, vulnerability evaluation of this wetland is one of the most important management methods in the region. For this purpose, in this study, after identifying and evaluating the threatening factors of Miangaran wetland, these factors were scored using evaluation matrices. Then, the interaction between these values ​​and threatening factors was examined and the vulnerability of wetland values ​​was obtained by multiplying the scores of all studied factors. Finally, management solutions were presented to deal with the most important threatening factors. According to the results, the most vulnerability is to the hydrological and ecological values ​​of the wetland. The highest effects of threats on the ecological value are also on the birds of Miangaran wetland. The results of the evaluation of Miangaran Wetland show that this wetland has a high potential for ecosystem functions of the wetland. These functions have been neglected in the planning and managing of wetlands at the local, regional and national levels. As a result, ecosystem-based management is suggested as the best management approach. The management in these areas should take action to prevent the vulnerability of Miangaran wetland. Also, the vulnerability evaluation method used in this study can provide a good understanding of the relationship between wetland functions and the resulting services for the management of the ecosystem of Miangaran Wetland.
Key words: Miangaran wetland, ecosystem management, vulnerability assessment


Dr. Jamal Mosaffaie, Dr. Amin Salehpour Jam, Dr. Mahmoudreza Tabatabaei,
Volume 9, Issue 3 (12-2022)
Abstract

Landslide risk assessment is essential for all landslide damage mitigation plans. The purpose of this research is to assess the risk of landslides in the Shahrood watershed of Qazvin province. First, the landslide susceptibility map was prepared using fuzzy operators. the landslide distribution map and also 11 effective factor layers including slope, slope direction, altitude, land use, lithology, distance to road, distance to stream, distance to fault, earthquake acceleration, precipitation, and maximum daily precipitation were first prepared. After determining the frequency ratio and fuzzy membership values for the map classes of different factors, the landslide susceptibility map was prepared using different gamma values. Then, after preparing the fuzzy map of vulnerability for different land use units, the amount of landslide risk was determined from the product of two maps of landslide susceptibility and vulnerability. In general, 104 landslides with a total area of 1401 hectares were recorded in this region, 70% of which were used for modeling (73 landslides with an area of 982 hectares) and the remaining 30% (31 landslides with an area of 418 hectares) were used to assess the accuracy. The evaluation results showed that the highest value of Qs index (equal to 1.34) belongs to the gamma equal to 0.93 and therefore this model has higher accuracy than other gamma values. The importance of features at risk ranges from 0.05 (no coverage) to 1 (residential and industrial areas). To deal with landslide damages, three general policies including suitable for development, prevention, and treatment were proposed, which should be applied based on the two factors of risk and vulnerability for different areas of landslide risk. Finally, in order to reduce landslide damages, suitable land uses for high-risk regions were introduced. 
Dr Kiomars Maleki, Dr Mostafa Taleshi, Dr Mehdi , Dr Mohammad Raoof Heidari Far,
Volume 9, Issue 4 (3-2023)
Abstract

The results of pathological evaluation of seismic zones in the terrestrial space indicate a significant concentration of residential spaces, especially cities. It has been economic and human. Therefore, one of the desirable models in identifying, analyzing and reducing damage in urban spaces is to use the structural and functional framework of passive defense. In many recent studies, the subject of reducing earthquake damage in the territory of the physical-spatial field has been to increase the building's resistance to earthquakes. While this study by recognizing environmental components, physical-spatial, social, economic and effective indicators in each component (45 indicators) to determine the pathology and risk areas of earthquakes in a comprehensive and desirable and based on that reduction strategies Redefines risk. In other words, by recognizing and analyzing the basic concept of threat network and risk ring with passive defense approach in earthquake assessment and vulnerability in Kermanshah metropolis to form the required database structure in appropriate software environment, appropriate policy and urban crisis management measures It is designed in proportion to the earthquake risk.
 
Fateme Emadoddin, Dr Amir Safari,
Volume 9, Issue 4 (3-2023)
Abstract

 Vulnerability assessment of karst aquifer using COP and PI model (Case study: Bisotun and Paraw aquifers)


 Introduction
Drinking karst water resources, especially in arid and semi-arid regions, like Iran, are considered as valuable and strategic water resources. A sharp decrease in rainfall reduces the quality and quantity of karst water sources (Christensen et al., 2007). On the other hand, urban and industrial development, which is accompanied by the increase in population growth, increases the risk of underground water pollution caused by the dumping of chemicals, waste and change of use (McDonald et al., 2011). Protection of karst aquifer is one of the most important measures in the management of karst water resources due to its vulnerability and high sensitivity to pollution (Khoshakhlagh et al., 2014, Afrasiabian, 2007). Therefore, With the advancement of geographic information system technology, rapid progress was made in the ability to identify and model groundwater pollution, as well as the vulnerability of water sources from these pollutants (Babiker et al., 2004, Rahman, 2008). The pollution potential decreases from the center to the periphery (Saffari et al., 2021).

 Materials and methods
In this study to evaluate the vulnerability of Bisotun and Paraw aquifer which is karstically developed and has, crack and fissure and various landforms; COP and PI vulnerability models have been used to identify areas at risk of contamination. The COP model includes three main factors including concentration of flow (C), overlaying layers (O) and precipitation (P). Factor C, which indicates surface features (Sf), slope and vegetation (Sv). It was obtained between 0.8-0.0 in 5 classes. From the overlap of the subfactores soil, layer index and lithology, the O factor map was prepared in three classes, including class 2 with low protection value, 2-4 with medium protection value and 4-8 with high protection value.  The P factor, which is the temporal distribution of precipitation along with the intensity and duration of precipitation, can show the ability of precipitation to transfer pollutants from the surface to the underground water. P factor was 0.8 in 2 layers in the northwest of the study area and 0.8-0.9 with low protection value. Furthermore, top Soil, precipitation, net recharge, fracture density, bedrock and lithology maps were used for the protective cover factor (P) in the PI model. The zoning of the P factor showed 2 classes such as very low and low most of the study area is in the low class. The infiltration condition factor (I) using the characteristics of the soil, the slope layer, and the land use in four layers showed high, aamedium, low, very low, which due to the high slope of the area of ​​the high layer has the highest dispersion, which causes the reduction of the protective cover.

 Results and discussion
Consequently, COP vulnerability map in 5 classes with very high vulnerability (0-0.5) equal to 38774.74 hectares (41.4%) and very low vulnerability (4-9-4) with 57.86 hectares (0.06%) of the largest and smallest area respectively. Also, the PI vulnerability map of the combination of these two factors showed very high vulnerability with the largest area of ​​about 68,783 hectares and 72.9% scattered throughout the study area and the high vulnerability class with an area of ​​about 25,526 hectares and 27%.

 Conclusion
The results of this research showed that the simulation performance of each COP and PI vulnerability model is closely related to the amount of pollution in the environment. It seems that the COP vulnerability model can better and more accurately showed the level of vulnerability in the karst aquifers of Bisotun and Paraw.



Keywords: karst aquifer, Bisotun and Paraw, COP model, PI model, vulnerability.


 

Masoomeh Hashemi, Ezatallah Ghanavati, Ali Ahmadabadi, Oveis Torabi, Abdollah Mozafari,
Volume 10, Issue 2 (9-2023)
Abstract

Introduction
Earthquakes as one of the most important natural disasters on earth, have always caused irreparable damage to human settlements in a short period of time. Severe earthquakes have led to the idea of developing an infrastructure plan to reduce the risks and damages caused by it. The urban water supply system is the most important critical infrastructure that is usually damaged by natural disasters, particularly earthquakes and floods; hence, the function of the pipelines of the water system determines the degree of resilience and design of the infrastructure against multiple natural and man-made hazards. Considering the inability to prevent earthquakes and the inability of experts to accurately predict the time it is necessary to know the status of earthquake-structure and seismicity in Tehran to determine the amount of earthquake risk in order to make the necessary planning for structural reinforcement. Theoretical and field studies of tectonic seismicity in the Tehran area show that this city is located on an earthquake-prone area around the active and important faults of Masha, north of Tehran, Rey and Kahrizak. The occurrence of 20 relatively severe earthquakes illustrates this claim. Regarding the location of faults in Tehran city, it is necessary to assess the vulnerability of Tehran water facilities.
Research Methodology
The present study is a practical-analytic one. Considering the severity of earthquake damages, it is necessary to conduct earthquake hazard zonation studies in different urban areas and to determine important indicators of damage assessment such as maximum ground acceleration, maximum ground speed, maximum ground displacement. Three indices were considered for mapping earthquake seismic zones and their integration into the GIS presented a seismic hazard map. In the analysis of earthquake risk, it is necessary to evaluate two indicators of risk and vulnerability. To prepare the general hazard power mapping the weights obtained from the ANP model were applied to the existing raster layers via the Raster Calculator command. In this way, the standardized layers are multiplied separately by their respective weights and finally overlapped. In order to evaluate the vulnerability, a series of evaluation indices are introduced and ANP techniques are used. The relative value of each index is then calculated using the multivariate approach using the SAW technique. In order to calculate the earthquake risk based on R = H * V relation, the values ​​of these two components were multiplied. This calculation was performed in GIS software on the risk and vulnerability raster layer and the final result of this calculation was displayed on the map.
Description and interpretation of results
In this study, we tried to estimate the relative risk and risk of seismic hazard on the water supply lines in Tehran, using available data and scientific methods, and map the risk level. These lines should be prepared first by the amount of earthquake hazard risk and then by the risk map, to estimate the earthquake risk on the water supply network. first the earthquake risk then the status of the hazard lines should be calculated. The vulnerability of the water supply lines was calculated using the ANP model by multiplying the total potential hazard risk then substrate transfer network vulnerability risk map obtained transmission network. The highest risk was in the west and north of Tehran. The maps showed the risk potential and the vulnerability of the lines. These areas had high seismic potential and the density of the lines was higher in these areas. Water transmission facilities are at risk and earthquake hazards may be affected by damage to the transmission lines, drinking water to a large population will be difficult, as well as performing necessary zoning to prevent future expansion of the facility in place. These analyzes are a prelude to applying corrective techniques to pipelines to reduce their vulnerability and prevent newly created pipelines from locating in vulnerable areas. Since the results of this study are risk maps along the route of the water supply lines, so in order to prepare a risk control program, we can identify the high risk pipeline map and identify the pipeline vulnerability. And, depending on its location, provided an appropriate prevention and control plan for the conditions surrounding the pipeline environment.

Javad Sadidi, Hassan Ahmadi, . Ramin Rezae Shahabi, Amir Pishva, Omid Kheyri, Godratallah Nooraie,
Volume 10, Issue 3 (9-2023)
Abstract

The pervasiveness of the concept of vulnerability in various dimensions has led to the emergence of the theory of vulnerability in the spatial sciences. According to the theory of vulnerability, in any given space, there is a coefficient of vulnerability, while the levels and amplitude of safety are not evenly distributed on the surface of that space. Residential use is one of the most important and main uses in the urban land use system, and safety management and attention to its defense requirements are very important due to the high population density in large cities. The present study is in the field of assessing the vulnerability of residential uses against external threats with a passive urban defense approach in District 10 of Tehran, which was conducted in the form of spatial studies and by implementing an analytical model in three steps. First, the principles and requirements of passive defense were identified and classified into three groups of structural, demographic and spatial parameters, and using the questionnaire and expert survey tools, the priorities of passive defense principles in relation to residential spaces were determined. Then, based on the network analysis process, the weight of each criterion was determined and the weight of the ANP model was applied to the spatial layers of the region in ArcGIS software. The results of the model showed that in terms of structural indicators, more than 78% of residential units in the region are in the group of structures with high vulnerability and in terms of demographic indicators, in 88% of residential units in case of external threats, the level of vulnerability is high. In terms of spatial indicators, more than 92% of residential spaces are adjacent to several incompatible uses and have the highest vulnerability. In general, the results of overlapping layers showed that more than 86% of residential units in the area are located in vulnerable zones and the vulnerability of residential units in these zones is very high.

Fateme Emadoddin, Dr Ali Ahmadabadi, Seyed Morovat Eftekhari, Masumeh Asadi Gandomani,
Volume 10, Issue 3 (9-2023)
Abstract

Introduction: Land subsidence is one of the environmental hazards that threatens most countries today, including the majority of Iran's plains (Ranjabr and Jafari, 2010). Damages caused by subsidence can be direct or indirect. Infrastructural effects are direct and indirect effects of subsidence, but economic, social and environmental effects are indirect effects of subsidence (Bucx, et al., 2015). The environmental effects of subsidence are related to other effects of subsidence, including the infrastructural, economic and social effects of subsidence. The southwest plain of Tehran is considered one of the most important plains of Iran due to its large areas of residential, agricultural and industrial lands from various aspects, especially economic, political and social. The subsidence of the Tehran plain was first noticed by the measurements of the country's mapping organization in the 1370s. Since 2004, the responsibility of investigating this phenomenon in the plains of Tehran was entrusted to the Organization of Geology and Mineral Explorations of the country. Although several researches have been done in the field of subsidence factors, amount and zoning. In the field of estimation of subsidence and changes in water level, spatial correlation of subsidence with changes in water level and estimation of vulnerability due to subsidence according to the density of population, settlements and facilities in the southwestern plain of Tehran has not been done.
Methodology: In the current research, we will analyze and estimate the spatial regression of the subsidence phenomenon by InSAR technique with water level changes from 2005 to 2017, as well as the environmental effects of subsidence in the southwest plain of Tehran by using Quadratic analysis method (O’Sullivan and Unwin, 2010). The criteria map of the current research is overlapped using the ANP method (Ahmedabadi and Ghasemi, 2015) weighting and finally with the SAW method (Emaduddin et al., 2014) in the Arc GIS 10.8 software, and the vulnerability map due to land subsidence in the study area is prepared.
Results: The average subsidence in 12 years is about 9.9 cm per year. Average subsidence has occurred in four main zones. Maximum and minimum subsidence have been observed in B (near the Sabashahr) and D (in east of plain) zones respectively. The results of the interpolation of the depth of the underground water in the study area indicate that the general trend of increasing the depth from the south (10 meter) to the north (more than 90 meter) of the plain. The results of spatial correlation showed that there is a significant direct relationship between the spatial layer of the average subsidence rate of Tehran Plain and the spatial data of the underground water level, and the R value is equal to 0.61. The distribution map of the underground water depth of the study area in the form of Quadrat analysis shows that in the main part of the plain, the depth of underground water is at an average level. The general trend of changes in the level of underground water is decreasing from northwest to southeast and is in 5 levels. The distribution of the networks shows that the rivers have three linear trends from north and northwest to south; their dispersion is mostly in the center of the study area. The flood rate is higher in the central plain networks. In study area, there are important arterial roads such as Tehran-Qom highway, Tehran-Saveh highway and Tehran Azadegan highway. The southern and northeastern areas of the study area are urban settlements such as Islamshahr, the 18th and 19th districts of Tehran Municipality and other residential areas such as Sabashahr. The major part of the region has fertile soil and the occurrence of subsidence can have negative effects on the fertility and texture of the soil in the study area. The results of vulnerability analysis due to subsidence show that there are 5 vulnerability classes in the study area including very low, low, medium, high and very high.
Conclusions: All in all most of the study areas (central, northern and western networks) are in medium, high and very high vulnerability. About 14,600 hectares of the study area are in medium vulnerability. Which is continuous from the west to the east of the study area. Most of the urban infrastructures are moderately vulnerable to subsidence. About 17,000 hectares of the southwestern plain of Tehran are very vulnerable. That more than half of the area of ​​this area is covered by settlements and urban infrastructures. Therefore, the phenomenon of subsidence causes irreparable damage to the settlements and infrastructures in the southwest plain.

 

Mehran Maghsoudi, Elham Heidary,
Volume 10, Issue 4 (12-2023)
Abstract

Geological diversity has created a new branch of the tourism industry called geotourism , where geological and geomorphological features are explored . The main focus of geotourism on geological elements includes two items, form and process . There is a set of geological forms and processes in places , which are called geosites . This has given rise to a new branch of tourism called geotourism , which examines places that have the ability to attract tourists and management aspects that can help the local community for economic development. In the first stage , it is very important to know the abilities and characteristics of the studied area . Scientific, tourism and educational evaluation of geosites in the region is the basis for optimal exploitation and sustainable development. In recent years, more attention has been paid to the Garmsar region, which has led to the development of geotourism. The impact of tourists and mines that have been created by humans, the Tastkan caves that have changed the strength of the salt caves, and also the role of natural factors, have all led to the environment's reaction
Dr. Habibollah Fasihi, Dr. Taher Parizadi,
Volume 10, Issue 4 (12-2023)
Abstract

Urban planners consider historical fabric as the beating heart of cities. However, cities and specifically their historical fabrics are constantly under influence of natural and human-induced hazards.  This study aimed to assess the vulnerability of Ferdowsi neighborhood as an example of Tehran’s historical fabric. The data was obtained from geographical information system (GIS) files and a survey, as well as historical contexts and documents were analyzed as part of this study. Ten municipal experts were also asked to provide a score of 1 to 5 for each of the 29 indicators compared to standard levels. The mean value of these scores was then used to evaluate the role of each parameter in the vulnerability of this neighborhood.  Study findings indicate a high potential for the occurrence of natural and human-induced hazards in the study area. The abundance of unstable multistory buildings and derelict electricity and water networks, storage of flammables in warehouses, and lack of sewage network for half of the buildings were the most significant factors contributing to the vulnerability of this ancient fabric. Problems such as insecurity, drug abuse in public spaces, overcrowding and daytime congestion have also led to rapid relocation of neighborhood residents, who subsequently were replaced by commercial activities and warehouses. In conclusion, numerous problems are contributing to the vulnerability of historical fabric of this neighborhood and such problems are highly likely to be applied to other urban historical fabrics in Tehran
 

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb