Search published articles


Showing 217 results for Si

Behrooz Mohseni, Kaka Shahedi, Seyyed Mohsen Manavi, Narjes Mahmoodi-Vanolya,
Volume 9, Issue 2 (9-2022)
Abstract

The sedimentation, sediment transport, erosion and sedimentation problems are important discussions in the planning of wisdom and macro watershed strategies and management of watershed basins. The sediment collection in lower areas causes regional damage, the destruction of the pathway of the waterways, the flow of water pollution, the accumulation of streams of sediment and reducing the capacity of reservoirs of dams and environmental bottlenecks. The sediment resulting from the watersheds erosion, in addition to soil loss and its degradation results in a decrease in water quality and endangers the useful life of dams due to the accumulation of deposits in their reservoirs. In this research, Spatiotemporal variations of suspended sediment load were investigated at three hydrometric stations of Sefidchah, Gelevard and Ablou located on the main channel of the Nakaroud Basin using sediment rating curves and linear regression model through applying MINITAB and EXCEL softwares. In order to determine the best model, determination coefficient (R2) was used. The results of this study showed that in seasonal variations of spring season in all three stations with a determination coefficient of at least 82% and a maximum of 89% as the most suitable model for estimating suspended sediment load among the models studied. In spatial studies, the Ablou station located at the outlet of the watershed has the highest determination coefficient (0.934) between sediment discharge and streamflow discharge.
 
Dr. Homayoun Motiee, Mrs. Saba Ahrari,
Volume 9, Issue 2 (9-2022)
Abstract

Glaciers are one of the most important water resources in the world, which are heavily affected by global warming and climate change. This paper investigates the effects of global warming on the changes in the snow cover level of the Takht Suleiman region located in Mazandaran province during the warm months of the year through the past three decades using remote sensing. For this purpose, the images from June to August of the Landsat-5 and 8 satellites in the period of 1990 to 2021, as well as the data of the air temperature product of the ERA5 sensor were processed on the Google Earth Engine. In this research, NDSI index (Normalized Snow Cover Surface Index) was used to detect snow covered surfaces and the Mann-Kendall test was used to evaluate the trend of the data. The results of the overall accuracy and Kappa coefficient in the Google Earth Engine system show an overall accuracy of 94% and a Kappa coefficient of 89% in 2021, which shows the high compatibility of this method with real data.
The results obtained during the investigated period show an increase of about 1.5 degrees in temperature during the last three decades at a significant level of 95%. The snow and ice cover of the Takht Suleiman region in June month decreased from 127 square kilometers( in 1990) with a decrease of 82% to 22 square kilometers( in 2021). The trend of changes in the level of snow cover in June was analyzed with the Mann-Kendall test, which shows a decreasing trend at a significance level between 80 and 90%. In general, these results indicate an increase in temperature and a decrease in the level of this glacier during the statistical period studied, and the continuation of the gradual depletion of the glaciers of this region in the future is a serious threat to the downstream water source and the surrounding environment.

 
Mr Loghman Khodakarami, Dr Saeid Pourmanafi, Dr Alireza Soffianian, Dr Ali Lotfi,
Volume 9, Issue 2 (9-2022)
Abstract

Space-based quantification of anthropogenic CO2 emissions in an urban area using “bottom-up” method
(Case study: Isfahan Metropolitan)
Abstract
Increasing consumption of fossil fuels in urban areas emits enormous amounts of greenhouse gases into the atmosphere. Therefore, the study of carbon dioxide (CO2) emissions from urban areas has become an important research topic. The main purpose of this study is space-based quantification of carbon dioxide emissions driving from fossil fuel combustion in different source sectors in Isfahan. To achieve it, in the present study, the "bottom-up" method was used to quantify the carbon dioxide gas emission based on its production sources sectors. In this method, the amount of emission was measured distinctly for different sources of energy consumption and consequently the spatial distribution map the CO2 emission was generated. The results of this study revealed that the total amount of carbon dioxide emissions driving from fossil fuels is 13855525 tons per year in Isfahan. Separately stationary sectors of power plant, housing and commercial and mobile sources including road and railroad and existing agricultural machinery were responsible for emitting 50.61, 21.78, 17.18, 4.92, 4.37, and 1.14% of CO2, respectively. In conclusion, through applying the bottom-up method and CO2 emission distribution mapping based on different source sectors, mitigation measures can be applied more efficiently in urban planning.
Key words: Greenhouse gas (GHG), Fossil fuel combustion, Mobile and stationary source of energy consumption, climate change, Mitigation strategies
Ms Paniz Ashrafi, Dr Behnod Barmayehvar, Dr Ehsan-Allah Eshtehardian,
Volume 9, Issue 2 (9-2022)
Abstract

Considering the increase in housing construction in developing societies such as Iran, it is necessary to address the issue of reducing construction accidents, especially in metropolises, and related safety measures with the help of emerging technologies. Therefore, the main goal of the current research is to investigate the use of Internet of Things to monitor and control high-risk points in order to reduce accidents and improve safety in the spaces of construction site in Tehran.
In this applied research, first, a library study was conducted regarding the concept and application of Internet of Things in the safety field of the construction industry. Then, high risk points and activities were identified. After that, in the field study phase, this list was corrected and completed by 52 competent building safety consultants. After that, ten semi-structured interviews were conducted with safety experts and knowledgebale in the field of IoT. Therefore, effective solutions based on Internet of Things were extracted to control and monitor high risk points. Also, in this regard, the current situation and required platforms were explained from the aspects of technology, organization, cost and outsourcing.
In fact, the main findings of this research, in the form of a conceptual model, show that paying attention to the stages of choosing the incident, choosing the desired point and activity, determining the appropriate solution for the determined situation (monitoring the amount of movement and health of the structure, monitoring the proximity of flammable materials with other materials, monitoring the proximity of people and machines and preventing the continuation of movement and determining the limits around the openings) and checking the required platforms (infrastructure, support, accreditation, culture, budget, employers and law), respectively, in order to design and implement IoT-based safety systems in the spaces of construction sites is vital.

 
Hassan Lashkari, Fahimeh Mohammadi,
Volume 9, Issue 3 (12-2022)
Abstract



Synoptic analysis of the changes trend of the share of systems due to the Sudan low
In the cold period of the Persian Gulf coast during 1976-2017


 Introduction
In the Ethiopian-Sudan range forms the low pressure system without front in the cold and transition seasons that is affecting the climate of the adjacent regions by crossing the Red sea. Based on the evidence in the context of Iran, studying Sudan low was first begun by Olfat in 1968. Olfat refers to low pressures which are formed in northeastern Africa and the Red Sea and then pass Saudi Arabia and the Persian Gulf, enter Iran, and finally, cause rainfall. The most comprehensive research specifically examining Sudan low, was the work carried out by the Lashkari in 1996. While he studying the floods that occurred in southwestern of Iran, he was identified Sudan low by the most important cause of such flooding and he explained how they are formed, and how these low-pressure systems were deployed on the southwest of Iran.

 Materials and methods
The study period with long-term variations was considered from 9.5 to 11 years based on solar cycles. Precipitation data for 13 synoptic stations are considered above 5 mm in south and southwestern Iran. With three criteria were determined for the days of rainfall caused by each type of atmospheric system. The visual analysis of high and low altitude cores and geopotential height at 1000 hPa pressure level (El-Fandy, 1950a; Lashkari, 1996; 2002) were considered based on the aim of the study. Accordingly, the approximate locations of activity centers, as well as the range of the formation and displacement of the Sudan system were initially identified based on the location of the formation of low and high-pressure cores. Then, the rainy days due to the Sudan system in January were separated from the precipitation of the other atmospheric system.

 Results and discussion
According to the selected criteria in the forty-year statistical period, 507 precipitation systems were identified with different continuities that led to precipitation in the northern coast of the Persian Gulf. The pattern of independent Sudan low rainfall was responsible for 77% of the precipitation in the Persian Gulf. Decade frequency share of Sudan low was lower in the first decade (16%) compared to the next three decades. This system of rainfall was more activated during the second and third decades compared to the first decade. However, rainfall changes were not evident in the mid-decade. Independent Sudan low precipitation provide 25% and 27% of the cold season precipitation of the Persian Gulf during the second and third decades respectively. In accordance with the 24th solar cycle, at the end of the study period, the Sudan low was more effective on the Gulf coast than ever before. During this decade, 125 cases of Sudan low rainfall was recorded for the Persian Gulf. Thus, the frequency of Sudan low during the fourth decade was about 31%, which was higher than in the rest of the decade. Overall, the Sudan low rainfall was repeated 151 times for 2 days rainfall, during the statistical period studied. This Precipitation has increased over the last decades compared to other periods.

 Conclusion
The severe variability of rainfall along the timing and location of the permanent Persian Gulf coasts can have a significant impact on the economic and agricultural behavior of the Gulf population in the three provinces of Ahwaz, Bushehr and Hormozgan.The purpose of this study was to evaluate the precipitation changes due to Sudan low in the Persian Gulf coastal region during the cold period. The results of this study showed that the role of integration patterns in influencing the precipitation of the Persian Gulf coast has decreased with the strengthening and further activation of the Sudan low system during the last two decades. That way, about 77percent of the region's rainfall is provided by independent Sudan low. At the end of the course (in accordance with 24th solar cycle activity) the Sudan low system was more active than before. Although the Sudan low activity was different at each station during the period studied, but in the historical passage incremental and decade's positive behavior of Sudan low was common to all stations. Evaluation of changes in rainfall duration shows that the pattern of precipitation with 2days duration is more frequent than the patterns of one to several days.

Keywords: Sudan low- Solar cycle- Persian Gulf.





 
Nasrin Nikandish,
Volume 9, Issue 3 (12-2022)
Abstract


Mr. Hamidreza Parastesh, Dr. Khosro Ashrafi, Dr. Mohammad Ali Zahed,
Volume 9, Issue 3 (12-2022)
Abstract



Energy Information Administration (EIA). 2022.  Natural gas explained. https://www.eia.gov/energyexplained/natural-gas/use-of-natural-gas.php#:~:text=The%20United%20States%20used%20about,of%20U.S.%20total%20energy%20consumption
Energy Information Administration (EIA). 2022. Natural Gas Consumption by End Use. https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_nus_a.html
IEA. 2020. Gas 2020. https://www.iea.org/reports/gas-2020/2021-2025-rebound-and-beyond
Cinq-Mars, TJ.; T. Kropotova, M. Morgunova, A. Tallipova, and S. Yunusov. 2020. Leak Detection and Repair in the Russian Federation and the United States: Possibilities for Convergence. Stanford US-Russia Forum Journal.
Weller, ZD.; DK. Yang, and JC. von Fischer. 2019. An open source algorithm to detect natural gas leaks from mobile methane survey data. PLoS One,14(2):e0212287.
SHAHEDI, AS.; MJ. ASSARIAN, O. KALATPOUR, E. ZAREI, and I. MOHAMMADFAM. 2016. Evaluation of consequence modeling of fire on methane storage tanks in a gas refinery.
Costello, KW. 2014. Lost and unaccounted-for gas: Challenges for public utility regulators. Util Policy,29:17–24.
Arpino, F.; M. Dell’Isola, G. Ficco, and P. Vigo. 2014. Unaccounted for gas in natural gas transmission networks: Prediction model and analysis of the solutions. Journal of Natural Gas Science and Engineering,17:58–70.
Weller, Z.D.; SP. Hamburg, and JC. von Fischer. 2020. A national estimate of methane leakage from pipeline mains in natural gas local distribution systems. Environmental science & technology, 54(14):8958-8967.
Meland, E.; NF. Thornhill, E. Lunde, and M. Rasmussen. 2012. Quantification of valve leakage rates. AIChE journal58(4):1181-1193.
Wagner, H. 2004. Innovative techniques to deal with leaking valves. Technical Papers of ISA454:105-117.
Kaewwaewnoi, W.; A. Prateepasen, and P. Kaewtrakulpong. 2010. Investigation of the relationship between internal fluid leakage through a valve and the acoustic emission generated from the leakage. Measurement43(2):274-282.
Zhu, SB.; ZL. Li, SM. Zhang, and HF. Zhang. 2019. Deep belief network-based internal valve leakage rate prediction approach. Measurement133:182-192.
Panahi, S.; A. Karimi, and R. Pourbabaki. 2020. Consequence modeling and analysis of explosion and fire hazards caused by methane emissions in a refinery in cold and hot seasons. Journal of Health in the Field.
Plant, G.; EA. Kort, C. Floerchinger, A. Gvakharia, I. Vimont, and C. Sweeney. 2019. Large fugitive methane emissions from urban centers along the US East Coast. Geophysical research letters, 46(14):8500–8507.
Akhondian, M.; S. MirHasanNia. 2017. Biodiversity of microalgae, a potential capacity in biological and environmental technologies. Journal of Human Environment and Health Promotion,41:39–70.
Defratyka, SM.; JD. Paris, C. Yver-Kwok, JM. Fernandez, P. Korben, and P. Bousquet. 2021. Mapping urban methane sources in Paris, France. Environmental Science & Technology,55(13):8583-8591.
Mohammadi Ashnani, M.; T. Miremadi, A. Danekar, M. Makhdoom Farkhonde, and V. Majed. 2020. The Policies of Learning Economy to Achieve Sustainable Development. Journal of Environmental Science and Technology,22(2):253–274.
Gioli, B.; P. Toscano, E. Lugato, A. Matese, F. Miglietta, A. Zaldei, and FP. Vaccari. 2012. Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environmental Pollution,164:125-131.
Moriizumi, J.; K. Nagamine, T. Iida, and Y. Ikebe. 1998. Carbon isotopic analysis of atmospheric methane in urban and suburban areas: fossil and non-fossil methane from local sources. Atmospheric Environment32(17):2947-2955.
Zazzeri, G.; D. Lowry, RE. Fisher, JL. France, M. Lanoisellé, CSB. Grimmond, and EG. Nisbet. 2017. Evaluating methane inventories by isotopic analysis in the London region. Scientific reports7(1):1-13.
Wever, JL.; GJL. Van Orizande, WB. Rademaker, and GJ. Van Schagen. 2002. Applicability of the Hi-Flow sampler in reducing methane emissions from a technical/economical point of view. Feasibility study; Toepasbaarheid Hi-Flow sampler bij reductie methaanemissie op technisch/economische gronden. Haalbaarheidsstudie.
Bacharach INC. 2015. Hi flowR sampler for natural gas leak rate measurement.
Connolly, JI.; RA. Robinson, and TD. Gardiner. 2019. Assessment of the Bacharach Hi Flow® Sampler characteristics and potential failure modes when measuring methane emissions. Measurement, 145:226–233.
Khorasan Razavi Gas Company. 2019. Determining the statistical population and sample size of field measurements to estimate normal emission inventory Greenhouse gases in the gas network of Khorasan Razavi province.



























Estimation of methane gas leakage from Mashhad urban landfills and evaluation of economic and environmental effects
Abstract
This study, which was conducted in 8 urban gas areas of Mashhad; At first, descriptive statistics of the state of Mashhad urban gas regulators and different leakage modes were presented; In order to analyze the collected data and investigate the causes of leakage, the relationship between 5 variables and the amount of leakage from gas regulators was tested with the Statistical Package for the Social Sciences (SPSS) V.26 software; These 5 variables are: regulator equipment/connections, regulator operation age, regulator service type (domestic, industrial and commercial), urban area and different seasons of the year.
The results of the analysis showed that there was a significant difference between the type of equipment/connections and leakage. (P-Value = 0.0001). Also, a significant difference was observed among other variables of the research (the operation age of the regulator, the type of regulator service (domestic, industrial and commercial), the urban area and different seasons of the year) with the leakage rate (P-Value=0.0001); The pressure drop due to the greater demand of gas consumption in the winter season has reduced the amount of leakage compared to other seasons; The influence of the age of distribution network equipment/connections due to wear and tear and longer life will aggravate the amount of methane gas leakage; Also, the amount of leakage in commercial places had a significant difference with other types of uses; Being in an urban area has also increased the amount of methane gas leakage compared to other areas; The type and quality of equipment and connections as the main and influential factor in methane gas leakage should be considered by managers and officials in this field of work.
Keyword: Methane, Riser, Urban area, Environmental effects, Economy Effects, Gas, Emission


 
Mr Sayyed Mahmoud Hosseini Seddigh, Mr Masoud Jalali, Mr Hossein Asakereh,
Volume 9, Issue 3 (12-2022)
Abstract

The expansion of the pole toward the tropical belt is thought to be due to climate change caused by human activities, in particular the increase in greenhouse gases and land use change. The variability of the tropical belt width to higher latitudes indicates the expansion of the subtropical arid region, which indicates an increase in the frequency of drought in each hemisphere. In order to change the width of the tropical belt of the Northern Hemisphere in the middle offerings, indices of  precipitation minus evaporation, wind vector orbital component, stream function, tropopause surface temperature, OLR, and SLP have been used. Findings showed that the expansion of tropical belt latitude with stream function to higher latitudes with 1° to 3° latitude and the effect of Hadley circulation subsidence has increased the amplitude of evaporation minus precipitation has shown that the fraction of precipitation minus evaporation 1° to 3° latitude geographically increased. The subtropical jet has increased the movement of the upper branches of troposphere from the Hadley circulation by 2° to 4° latitude, which can have a negative effect on transient humidification systems as well as on the amount of precipitation. The extension of the pole towards the tropical belt, which is a consequence of climate change and hazards, will lead to the displacement of the pole towards the tropical side of the river, thus providing dry tropical belts to the pole; Also, the long-wave radiation of the earth's output has increased by 1° to 2° latitude and has caused an increase in heat in the upper troposphere, which has increased the dryness and slightly reduced the clouds in the upper troposphere and also caused the tropical belt to expand to higher latitudes. Has been. In general, the research findings showed that most tropical belt indicators have been increasing since 1979.
Dr Alireza Mohammadi, Dr Lotfollah Maleki, Mr Ghasem Fathi,
Volume 9, Issue 4 (3-2023)
Abstract

Spatial analysis models provide a single model and solution to solve various problems in the field of study, one of the applications of these models is in measuring urban risks. In recent years, with the occurrence of various crises in urban communities, the urban management system and development plans are seeking access to models of prevention and dealing with these crises. The purpose of this research is to review the literature about the use of spatial analysis models in measuring urban risks in a meta-analytical way, so this research is conducted by reviewing and summarizing foreign articles (research statistical community) in relation to this issue in order to identify, analyze and Analyzing and summarizing the solutions of the investigated backgrounds.
The statistical population is discussed with four standard criteria of spatial analysis, including description and identification of hazard dispersion, hazard dispersion argument, interpolation, and spatial planning. The statistical population is research, studies, and articles indexed in Sciencdirect, Willey, Web of Science databases in the period 2021-2000. Out of 99 articles, 78 articles have been selected and analyzed by screening method according to research objectives and indicators. The analysis was performed in two ways: descriptive statistics in SPSS software and inferential statistics in CMA2 comprehensive meta-analysis software.
The results indicate that in the component of hazard dispersion descriptions, most of the researches in their used models have not been able to provide a tangible and appropriate general description, but in the three components of hazard dispersion, interpolation, and spatial planning of urban hazards based on score The average effect size, the applied models used in the research, have been able to provide a proper justification and tangible results with the applied model of spatial analysis in their studies.

 
Dr Ebrahim Yousefi Mobarhan, Dr Mansor Ghodrati, Dr Mohamad Khosroshahi,
Volume 9, Issue 4 (3-2023)
Abstract

In the study of the trend of dust storm index, the results showed that the study period of 2003-2007 in Semnan province has an increasing trend and has shown significant changes in the 95% confidence range, but the lack of significant changes in the last decade shows the effects of various events. In cross-cutting decisions in the field of dust in the region. The zoning of the DSI index changes in different regions of the province in a 15-year statistical period indicates that from the west to the east of the province due to the increase in the frequency of stormy days with moderate dust (MDS), dust has increased. The correlation between drought and DSI index in Semnan province showed that although DSI index increased during the period under analysis with increasing drought intensity and its correlation with drought during the 15-year period was not significant, but the pattern of DSI index is consistent with It is the pattern of the drought process. According to the results, it can be acknowledged that the dust situation has always been affected by climate, but the relationship between drought and the DSI index has always fluctuated with respect to droughts and wetlands. However, different climatic parameters are different and their impact is different. In addition to human activities, the main role of wind in the amount of dust or the existence of another source of dust should be considered.
 
Dr Kiomars Maleki, Dr Mostafa Taleshi, Dr Mehdi , Dr Mohammad Raoof Heidari Far,
Volume 9, Issue 4 (3-2023)
Abstract

The results of pathological evaluation of seismic zones in the terrestrial space indicate a significant concentration of residential spaces, especially cities. It has been economic and human. Therefore, one of the desirable models in identifying, analyzing and reducing damage in urban spaces is to use the structural and functional framework of passive defense. In many recent studies, the subject of reducing earthquake damage in the territory of the physical-spatial field has been to increase the building's resistance to earthquakes. While this study by recognizing environmental components, physical-spatial, social, economic and effective indicators in each component (45 indicators) to determine the pathology and risk areas of earthquakes in a comprehensive and desirable and based on that reduction strategies Redefines risk. In other words, by recognizing and analyzing the basic concept of threat network and risk ring with passive defense approach in earthquake assessment and vulnerability in Kermanshah metropolis to form the required database structure in appropriate software environment, appropriate policy and urban crisis management measures It is designed in proportion to the earthquake risk.
 
Dr. Aliakbar Shamsipour, Dr. Hadis Sadeghi, Prof. Hosein Mohammadi, Dr. Mostafa Karimi,
Volume 9, Issue 4 (3-2023)
Abstract

Climate is one of the determining factors in the quantity and quality of agricultural products, therefore, in this study, the relationship between precipitation and temperature (as explanatory variables) with rice yield in 40 cities and wheat yield in 30 cities (as dependent variables) was investigated in the Caspian coastal area during 2000-2017. Spatial statistical analyses were performed with using the Moran autocorrelation test and geographically weighted regression. Based on the results (Moran index, z = 0.4342121 for rice and z = 0.719571 for wheat, respectively), it was revealed that the spatial distribution pattern of rice and wheat yield had a cluster pattern. The results of the geographic weighted regression analysis showed that the temperature increase was more desirable than the precipitation increase so the increasing temperature could lead to yield increases. In the eastern parts of the study area, the positive effect of precipitation on rice yield (with 0.020 to 0.540 regression coefficients) was remarkable; the results also revealed a negative relationship between temperature and rice yield in the southeast and eastern parts and a positive effect on rice yield in other areas. Also, the effect of precipitation on wheat yield was negative in the west and central parts of the study area (with -0.481 to -0.871 regression coefficients). According to the results, a negative relationship was dominant between temperature and wheat yield in the east and southeastern parts of the study area and a positive relationship was detected in other areas. Finally, the results indicated that in the western and central parts, due to heavy rainfall and a low number of sunny hours, an increase in temperature is more favourable than an increase in rainfall. In the eastern and southeastern regions of the region, where the amount of precipitation is lower than the threshold required for rice and wheat, an increase in precipitation is more desirable.
Dr Mohammad Mahdi Hosseinzadeh, Dr Ali Reza Salehipor Milani, Mis Fateme Rezaian Zarandini,
Volume 10, Issue 1 (5-2023)
Abstract

Introduction
A flood is a natural disaster caused by heavy rainfall, which causes casualties and damage to infrastructure and crops. Trend of floods in the world increasing due to climate change, changing rainfall patterns, rising sea levels in the future, and in addition, population growth and urban development and human settlements near river have caused floods to become a threat to humans. One of the most important and necessary tasks in catchments is to prepare flood risk maps and analyze them. In recent decades, researchers have been using remote sensing techniques and geographic information systems to obtain flood risk maps in an area. Due to the numerous floods that have occurred in the Neka river catchment, it is necessary to conduct a study entitled zoning of flood sensitivity in Neka river catchment for more effective management in this area.

Materials and methods
Study area: Neka river catchment area with an area of ​​1922 Km2 is part of Mazandaran province in terms of political divisions. This basin is between 53º 17´ 54 º44´ east and 36 º 28 ´to 36 º 42´ of north latitude. The highest point of the basin is 3500 m (Shahkuh peak) and the height of the lowest point of the basin in the Ablo station is about 50 m and at the connection to the Caspian Sea is -27 meters. The seven sub-basins of this basin are Laksha, Golord, Burma, Metkazin, Kiasar, Alarez and Sorkh Griyeh. Geologically, the basin is mostly of calcareous and marl formations. In the south and southwest of Neka River, the rock material is mostly clay and calcareous marl, which makes this basin has a high erosion potential
To study the flood zoning of the area using a multi-criteria decision model, 1: 25000 maps of the surveying organization and a digital elevation model with a resolution of 12.5 meters (Alos Palsar) were extracted. In order to study the flood risk in Neka river, 4 criteria of height, distance from the river, land use and slope have been used. In the present study, modeling and preparation of flood risk zoning map in 4 stage including descending valuation, normalization of each class, normalized index weight and integration of criteria has been done by the following linear weighting method. Performing linear weighting operations depends on the weighted average of a number of selected parameters in the opinion of the expert. According to the weight assigned to each criterion based on the expert opinion, each of the criteria was multiplied by the assigned weight and at the end the criteria were added together and the final zoning map was obtained.

Results and Discussion
In this study, using a multi-criteria decision-making system model, a flood risk zoning map in the Neka river catchment was prepared. According to the weight assigned to each criterion based on expert opinion, the final risk probability map has a value between 0.02 to 0.2, which is ultimately divided into 5 classes in terms of flood risk. Value range 0.02 to 0.06 component of very low risk zone, range 0.08 to 0.11 component of low-risk zone, range 0.11 to 0.13 component of medium-risk zone, range 0.13 to 0.16 component of high-risk zone, and finally domain 0.16 to 0.20 components of the area with very high risk potential have been obtained. According to the final divisions in the flood risk zoning map of the catchment area, a safe area means areas where the probability of flooding is very low and close to zero, and in contrast, the area with a high and very high risk potential for flooding has the probability of high-risk floods. According to the final flood risk zoning map, about 982 Km2 (51%) has high and very high vulnerability, as well as about 510 Km2 (26.69%) has medium vulnerability in Neka catchment area.

Conclusion
The results obtained from the model indicates that the highest risk of flooding points are located in the western parts of the Neka catchment area and the end of the catchment area that reach the city of Neka. According to the research findings, the most important factors in increasing the risk of floods were the slope in this area and the distance from the drainage network. According to the results of the model, a large area of ​​the basin is a component of high risk zone, that means the Neka river watershed has a high potential for floods. Evidence and documented reports show that the Neka river Basin has experienced several floods in the last two decades. The major part of the occurrence of floods is due to the natural conditions of the basin, thus it is necessary to reduce flood damage by changing the locations of various land uses based on flood vulnerability maps. Using multi-criteria decision making method can be used to prepare flood risk zoning maps in basins that do not have hydrometric data; It is also a more cost-effective method in terms of time. One of the important issues in the final result of this model is due to the weight of the layers, which should be used by experts, who are familiar with the region and this method and adapt to field evidence.

Keyworlds: Flood, Multi-criteria decision making system(MCDA), Hazard zoning, Nekarod, Natural hazard.



 
Dr Javad Mozaffari, Mohamad Pooranvari, Dr Seyed Asadolah Mohseni Movahed,
Volume 10, Issue 1 (5-2023)
Abstract

Introduction
Soil erosion is the process by which soil particles and components are separated from their main bed by an erosive agent and transported to another location. In the soil erosion process, there are three distinct phases: 1- separation of soil particles, 2- particle transfer and 3- sedimentation of transported materials. In water erosion, the erosive factors are rainfall and runoff. Erosion and the consequent reduction of soil fertility are among the issues that make it difficult to achieve sustainable agricultural development and environmental protection. It is important to study the quantity and quality of erosion in the country's watersheds and to prevent the loss of one of the richest and most valuable natural resources of the country, namely soil, and to fight against this process. (Tabatabai, 1392). Therefore, to calculate the rate of erosion and sediment production in most watersheds of the country that lack statistics or lack of statistics, the use of experimental models to estimate erosion and sediment is required. According to what has been said, the present study was conducted based on the following two main objectives: 1- Estimation of erosion and sediment in Adineh Masjed watershed, which is one of the main sub-basins of Kamal Saleh Dam, using EPM and MPSIAC experimental models and 2- Investigation and comparing two models and choosing a better model for similar regions and climates.

Materials and methods
Adineh Masjid watershed is one of the sub-basins of Dez and the main sub-basin of Kamal Saleh dam. Temperature, isotherm, geology of the area, slope and available information were performed and finally, by interpreting the photos, types, land units, current land use were determined and updated with field control. For a more detailed study, first, according to the condition of the main waterway and changes in the appearance of the land and vegetation and new land material, the ridges separating the basin were divided into 15 sub-basins. In EPM model, four watershed erosion coefficient (Ψ), land use coefficient (Xa), rock and soil susceptibility coefficient to erosion (Y) and average basin slope (I) and in MPSIAC model, nine geological, soil, climate factor (Climate), runoff, slope, vegetation, land use, current erosion status and waterway erosion are examined. Each model was scored according to data analysis and digital images and then placed in the relevant formula. Finally, the amount of erosion and sediment in the basin was estimated and the sedimentation class of the area was determined.
Results
To determine the score of nine factors affecting soil erosion using MPSIAC method and the four factors of EPM model, each of the factors affecting erosion in units were analyzed. Finally, by weighting, the points of each factor in the models were calculated. The degree of R deposition from the sum of the nine factors of MPSIAC model and the degree of Z erosion was obtained by combining the four EPM factors. Then, the amount of sediment production and erosion in the field of relationships related to each model was calculated and compared and analyzed. In MPSIAC model, the amount of specific sediment (M3 / Km2 / year) was calculated as 112.713 and the specific erosion (M3 / Km2 / year) was calculated as 375.71. In the EPM model, the amount of specific sediment (M3 / Km2 / year) was calculated as 213.95 and Specific erosion (M3 / Km2 / year) was calculated to be 395.86.

Discussion and conclusion
The results of sediment and erosion estimation were estimated separately for each sub-area using two models and it was found that the two models are somewhat relatively compatible with each other. The results of MPSIAC model, have more accuracy and reliability, and therefore the results of the MPSIAC model can be used to estimate the amount of sediment entering the Kamal Saleh Dam. However, due to the small distance between the results of the two models, if we do not have access to MPSIAC model data in similar areas, the EPM model can be used with less data and more easily accessible. It was also observed that in the upper and entrance parts of the basin, where the slope is higher and the vegetation is less, the amount of sediment production and erosion is higher in these areas. So that the upper parts of the basin are in the medium erosion class and the rest of the basin is in the low erosion class.

Keywords: watershed, erosion and sediment, modeling


 
Arastoo Yari Hesar, Bahram Imani, Samaneh Sarani,
Volume 10, Issue 1 (5-2023)
Abstract

1. Introduction
The geographical study of the corona virus shows that this virus is like the global cholera disease, whose first homeland was Wuhan (the vast capital of central China's Hubei province) and then it was transferred to other countries. The spread of this virus in a very short period of time has become one of the biggest international challenges after World War II, and examining the economic consequences of the spread of this disease is also very important and necessary for policy making.The Covid-19 virus has been able to change the lifestyle of people in different societies, and people finally changed their activities accordingly (Werf et al, 2021); (Staton et al, 2021) The visual and to some extent auditory consumption pattern has had a special place in the lifestyle of Iranians during the Covid-19 virus (Trabels, 2020). During the days of quarantine, social networks became very popular. People could not visit their family or friends and many of them kept in touch with each other using virtual networks. In fact, the spread of the corona virus has led to the further development of online social life. . Individual isolation and quarantine and the increase in consumption and tendency towards virtual and video entertainment media have intensified in this era (Staton & et al, 2021).

2. Methodology
Leading research is applied in terms of purpose and based on descriptive-analytical nature. The method of collecting data to answer the research questions was library and questionnaire. The tool used in the survey method was a questionnaire. Face validity has been used to determine the reliability and validity of the questionnaire, and the face validity of the research tool was confirmed using the opinions of professors (fifteen people) in the field of rural development and experts in the field of health (ten people).

3. Results
The statistical description of the characteristics of the sample in terms of gender showed that there were 302 men (83.4%) and 60 (16.6%) of them were women. Also, 56.9% of participants were married. The number of 146 people from the studied sample was between 41 and 50 years old, and the highest frequency was 40.3%.


4. Discussion
To evaluate the effects of covid-19 on the lifestyle of the border villagers of Zabol city compared to before and after the disease outbreak, first one-sample T-test was used. The above test was performed at the 95% confidence level. In this regard, according to the 6-spectrum of the items (not at all = 0, very much = 5), the measurement and analysis of the indicators was evaluated at an average level (average 3). The results showed that lifestyles in media-oriented, community-oriented and livelihood indicators were below average before the outbreak of the Covid-19 disease, and after the outbreak of the disease, they were above average. In the health-oriented index of style status. Before the outbreak of the disease, life was below average and after that it was in an almost average state. In the leisure-oriented index, the life style before the outbreak of the disease was in an almost average state and after that it was in an above average state, and in the culture index The axis of lifestyle status changed after the outbreak of the Covid-19 disease and was in a higher than average status. To investigate the existence of differences between lifestyle indicators among the border villagers of Zabol city, before and after the outbreak of the Covid-19 disease, the paired or dependent t-test was used at the 95% confidence or significance level.

5. Conclusion
Limiting communication and face-to-face interactions of people with each other, closing down gatherings, improving the level of personal and public hygiene such as frequent hand washing, using masks and sanitary gloves, maintaining distance from others and observing other protocols. health services, reforming the society's consumption pattern, improving social capital and increasing the level of empathy and social harmony and paying more attention to the lower classes of society, changing the type of entertainment, closing religious centers and holy places, modern social life in the context of virtual space and improving the level media literacy, reduction of air and ground travel traffic, internet shopping and sales, more convergence of family members, The growth of the culture of reading books, watching more series and movies, moving sports from group type to individual type, reducing fashion trends, holding distance education courses and many other such things, many changes. has created in the lifestyle of people. Of course, these changes are relative and are not the same in all societies and for all social strata, and not everyone has been equally affected by these changes.

Keywords: Corona, lifestyle, community-oriented, subsistence





Dr Ghasem Azizi, Dr Samaneh Negah, Dr Nima Farid Mojtahedi, Mr Yossef Shojaie,
Volume 10, Issue 1 (5-2023)
Abstract

Abstract
The continuous and expanding process of global warming, especially in the Asian region, has provided the conditions for increasing drought and the spread of desertification. Many deserts had ecologically balanced soil conservation conditions that until recently have become new sources of dust generation now. Numerous examples have occurred in Iran due to its special geographical location among some of the most important deserts in the world. Temperature anomaly (about 8º C) last winter in the Caspian Sea basin has created new dust sources for the southern coastal of the Caspian Sea. On 30-31 May 1400, dust emission was recorded in meteorological stations of Gilan province in terms of area and concentration. The implementation of HYSPLIT chemical backward models shows the emission of dust from the northwestern region of the Caspian Sea to the southern coastal of the Caspian Sea (Guilan province) for the first time with such intensity. The source and origin of this dust was identified in the Rhine desert in the northwest of the Caspian Sea. Continuous and unprecedented warming in the region and accompanied by strong north-south currents provided the conditions for the emission of this dust. Due to the origin of the emitted dust as well as the geographical and topographical conditions of the Caspian Sea basin, the level of this dust was assessed from the ground level to an altitude of less than 1500 meters. Analysis of synoptic conditions using NCEP / NCAR analysis data with 1 degree horizontal resolution indicates the establishment of high pressure air mass with a center of 1018 hPa on the northwestern parts of the Caspian Sea and the penetration of high pressure to the southern coastal areas of the Caspian Sea. Due to the appropriate pressure gradient and increasing wind speed, dust-producing springs are formed on the desert areas of the Rhine and with the dominance of the northern currents (south-south), the dust mass is sent to Gilan province.

Keywords: Global Warming, Dust emission, Russian Rhine Desert, Gilan.



 
Mrs Halimeh Shahzaei, Dr Mohsen Hamidianpour, Dr Mahsa Farzaneh,
Volume 10, Issue 2 (9-2023)
Abstract

Spatial analysis of Iran's climate change from the point of view of sensible heat flux and latent heat flux by Bowen method

Halimeh Shahzaei; Ms.c student of Climatology, Departement of Physical Geography, University of Sistan and Baluchistan, Zahedan, Iran.
Mohsen Hamidianpour[1]; Associate Professor, Departement of Physical Geography, University of Sistan and Baluchistan, Zahedan, Iran.
 Mahsa Farzaneh; Ph.D Graduated. Climatology.



Abstract
Sensible heat flux and latent heat flux are among the variables that are closely related to temperature and humidity and show heat transfer on a surface. So, their changes can be considered related to changes in temperature and humidity. In this regard, the current research aims to analyze and reveal the climatic changes of Iran by examining the course of changes in sensible heat flux and latent heat and the ratio between the two. For this purpose, NCEP/NCAR reanalysis data including sensible and latent heat flux during the period 1948-2020 was used in Iran. Bowen coefficient was calculated from the ratio of these two heat fluxes. Interpolation methods were used for their spatio-temporal analysis. In addition, by using the non-parametric methods of Mann-Kendall and Shibsen, spatial and temporal changes were also investigated.  The first part of the results showed that, spatially, the Bowen coefficient is a function of latitude and roughness. And in terms of time, the lowest value corresponds to the month of January and the highest value corresponds to the month of July. The results of the second part show that the Bowen coefficient has a positive trend over time. Its upward trend indicates an increase in the dryness coefficient of the country. So that this situation can be seen in the positive trend and increase in temperature.
Keywords: climate change, Bowen coefficient, global warming, spatio-temporal analysis.
 
[1]. Autehr corespound:Email: mhamidianpour@gep.usb.ac.ir
 

Leila Ahadi, Hossein Asakereh, Younes Khosravi,
Volume 10, Issue 2 (9-2023)
Abstract

Simulation of Zanjan temperature trends based on climate scenarios and artificial neural network method

Abstract
Severe climate changes (and global warming) in recent years have led to changes in weather patterns and the emergence of climate anomalies in most parts of the world. The process of climate change, especially temperature changes, is one of the most important challenges in the field of earth sciences and environmental sciences. Any change in the temperature characteristics, as one of the important climatic elements of any region, causes a change in the climatic structure of that region. The summary of the investigated experimental models on climate change shows that if the concentration of greenhouse gases increases in the same way, the average temperature of the earth will increase dangerously in the near future. More than 70% of the world's CO2 emissions are attributed to cities. It is expected that with the continuation of the urbanization process, the amount of greenhouse gases will increase. According to the fifth report of the International Panel on Climate Change, the average global temperature has increased by 0.85 degrees Celsius during 1880-2012. Therefore, knowing the temperature changes and trends in environmental planning based on the climate knowledge of each point and region seems essential. For this reason, the present study simulates the daily temperature (minimum, maximum and average) of Zanjan until the year 2100.

Research Methods
The method of conducting the research is descriptive-analytical and the method of collecting data is library (documents). To check the temperature of Zanjan city, the minimum, maximum and average daily temperature data from Hamdeed station of Zanjan city during the period of 1961-2021 were used. The data of general atmospheric circulation model was used to simulate climate variables (minimum, average and maximum temperature) using artificial neural network and climate scenarios in future periods. The output variables in this study are minimum, maximum and average daily temperature. Therefore, three neural network models were selected. For model simulation, model inputs (independent variables) need to be selected from among 26 atmospheric variables. Therefore, two methods of progressive and step-by-step elimination were chosen to determine the inputs of the model. In these methods, climate variables that have the highest correlation with minimum, maximum and average daily temperature were selected. By using RCP2.6, RCP4.5 and RCP8.5 scenarios, variables were simulated until the year 2100. Markov chain model was used to check the possibility of occurrence of extreme temperatures of the simulated values.

results
According to the RCP2.6, RCP4.5 and RCP8.5 scenarios and the simulation made by the neural network model, it is possible that on average the minimum temperature will be 3.6 degrees Celsius, the average temperature will be 3.3 degrees Celsius and the maximum temperature will be 2.7 degrees Celsius. Celsius will rise. The monthly review of the simulated data for all scenarios and the observed data of the studied variables shows that the average minimum, average and maximum temperatures in January and February, which are the coldest months of the year, will increase the most and become warmer. While the average minimum temperature in August, the average temperature in April and the maximum temperature in October will have the least increase. According to the simulated seasonal temperature table based on all scenarios, it was found that the average minimum, average and maximum temperature observed with the maximum simulated conditions were 6.9, 5.5 and 5.4 respectively in the winter season, and 3.3 in the spring season. 4, 2.3 and 3, in the summer season it increases by 3.3, 3.4 and 1.4 and in the autumn season it increases by 4.6, 4.5 and zero degrees. The frequency of extreme temperatures observed in all three variables of minimum, average and maximum temperature for the 25th and 75th quartiles is less than the number of occurrences of extreme temperatures simulated in all three scenarios. Based on this, all three variables will increase and there will be fewer cold periods. An increase in night temperature and average temperature in winter season and maximum temperature in summer season will occur more than other seasons. The difference between day and night temperature will be less in autumn and summer. Also, all seasons, especially the summer season, will be hotter and the occurrence of extreme temperatures is increasing for the coming years.

Keywords: climate scenarios, simulation, extreme temperatures, artificial neural network, Zanjan



 
Fatemeh Hosseini, Mohammad Hemmati , Mahtab Jafari, Alireza Estelaji,
Volume 10, Issue 2 (9-2023)
Abstract

Flood is one of the most destructive weather hazards in the world. The frequent occurrence of urban floods has affected public safety and limited the sustainable development of the social economy. The present study was conducted with the aim of preparing a flood intensity zoning map and analyzing its relationship with vegetation in Qirokarzin city in Fars province. For this purpose, after reviewing various sources, by introducing five effective criteria in the occurrence of floods, which were repeated in other researches in this field, the factors of height, slope, and distance from the river, topographic index and height of runoff were selected as effective factors. By using the method of network analysis process (ANP) in Super decision software, weighting and then using the simple weighted sum method, the final map has been obtained. In this regard, vegetation changes have been obtained using Landsat images in 2000 and 2021 and NDVI index. The results showed that the most effective criterion was the topographic index and Qirokarzin city was located in five zones of very low, low, medium, high and very high risk of flooding, among which 1849/6 square kilometer (54.8%) of Qirokarzin city were in the zone with the risk of flooding is very high. also, the analysis of vegetation changes showed that despite the development of agriculture and horticulture and the resulting relative improvement of the average values of the NDVI index, in the upper reaches of the watersheds of this city, the vegetation cover of forest and pasture lands has decreased significantly, and finally the effects of this problem lead to residential areas and agricultural and horticultural lands in 2021 compared to 2000 are located in areas with high flood potential with a higher percentage, this issue can confirm that the protection of land use in the upstream area is in accordance with to what extent can the policy of maintaining the existing cover and developing vegetation covers by using plants that have high soil protection value play a role in mitigating and suppressing the flooding of the downstream lands.

Kaveh Mohammadpour, Ali Mohammad Khorshiddoust, Gona Ahmadi,
Volume 10, Issue 2 (9-2023)
Abstract

Introduction
Dust storm is a complex process affected by the earth-atmophere system. The interaction between the earth and atmosphere is in the realm of the climatologists and meteorologists, who assess atmospheric and climatic changes, and monitor dust spread. Dust is the main type of aerosols which affects directly and indirectly radiation budget. In addition, altogether they affect the temperature change, cloud formation, convection, and precipitation. The most important studies about dust analysis have considered the use of remote sensing technique and global models for analyzing the behavior and dynamics of dust in recent two decades. To achieve such a goal, this paper has used MODIS and NDDI data to study and identify the behavior of atmospheric dust in half west of Iran.

Materials and methods
The western region of Iran is the study area. The data used in this study are divided into two categories: ground-based observations in 27 synoptic stations extracted from the Iran’s Meteorological Organization during the period (1998-2010) and satellite MODIS images during the first to fourth days of July 2008 as atmospheric dust extremes. Data was analyzed by using ArcGIS and ENVI software and NDDI index. 
Results and Discussion
According to results, interpolated map for the number of dusty days during the study period over the western half of Iran showed that the scope of study area does not involve an equal system aspect quantity of occurrences. The number of dusty days occurrences increase from north toward south and the sites located in northern proportions of the area have experienced lower dust events. In contrast, maximum hotspots are occurring over southwestern sites such as: Ahvaz, Ilam, Boushehr and Shiraz. Therefore, principal offspring of dust input has been out of country boundaries and arrived at distant areas. Also, based on results obtained using satellite remote sensing images and applied NDDI index, maximum of intense dust cover is observed over Fars, Ilam, Boushehr and Ahvaz provinces on the first, second, third and fourth of July. However, the lowest rate of index situated in extent far such as: East and West Azerbaijan provinces. Thus, parts located on the north of the study area experienced less dusty days and the maximum dust cores were located in the southwestern (mostly Khuzestan). The long-term results were consistent with the daily average of NDDI index in the whole study area and indicated the hotspot areas (Ilam, Ahvaz, Omidyeh, Bushehr and Shiraz) during the first to fourth days of July 2008. However, the level of dust cover in the region has reduced when a wet and cloudy synoptic system passes over the central and northwestern parts of the study area.
Conclusions
The climatic interpolated map interpretation indicated that increase of dust concentration based on ground-based stations, which are consistent with dust concentration, is overshadowed by the latitude and proximity of sources of dust source in the Middle East. Also, the long-term climatic results of ground-based observations were consistent with the NDDI index calculated on dust extremes in the whole study area and in the southern areas (Ilam, Ahvaz, Omidyeh, Bushehr and Shiraz) during study days of July, 2008. Therefore, dust occurrence increases from north to south and the maximum hotspots over southwestern confirm the proximity of the south western region of Iran to deserts and sedimentary plains and their direct relationship with dust sources in the Middle East. These regions highlight the volume and expansion of dust outbreaks, which were well detected due to the satellite imagery and spectral characteristics of MODIS for monitoring changes in the dust phenomenon.
Overall, the use of satellite remotely sensed data/images not only cover the ground-based observation datasets gap to identify, highlight, and analyse the dust phenomenon, but also takes a much more geographical approach in analysing environmental hazards such as dust. It is also suitable for studies of atmospheric compounds such as atmospheric aerosols.


Page 9 from 11     

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb