Search published articles


Showing 4 results for Farzaneh

Hassan Lashgari, Farshad Pajoh , Mohammad Bitar, Farzaneh Jafari,
Volume 2, Issue 1 (4-2015)
Abstract

The temperature as an indicator of heat intensity is one of the basic elements of knowing weather. The frost is a condition when the air temperature is less than 0 c Due to the geographical possition of Iran, spring is a season that plants resume a new life after leaving a pause in a periode of the growth. At the beginning of such a periode emerge of sudden cold cause loss bloom (in the case of openinig) or delay in a beginning of plant growth periode (Azizi,2002). Recentley with occuring climate chaos, one of the important climatic disasters which treats human and particularly different  areas of the country are cold waves and sever frosts that in some years covers large area of the country.

    Surface data including minimum daily temperature of the days of 29 to 30 and 25 to 26 of march of 2003 and 2005 in 9 meteorological synoptic stations in the area of north west of Iran in  table (1) was collected  from meteorology organization then the days of cold waves in the above mentioned time periode, were analyzed. In ordet to analyse the synoptic patterns, using ncep/ncar data, maps of sea level pressure ,combined of  geopotential height and vorticity and temperature advection  using Grads were drawn and analysed in the levels of 1000 to 500 hpa.
    As it mentioned, during the time period, 29 to 30 and 25 to 26 of the march in 2003 and 2005, 2 clod system  were located on the area of north west. In oeder to explain and analyze of  synoptic patterns of  mentioned period time, the absolute minimum temperature below 0 degrees celsius of stations in western Azarbayejan province were selected and maps of sea level pressure, combined of  geopotential height and vorticity and temperature advection  using Grads were drawed and analysed in the levels of 1000 to 500 HPA. 
     The results showed that in the time of occuring hazardous cold waves of  29 to 30 of march 2003 and 25 to 26 of march 2005 and analyzing the sea level map in the first day of cold wave with spreading the cold core high pressure  from the eastern Europe and its location on north and east north of the black sea and its pentration from north west corner of the country covered most of the areas of the country. 
    Analyzing the combined maps of geopotential height and vorticity in the levels of 1000 and 850 HPA in the first day of occurrence of  cold, generaly faced with huge anticyclonic development . But in the levels of 700 and 500 HPA , the under studied area was in the south trough of the obtained cold core of the low height locating in the cetral Asia. But on the day of cold peak, high pressure core was exactly located on the under the studied area . Also in the upper levels of atmosphere with locating the back of the trough cumulated  of cold air of upper width on the sea level high pressure centre while strengthening the lower levels anticyclonic flows, led to intensifying cold and frost in the west Azarbayejan province. 
Positive and negative vorticity maximum cells, also conformed the intensity cold circulation flows on the north half of the country in anticyclone and cyclone centers in order. Also analysing the temperature advection in the levels of 1000 to 500 HPA, direction and temperature intensity exactly followed geopotential height maps patterns. 
     Such that in the levels of 1000 hpA of the both cold wave analysed, the anticyclonic cold temperature adcection and northward is located on the north west of the Iran. In temperature advection maps of 29 and 30 march 2003 in 850 HPA in Azarbayejan province, the anticyclonic circulation is matches with sea level high pressure. But in the 2nd cold wave that’s occured on 25 and 26 march 2005, the north west area is between 2 antycyclonic circulation on Mediterranean and cyclon located on south of  Russia that the directions of temperature cold flows is completely north ward in this level. 
    In the temperature advection maps of 700 and 500 HPA, the Azarbayejan province is in the western edge of central Asia trough or south of Russia. 
    The results showed that with studying  atmospheric motions and synoptic systems which create cold flows, we can prevent of spring late  emergence cold wave destructive impact on agricultural products, energy consumption, and road accidentd by  forcasting of these atmospheric conditions.

Hadi Soltani Fard, Ahmad Zanganeh, Marzih Nodeh, Farzanehsadat Hossini,
Volume 3, Issue 1 (4-2016)
Abstract

As an important factor to be considered, rapid population growth, lack of resources and appropriate management has led the natural hazards threatening human societies increasingly. Although it is impossible to eliminate the effects of natural hazards, however, risk reduction and risk cities against natural phenomena has become the main topics of urban planning and design in recent years. Iran is one of the countries that are faced with numerous natural hazards. With Location and geographical characteristics, Iran is a main country located in earthquake belt; therefore earthquake is one of the main natural hazards in human settlements. Now, more than 70 percentage of Iran are at risk of earthquake. This study investigated spatial effects of urban roads and network on vulnerability in Amirieh neighborhoods. The aim of this study, identification and isolation of factors affecting the vulnerability of urban streets and quantify the effect of each factor is the vulnerability. Amirieh neighborhood with 10 (he) area, located in center of Sabzevar city. Amirieh is part of the detorated urban fabric in Sabzevar, therefore, earthquakes it is one of the main threats of this urban historic neighborhood. As a holistic approach, safety and immunization of the city is in regard with the recognition of constituent elements of urban structure completely. Comprehensive identification is aimed at reducing the vulnerability of urban and urban elements. In order to, one of the most important elements is the road network and impacts on the vulnerability of urban neighborhoods. Neighborhood is smallest unit of urban spatial planning that has the most important role in the planning and reduction at the risks of natural hazards. The spatial relationships between the components of an urban system that can fit through association with the whole city would be reduced environmental hazards, particularly earthquakes.-From planning perspective, any activity be organized in small-scale and size, will increase the possibility of its constituent elements in crisis management. The vulnerability of urban networks in related to spatial structure and impact on other infrastructure directly. The nature of the vulnerability of urban streets can be based on three factors: the structure, origin and traffic. As a structure, form and pattern of urban access associated with the vulnerability that this pattern is in related to urban network movement geometry and topological properties. Road network and access can be analyzed spatially by both composition and configuration. Composition of road network affected by the physical geometry and presented in different scales and defined by location, form, length, angle and direction. While the configuration is sets of the points witch defined by the related lines. Roads determine accessibility to critical points, and are including topological features, displacement, time travel or transport costs.

In analysis process of data and maps, scientific methods and models were used such as geographic information systems (GIS), the Analytic Hierarchy Process and method (AHP) and weighted overlaying map. Research method involves the following steps:

  1. Introduction of indicators: In order to determine the vulnerability of the network in the various aspects needed to be based on the criteria established to determine the vulnerability and damaging. In this study, selected Indicators include: Type of road, the width of road, construction quality, density, population density and age of the buildings.
  2. To determines the importance and ranking criteria: Each of the above criteria has the sub-criteria which based on expert opinions, and comparing them with field studies. The (AHP) was used to weight sub-criteria for the experts and paired comparison.
  3. To weight the criteria: At this stage, the selection criteria are weighted by research. To determine weights, the criteria and sub-criteria, were quantified by which is determined measure the intensity excellence criterion of i to j. At this step, the above criteria and sub-criteria in the form of a questionnaire was given weight by the Group of Experts. Then, weights of each criterion was determined the final weight by Expert Choice software.
  4. Layers integration and production of Vulnerability final map: in order to produce the final map of vulnerability, the command Raster Calculator and weighted overlap method was used in the GIS environment. Density calculation is one of the suitable methods of spatial analysis. we calculated the density to represent the value of points or lines in the form of levels. In this study was used Kernel density equation for converting line to surface value, due to represent of spatial value. Map applying numerical value to each pixel density is formed in the periphery.

In Amirieh neighborhood, Results show that width of streets, land use, population density, quality of construction and age of building will be in the range of medium to high vulnerability. In this study, 50% of the length of passages, more than 73 percent of the quality of the existing structure, 69% of land uses, and more than 40 percent of population density were classified in the range of high to very high vulnerability. The final vulnerability map shows that more than 58% of the total area is in the range of high and very high vulnerability. The areas with moderate vulnerability involve 19 percent of the entire neighborhood approximately. The final map shows that areas with low vulnerability appropriate width placed adjacent to the passages open while the passages the end and low width are critical zone of significant congestion. Too, the results showed that the topological characteristics of the network involved in the formation of critical points. So that in the event of a crisis and then could impair relief and evacuation of the neighborhood. From spatial perspective, vulnerability is influenced by two urban network properties:

  1. Urban network structure: The street network is determined based on geometric features. This communication and spatial distribution of the points and roads in the neighborhood.
  2. Spatial hierarchy: Spatial hierarchy access to the neighborhood of the important points is that the crisis could guarantee public services.

Farzaneh Sasanpour, Navid Ahangari, Sadegh Hajinejad,
Volume 4, Issue 3 (9-2017)
Abstract

International studies show that the damages caused by natural hazards is essential that special attention to natural hazards in urban societies of the world, especially in urban areas of developing countries. In many of these communities needed new ways to deal with these challenges. This method should provide sufficient knowledge to identify the nature of problems and the identification of individual characteristics, socio-economic, physical, environmental and management, would in effect do the "Back to Balance" against natural hazards. This feature Back to Balance the same resiliency. The term resilience has a very long history and its use goes back at least a century BC. According to the different interpretations of the concept of resilience, this term is rooted in the traditions of various disciplines such as law, engineering, ecological and social sciences. Today, the concept of resilience has entered the field of planning with different orientations (social, economic, physical, and administrative, etc.).Although it still focuses more attention on environmental issues and a large part of its exploration dedicated to managing the environmental hazards such as earthquakes, floods, hurricanes and global warming. Tehran, as a result of political and economic influence, special conditions to deal with the crisis in terms of the influence of natural disasters and crisis management in terms of organizational structure and legal. In this respect, residential and urban areas of 12 with characteristic their history can be acute against the imbalances caused by natural hazards and create a crisis in urban life. Therefore, the present study has been prepared for the purpose of stability analysis flexibility in District 12 of Tehran metropolitan city.
This is of cognitive research that has been done for analytical and descriptive. All data is obtained in the manner of library and field. The library of available resources and work conducted the form of a questionnaire survey. Questionnaires have been used of type Likert spectrum (numerous, high, high, somewhat, relatively low, low and very low), and its completion is done by fieldwork. Statistical population has problems of urban planning experts, among them 80 people were interviewed for targeted samples. Resiliency that includes four dimensions (economic, social, ecological, environmental and institutional). Was approved the validity of the index by 7 experts manage urban planning problems. For measuring reliability coefficient is calculated Cronbach's alpha equal to 0/79. For data analysis, the use of statistical analysis such as frequency, maximum and minimum, average and standard deviations, T-Test one sample test and Friedman nonparametric test
The results of the indicators of urban resiliency against natural hazards suggests that economic indicators 73/24 Average been determined and relatively low level, ie below the average level. Results of the test showed one sample T-Test is an indicator of economic status of urban resilience against natural hazards of poor utility. As well as the social, ecological, environmental and institutional (organizational) urban resilience against natural hazards associated with poor utility. Finally the 12 metropolitan Tehran metropolitan areautility resilience against natural hazards with respect to all dimensions were too weak. Friedman test results on the scoreboard indicators showed that the index of environmental sustainability (20/33) related to the ecology and environment in the first rank the importance of urban resilience and adaptability Index System (10/11) related to next institutional (organizational) is set as the least significant indicator. Also, significant chi-square statistic is calculated at a rate of 09/67 in three degrees of freedom at the level of 0.000. So, with a probability of 99% can be said that there is a significant difference between the performance rating of 80 specialist urban resilience dimensions (economic, social, ecological, environmental and organizational) against natural hazards, and not the distribution of the same rank.
This research been prepared with the aim of assessing the scale of urban resilience against natural hazards in District 12 of Tehran Metropolis. Results showed that social, environmental and institutional ecology and urban resilience against natural hazards associated with poor desirability. According to this result, it is concluded that the region as a whole is resilient against natural hazards. In this direction, the resilience approach guidance to managers and practitioners use of flexible decisions and concerted policy for urban management. Build resilience in this area to support programmes should invest in organizing access to both external and existing resources in a fair manner, with a coordinated governance structure, and to facilitate social solidarity and support as part of disaster response. The findings also stress the importance of taking an ecological approach to studying resilience to disasters. Many factors from individual, community, and societal levels seem to be important in shaping resilience perceptions of natural hazards survivors. Understanding this evidence will help to validate and further develop indicators of resilience. Our findings point out that, despite existing pre-disaster vulnerabilities, resilience can be fostered following disasters if community members perceive availability of aid and support and mobilize resources Hence, psychosocial support programmes should invest in organizing access to both external and existing resources in a fair manner, with a coordinated governance structure, and to facilitate social solidarity and support as part of disaster response. The findings also stress the importance of taking an ecological approach to studying resilience to disasters. Many factors from individual, community, and societal levels seem to be important in shaping resilience perceptions of natural hazards survivors. Future research should conduct multiple levels of analysis with an all-hazards perspective to reveal how they can be integrated to increase adaptive capacities. Future research should focus on the process of capacity building through informing action to better prepare for disasters. Finally, this research tells us that due to the resiliency of the city will be able to have knowledge of all relevant indicators in the resiliency and reduce the adverse effects of these risks in urban communities

Mrs Halimeh Shahzaei, Dr Mohsen Hamidianpour, Dr Mahsa Farzaneh,
Volume 10, Issue 2 (9-2023)
Abstract

Spatial analysis of Iran's climate change from the point of view of sensible heat flux and latent heat flux by Bowen method

Halimeh Shahzaei; Ms.c student of Climatology, Departement of Physical Geography, University of Sistan and Baluchistan, Zahedan, Iran.
Mohsen Hamidianpour[1]; Associate Professor, Departement of Physical Geography, University of Sistan and Baluchistan, Zahedan, Iran.
 Mahsa Farzaneh; Ph.D Graduated. Climatology.



Abstract
Sensible heat flux and latent heat flux are among the variables that are closely related to temperature and humidity and show heat transfer on a surface. So, their changes can be considered related to changes in temperature and humidity. In this regard, the current research aims to analyze and reveal the climatic changes of Iran by examining the course of changes in sensible heat flux and latent heat and the ratio between the two. For this purpose, NCEP/NCAR reanalysis data including sensible and latent heat flux during the period 1948-2020 was used in Iran. Bowen coefficient was calculated from the ratio of these two heat fluxes. Interpolation methods were used for their spatio-temporal analysis. In addition, by using the non-parametric methods of Mann-Kendall and Shibsen, spatial and temporal changes were also investigated.  The first part of the results showed that, spatially, the Bowen coefficient is a function of latitude and roughness. And in terms of time, the lowest value corresponds to the month of January and the highest value corresponds to the month of July. The results of the second part show that the Bowen coefficient has a positive trend over time. Its upward trend indicates an increase in the dryness coefficient of the country. So that this situation can be seen in the positive trend and increase in temperature.
Keywords: climate change, Bowen coefficient, global warming, spatio-temporal analysis.
 
[1]. Autehr corespound:Email: mhamidianpour@gep.usb.ac.ir
 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb