Search published articles


Showing 1 results for Hamidian Pour

Mr Hossien Rahi Zehi, Dr Mahmood Khosravi, Dr Mohsen Hamidian Pour,
Volume 8, Issue 1 (5-2021)
Abstract

 
   
The Spatio-Temporal Variations of Aerosol Concentration Using Remote Sensing in Sistan and Baluchestan Province (2018 - 2000)
 
 
 
Abstract
Atmospheric particles play an important role in balancing the energy budget of the Earth's surface. The Sistan and Baluchestan province because of the specific geographical conditions during the year is witnessing the spread of dust particles caused by dust storms. This paper investigates the spatial changes of this phenomenon in the region to identify the association of dust accumulation and the reasons for these concentrations. In this study, the AOD Index data of the Aqua and Terra Modis Satellite Sensor (MODAL2_M_AER_OD) with 10 × 10 km spatial resolution were used. Then, by using statistical methods, a spatial analysis was done and the temporal and spatial changes trends at 95% and 99% significance level were performed using the nonparametric Mann-Kendall method. The results showed that the maximum concentration of aerosol in areas such as Zabol, Zahak, Hirmand, Hamoun, Iranshahr, Bampour, Jazmurian basin, Chabahar, and Konarak. On average, the highest variations in aerosol concentration were in the southern regions of the province include Dashtiari, Polan, and Chabahar, and the least in the northern part of Polan, Chabahar, Konark, and Bampour areas. The trend of changes was evaluated at two significant levels of 95 and 99%. The results of this section showed that the AOD had a positive and increasing trend in June, July, and August in the areas of Dalgan, Iranshahr, Bampour, Bazman, Mirjaveh, Nokabad, Zahedan, Nosratabad, Zaboli, Qasrqand, Irandegan, and Sib-va-Soran Plain and areas such as Korin, Zabol, Zahak, Sirkan (Bamposht), Hamoun have a negative and decreasing trend. The average changes in aerosol concentration in June, July, and August show a significant increase in the aerosol concentration from 2015 to 2018 up to 0.8.
 
Keywords: Environmental Changes, Dust, Environmental Hazards, Climate.

Page 1 from 1     

© 2023 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb