Search published articles

Showing 1 results for Haseli

Mohammad Haseli, Hamid Jalalian,
Volume 1, Issue 4 (1-2015)

The best path to development is the primary focus on the potentials and threats of the environment and accordingly efficient use of the land. In this regard, it has a closely relation between agricultural and rural development and natural resources. The type of land use is a main factor in soil erosion and sediment production in the watersheds. In this research, it has been studied and evaluated the soil erosion in the Aleshtar plain catchment with aim of developing agricultural exploitation.

This study is based on PSIAC model. The PSIAC method has been designed based on the estimating of sediment potential with 9 important effective factors contains surface of the earth, soil type, weather conditions, runoff conditions,  topography,  land cover, Land use, current erosion condition, slope of river erosion and sediment transportation in the soil erosion. In the process of this research using geographical information system (GIS), the mentioned data analyzed, integrated, and finally layers of information were prepared. Followed by extraction of units, erosion zoning of the studied area has been implemented.

The total area of the studied area is 80305 hectares and is located in the northern parts of Lorestan province (southwest of Iran) and geomorphologic features are  almost mountainous and 39.65% of their area are mountains and hills. The maximum altitude is 3600 meters; the minimum is 1500 meters. and the average height of 2116 meters. Its climate type (based on De Marten method) is Mediterranean climatic pattern exists and  the average annual rainfall is 506 mm. The Aleshtar City is the only urban center in the area but there are 208 villages. The economy of the settlements is based on agriculture (farming, gardening and animal husbandry).

     Based on the findings of this research, 37.92% of the total land area of the basin is eroded (classes I, II, III). The land consists mainly of low slope and plain basin and is suitable for plantation (I). In this zone, 98 rural settlements (47.11%) are located. Relatively deep soils and flat are the features of these lands so the rate of erosion is low (II). 84 rural settlements (40.38%) are classified in this class. Shallow soils, these lands need to have conservation measures and can be managed under the operation of arable, rangeland, forest and resorts (III). 1 rural settlement (0.48%) is located in this class of erosion. 62.09% of the total basin land is located in the classes IV and V. A total of 25 rural settlements (12%) are located in this class. These lands under certain conditions can be planted; because erosion in the land is relatively high and the limitations in comparison with class III is more. Therefore they need more protection operations for exploitation. Also in these lands that are located in the high topography of the basin; erosion is extreme (Class V), which makes arable exploitation impossible.

    Generally the land use in Aleshtar basin is faced to erosion limitation, so the control of the soil erosion and soil conservation and water resources management are essential. However, the locations of the most rural settlements were based on low to moderate erosion zones which indicates that the ancient has had a traditional preparatory thinking.

    As a general recommendation, it can be said that in any location, including rural and urban settlements, along with the development of agricultural activities, attention to the erosion and zoning is essential.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb