Search published articles


Showing 7 results for Karami

Tajeddin Karami,
Volume 1, Issue 1 (4-2014)
Abstract

Although environmental hazards occur because of natural factors, however, political economy, controlling the sociospatial relations and conditions, also affect centrally the increase or decrease of physical and social vulnerability caused by hazards. In this regard, present paper has put the spotlight on “explaining the role of spatial distribution of social stratification in vulnerability to environmental hazards in the city of Tehran”. This is based on Political Ecology Approach which emphasizes the domination of prosperous social strata on the urban natural-ecological endowments and utilities and marginalizes low-income and inferior social strata. So, the recognition of social strata inhabitation across the city is significant for the analysis of social inequalities and their effects on the vulnerability of environmental and human hazards. The concentration of middle to high class and working and inferior classes has also caused the range of social inequality to increase in the metropolitan of Tehran and this trend per se has transformed Tehran to the spatial reflection of the contrast between poverty and wealth to the greatest extent in the country. Hence, regarding the fundamental role of social stratification and class structure and its evolution in explaining the dynamics of socio-economical relations in the dominant society and the process of urban space production and reproduction, explaining the role of spatial distribution of social stratification in vulnerability to environmental hazards in the city of Tehran is significant and necessary. Vulnerability to environmental hazards has been studied from the physical, biological perspectives, social construction perspective and contingency perspective. The present paper emphasizes the effects of social construction on the production of vulnerability. Scientists think radical and critical geography of space is a kind of social production. They believe that not only urban space, but also the entire space has a social structure and nobody can analyze it thoroughly regardless to the society’s work on the space. Thus in a world under the Capitalist System, urban space represents a reflection of the control and domination of superior social strata (owners of power, wealth and high status, or the owners of political, economic and socio-cultural assets) in its functional zones.  This has been appeared in the recent decades, within the literature of hazards and catastrophes and based on “an approach of vulnerability” which has been rested on Political Ecology. The mentioned approach has been concentrated on a series of socio-spatial conditions and political economy which shapes the hazards and catastrophes. Some of the effective social conditions in shaping the hazards and catastrophes and their amounts of vulnerability depend on the racial, ethnic and class characteristics. Racial, class, ethnic and political economy analyses, which dominate their social ties, are considered as part of understanding knowledge system of hazards and catastrophes. Since this causes detecting the role of political economy of inequalities and racial, class and ethical processes and the marginalization caused by it, in the emergence of hazards and exacerbation of catastrophes and crises impacts. To use job structure means to emphasize concrete class structures, according to which an image of social inequality can be offered. Thus in present study, for structure determination and main composition of social stratification in Iran and Tehran “Structure Determination and Composition of Social Strata Model” was used. According to this model and with the use of data from matrix tables, major occupational groups and occupational situation have been classified in 5 classes superior strata, traditional middle strata, new middle strata, working and inferior strata and farmers. The data were prepared and analyzed by ArcGIS and Ms Excel softwaares.   During the last century, uneven development process of the country was in favor of the Tehran and superior strata and powerful institutions located in this city. Regarding the processes and relations emerged from political economy of space and political ecology of Tehran, social strata inhabitation of Tehran has been in compliance with environmental capacities raised from topographic and microclimatic distinctions and ecological endowments. The findings of present paper also indicate physical and social vulnerability changes caused by probable hazards related to the general pattern of social strata inhabitation in north-south geographical direction. Spatial distribution of populated blocks in 1996, for which more than 30% of their inhabitants were “senior managers and experts” and “manufacturing jobs employees and laborers”, indicates the above mentioned issue and clearly show the poverty (old poor neighborhoods) and wealth (expensive and rich neighborhoods) spatial centers. In addition, according to the supporting studies on Tehran Comprehensive Plan, most of old urban tissues are in central and southern regions. Also according to the International Seismological Research Agency (JICA), the mentioned regions would be the most vulnerable in the Tehran probable earthquakes. Therefore, it can be said that findings and results of the present study indicate the determining place of political economy of space and urban political ecology and also the fundamental role of social stratification and class structure for recognition, analysis, explanation and understanding of the urban development challenges and problems. Hence, this is impossible to reduce social and physical vulnerabilities caused by natural and human hazards, particularly in the poor neighborhoods, regardless of political economy of space mechanisms and reduction of the gap and even urban development. 


Jalal Karami , Aminah Mohamadi, Mohammad Sharifikia,
Volume 3, Issue 2 (5-2016)
Abstract

Resilience are concepts that are finding increasing currency in several fields of research as well as in various policy and practitioner communities engaged in global environmental change science, climate change, sustainability science, disaster risk-reduction and famine interventions (Vogel, et.al, 2007). Where the risk is a probability of damage, injury, liability, loss, or any other negative occurrence that is caused by external or internal vulnerabilities, and that may be avoided through preemptive action (Benson, et.al, 2004). Among natural disasters, earthquakes, due to the unpredictable nature of these events, are one of the most destructive. Iran is one of the most earthquake-prone countries in the world that its cities most affected by this phenomenon. Among the cities of Iran, Tehran, as the country's first metropolis, due to dense population, poor physical development, structural density, and lack of standards, is potentially facing a serious threat. The purpose of this study is to investigate the spatial flexibility of Tehran over the region 12 after the earthquake incidence.

The present study is dealt with the data preparing and analysis using geospatial methods. The several geospatial data such as Peak Ground Acceleration (AGA) map, urban structure, infrastructure and population collected from Tehran Disaster Management Center were provided and analysis based some GIS known algorithms. In other to urban spatial resilience zonation the AHP (analytical Hierarchy Process) was implemented to generation risk map. Finally OWA (Ordered Weighted Average) method was implemented in order to Production spatial flexibility map of earthquake incidence over the District 12 of Tehran. AHP model uses of priorities straight experts, but OWA provides of control the level of compensation and risk-taking in a decision. Using the conceptual of fuzzy quantifier with OWA makes the qualitative data analysis enter to decision.

    According to flexibility of the final map with fuzzy operator (All) equivalent to the operator MIN, the worst result Was obtained and resulting the highest risk and lowest flexibility respectively (Districts Nos. 2,12,7,8 and 11).By taking all the criteria of a criterion without compensation by other criteria as "non-risk" is obtained .

Map obtained with fuzzy operator (Half) has the high potential to provide suitable options,  because in addition to integration criteria the importance of each parameter based on the weight given to the criteria are considered. In this map Districts Nos.2.6 and 8 (Baharestan, Emamzadeyahya and Sanglajedarkhangah) respectively were most Risk to earthquakes and therefore less flexibility to the earthquake. The map obtained with the fuzzy operator "Atleast one" is equivalent to MAX operator districts Nos. 2,12,7 and 8 (Baharestan ,DarvazehGhar of Shush,Abshardardar and Sanglajedarkhangah)  respectively were most Risk to earthquakes and therefore less flexibility to the earthquake.

The fuzzy conceptual map quantifier showed that districts Nos. 2 and 12 (Baharestan and DarvazehGhar of Shush) were most vulnerable and therefore less flexibility to the earthquake as final results.


Hadi Nayyeri , Mohammadreza Karami , Bahram Charehkhah,
Volume 3, Issue 2 (5-2016)
Abstract

Risk is an inevitable part of life, every day people are somehow at risk. Different risks in various forms and perspectives have different functions. Kurdistan province, with various heights and relatively good rainfall, It results the country's cold spots. Since most of seasonal rainfall occurs in winter, Snow cover is often the domain and passes it hillsides. One of the concerns of people in the mountainous area is a snow avalanche phenomenon. Sudden loss of massive snow is avalanche snow that may include rocks, soil, plants or ice. It seems that the name of the snow avalanche adopted from the eleventh month of the solar year. The possibility of snow in mountainous areas during this month of year is more than other months. Snow avalanches every year around the world, especially in alpine impose huge human and financial losses. Statistics and local evidence also show that the province of Kurdistan expect or accept to soil erosion and destruction of infrastructure and natural resources had a casualty. Actually, this is the most vital reason why zoning area danger avalanche was conducted in this study.

 First, avalanche pathways was recognised and selected as a field visit by department of urban development The purpose of the visit was to extract the geography’s coordinates of the avalanche. The Background of the study shows some of the land criteria are more important than others. For this purpose we performed a literature survey to explore indicators that had a significant impact on avalanche snow like such as; slope, aspect, elevation, convexity and concavity, distance to roads and land. To facilitate greater accuracy, all criteria were used in geographic information system (GIS) for mapping. Thereafter, produced map can be categorised into four classes of low, moderate, high and very high. In the next step. Analytic hierarchy process (AHP) and Analytic Network Process (ANP) model were used for weighting and ranking all criteria (slope, aspect, elevation, convexity and concavity, distance to roads and land use) by using pairwise comparisons with judgments that represent the dominance of one element over another with respect to a property that they share. The Analytic Hierarchy Process (AHP) is a method for decision making which includes qualitative factors. In this method, ratio scales are obtained from ordinal scales which are derived from individual judgments for qualitative factors using the pairwise comparison matrix. The Analytic Network Process (ANP) is a more general form and extension of Analytical Hierarchy Process also uses a pairwise comparison matrix to obtain ratio scales. The difference between these two methods appears in modelling the problem and computing the final priorities for the criteria from ratio scales previously obtained. The ANP feedback approach replaces hierarchies with networks, and emphasizes interdependent relationships among all decision criteria were used in this study).

 Based on the resultant Maps, AHP and ANP had a good overlap with visited points and with high accuracy lay in areas of high risk and very high risk. According to the map provided by Analytic Hierarchy Process from the total number of 30 hillsides, thirteen of them lay in very high risk and seventeen of them in the area of high risk. Thereafter, resultant maps of Analytic network Process shows from the total number of 30 hillsides twelve of them lay in very high risk area and eighteen of them in the high risk area.

The results of (AHP) indicates that from the total area of Kurdistan province, about 1049.7 square kilometres is classified in the low risk area, 11.392 square kilometres in moderate, 14.341 in the high risk area and 2009.1 square kilometres in very high risk area, respectively . In view of the process of the network as map about 978 square kilometres is in low risk area, 10245 square kilometres in moderate risk area, 15410 square kilometres in the high danger area and 2158 square kilometres is located in very high danger area. Therefore, we can use ground data for snow avalanche zoning areas along with Analytic Hierarchy Process and Analytic Network in zoning areas avalanche risk which is applicable. Weather parameters like snow, wind and temperature have an important role in terms of snow avalanche. Decreasing rainfall from west to east of study area. The number of freezing and snowing days indicates the critical situation for snow avalanche in the highlands and the pathways. More prevailing wind direction in the cities are in the Southern west, Southern and in area with high elevation blowing from western direction. Looking at the range of high and very high can be seen, mostly in the North and South and North East which show the impact of prevailing wind upon snow and putting snow in hillsides that can produce snow avalanches

. The hillsides show most of avalanche dangers are at west, northwest and south of Kurdistan thus they are compatible with rainy areas. To build any recreation centred including, winter sports, road construction and expansion, snow avalanche risk areas should be considered. Now pathways don’t have any risk signs warning about avalanches. The warning signs of avalanche at the pathways are essential.In the hierarchical model 198 villages lay at low-risk areas and 20 villages in the area were extremely dangerous. Also in the network model 184 villages in low-risk areas and 23 villages in the area were very dangerous.


Abolfazl Ghanbari, Fariba Karami, Mohammad Ali Saleki,
Volume 4, Issue 1 (4-2017)
Abstract

One of the geomorphologic issues that many human activities affect is the landslides. Natural factors and human activities on the other hand, these events are triggered. Landslide one of the most active hazards are natural processes that lead to erosion and changes in the landscape. Iran is a predominantly mountainous topography, seismic activity and high landslide, diverse climatic and geological conditions of natural conditions for a wide range of slip is important. Located in second place in the sector of industry, population of 1695094 people, proximity to major faults of Tabriz and occurrence Landslides of different city of Tabriz, the city has become one of the most dangerous cities in the environmental hazards, especially landslide. In these circumstances and completed a comprehensive review and a detailed zoning of land for landslide susceptibility seems absolutely necessary. The purpose of the present paper, the occurrence of landslide susceptibility assessment and mapping potential occurrence of landslides in the city of Tabriz in this range.

     This research of the type applied- development research and of the research method is descriptive - analytic. In this study, using a variety of sources including satellite imagery, aerial photography, global positioning system (GPS) and field studies landslide occurred in the study area were identified and these data were analyzed using the software ILWIS and use of library studies and expert opinions should identify the criteria and sub-criteria and range were classified. Then, using fuzzy TOPSIS model, the importance of the criteria and sub-criteria specified in pixel units and finally combining fuzzy-TOPSIS model and overlapping functions in ARC / GIS final map was extracted.

Geomorphologic and lithology conditions of the city with its mountainous location where the trigger landslides. The final results indicate that over 30% of the areas of the city of Tabriz are medium to high risk that this areas of land in the north and northeast is sparse. The accuracy of the final map and the map of the distribution of faults and the accuracy of the study proved to be that hazardous zones roughly corresponding to the final map lapses occurred. So we can conclude that the method and the model presented in this paper is an effective method for landslide hazard zonation within the cities.


Amir Saffari, Amir Saffari, Jalal Karami,
Volume 5, Issue 1 (6-2018)
Abstract

Investigation about the influence of land-cover and land use changes on soil erodibility potential, case study: Gharesou, Gorganrood
Land use and land cover (LUC) change associated with climatic and geomorphologic conditions of the area have an accelerating impact on the land degradation. Natural as well as human-induced land use land cover change (LUCC) has significant impacts on regional soil degradation, including soil erosion, soil acidification, nutrient leaching, and organic matter depletion. Since the last century, soil erosion accelerated by human activities has become a serious environmental problem. It has a manifold environmental impact by negatively affecting water supply, reservoir storage capacity, agricultural productivity, and freshwater ecology of the region. In recent years, many researchers have highlighted the environmental consequences of soil erosion.
Soil erosion estimation at a regional scale is influenced by the complexity of the soil erosion process and the availability of data describing the soil erosion factors. In the last decade, regional and national level assessments of soil erosion were carried out using different approaches, ranging from indicator or factor-based approaches to process-based models. However, the revised universal soil loss (RUSLE) and its modifications are still widely used because of its simplicity and a greater availability of input parameters.
Gharesou basin is one of the sub-basins of Gharesou, it suffered from severe erosion in some areas over the past years. This erosion has occurred for different reasons and one of them is land use change and weak management of water and soil resources. The purpose of this research is to investigate the effects of land-cover changes on the potential of soil erosion in Gharesou Basin, a sub-basin of Gorganrood, in Golestan province. For this, we have employed RUSLE Model and used landsat satellite images from the sensors of TM, ETM, and OLI for 1985, 2000, and 2015. The potential soil erosion in this study was estimated using RUSLE model, which can be described using following equation:
A = R × K × LS × C × P
where A is amount of soil erosion calculated in tons per hectare per year, R is rainfall factor , K is soil erodibility factor , L is slope length factor, S is slope steepness factor, C is cover and management factor, and P is erosion control practice factor. To run the RUSLE model in GIS, first, rainfall raster layer, soil, slope, Digital Elevation Model, and also layers of soil protection range were created. Each of the involved factors was calculated in separate units in the basin level. In this research, Gharesou basin was analyzed based on raster network data with 30 meters cell size, because, from one hand it's small
enough to show heterogeneity of the basin and on the other hand, it matches pixel dimensions of landsat satellite images.
The results of land-cover changes have revealed a decrease in dense forest areas, low forest areas and the mixture of orchard, forest and pastures in a thirty years period. According to the results of RUSLE, changes of the classes indicate a general trend to the soil loss in the basin. Therefore, Gharesou basin is a basin with increasing soil erosion potential. In the plain and coastal plain areas of the basin, that is the mainly cultivated area, the amount of erosion is different from the other areas, and soil loss process is decreasing. It's due to the changes of cultivation method from traditional to modern, increase of irrigated farming area, choosing more environmentally friendly plants, and also, increase in the area of cities and villages from 7.14 percent to 29.04 percent during 30 years. In the study classes, for output of RUSLE model, in every 3 years of study, the maximum area relates to the classes of 100 to 200 Ton per year that is more seen in the mountainous regions. In these regions, all factors except vegetation are toward soil loss. Also, during 30 years, the amount of dense vegetation decreased from 34.56 to 31.55. In fact the only factor in protecting soil in (prone to erosion) areas has given its place to less effective vegetation, so, the area of this region has increased and Gharesou basin is in danger of soil loss in mountainous and forest parts. Also, areas with more than 200 Ton in hectare, with the lowest amount, have had a tangible increase during 30 year of study and its amount has increased from 11.74 to 12.50. These areas are usually located in mountainous parts with no vegetation. Also, the average of soil erosion potential estimated in Gharesou basin for 1985, 2000 and 2015 is 102.02, 103.11, and 103.76 (ton per hectare per year). This amount was found in the sub-basins too and except the sub-basin 4 located in coastal plain areas of the basin, with farming use, the amount of other sub-basins is increasing. According to the results of study, mountainous parts of Gharesou basin, has the most damage due to the accumulation of involved factors in the potential increase of soil loss. So, the necessity of watershed management is observed. Also modification of cultivation pattern and soil conservation training in farming lands of foothills and hillsides are required.
Keywords: RUSLE Model, soil erosion, Gharesou, Remote Sensing, land-cover changes

Mr Loghman Khodakarami, Dr Saeid Pourmanafi, Dr Alireza Soffianian, Dr Ali Lotfi,
Volume 9, Issue 2 (9-2022)
Abstract

Space-based quantification of anthropogenic CO2 emissions in an urban area using “bottom-up” method
(Case study: Isfahan Metropolitan)
Abstract
Increasing consumption of fossil fuels in urban areas emits enormous amounts of greenhouse gases into the atmosphere. Therefore, the study of carbon dioxide (CO2) emissions from urban areas has become an important research topic. The main purpose of this study is space-based quantification of carbon dioxide emissions driving from fossil fuel combustion in different source sectors in Isfahan. To achieve it, in the present study, the "bottom-up" method was used to quantify the carbon dioxide gas emission based on its production sources sectors. In this method, the amount of emission was measured distinctly for different sources of energy consumption and consequently the spatial distribution map the CO2 emission was generated. The results of this study revealed that the total amount of carbon dioxide emissions driving from fossil fuels is 13855525 tons per year in Isfahan. Separately stationary sectors of power plant, housing and commercial and mobile sources including road and railroad and existing agricultural machinery were responsible for emitting 50.61, 21.78, 17.18, 4.92, 4.37, and 1.14% of CO2, respectively. In conclusion, through applying the bottom-up method and CO2 emission distribution mapping based on different source sectors, mitigation measures can be applied more efficiently in urban planning.
Key words: Greenhouse gas (GHG), Fossil fuel combustion, Mobile and stationary source of energy consumption, climate change, Mitigation strategies
A Mahmoud Ahmadi, J Jamal Karami,
Volume 9, Issue 4 (3-2023)
Abstract

One of the most important issues that has always affected the Iranian climate and has left many socio-economic consequences and financial losses climate change is. On the other hand  Sea level pressure is one of the most important climatic elements that can affect other climatic elements such as temperature, humidity and wind. The study aimed to evaluate CMIP5 models based on CORDEX and Verdai dynamics Seasonal pressure anomalies in Iran among CMIP5 models based on CORDEX project dynamic models BCC-CSM, HadGEM2-ES, GFDL and MIROC model HADGEM2-ES had a higher level of correlation and efficiency than other models.
The data of 36 synoptic milestones during the statistical period (1960-2005), the data of the HadGEM2-ES model were applied by using the CORDEX model and the RCPs scenarios for the two historical periods (1960-2005) and predicted during Three periods of near future (2040-2011), middle future (2070-2041) and distant future (2099-2071) were used. Six methods R2, MAE, MBE RMSE, t-Jacovides and t-Jacovides / R2 ratio were used to evaluate the model performance. The results showed that the model has good performance in low altitude areas. Seasonal anomalies in all seasons, scenarios and time periods studied are positive and winter shows the maximum pressure anomalies between seasons.
The maximum seasonal pressure anomaly of Iran in all seasons, scenarios and periods studied corresponds to the altitudes, including its epicenter in the Alborz and Zagros heights and high geographical offerings and the minimum pressure anomaly corresponding to low and low areas such as Khuzestan plain and The southern coast of the country.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb