Search published articles

Showing 6 results for Mostafazadeh

Hamideh Roshani, Raoof Mostafazadeh, Abazar Esmali-Ouri, Mohsen Zabihi,
Volume 7, Issue 4 (2-2021)

Introduction and objective:
Temporal and spatial variability of rainfall is one of the determining factors for water resources management, agricultural production, drought risk, flood control and understanding the effect of climate change. The impact of spatiotemporal patterns of precipitation on flood/drought hazard and available water resources is an undeniable issue in water resources management. Precipitation concentration (PCI) and Seasonality (SI) indices are the important indicators to determine the distribution of precipitation in a region which can lead to identify and manage before occurring natural hazards including flood and drought and hydro-meteorological storms. Several methods available to study the spatial and temporal distribution of rainfall. Indicators of rainfall concentration and seasonality are among the methods of studying rainfall dispersion that depend on the distribution of rainfall patterns at different time scales. Accordingly, the study and understanding of temporal and spatial changes in rainfall can lead to sound management policies in the field of water and soil resources by planners and decision makers.
The precipitation concentration index is presented as a powerful indicator for determining the temporal distribution of precipitation to show the distribution of precipitation and rain erosion. The increase in the value of this indicator indicates a low dispersion and a higher concentration of rainfall, which is closely related to the intensity of rainfall. Seasonality index as one of the key factors in detecting seasonal variation in the variables of natural ecosystems, measures the time distribution of hydrological components at different times of the year and uses each hydrological variable to classify different hydrologic variable regimes. In this regard, the present research aimed to investigate the spatial and temporal distribution and trend analysis of PCI and SI for 41 rain gauge stations of Golestan province (38-year study period) in annual, seasonal and dry and wet time scales. The Mann-Kendall test was used to determine the trend of time changes in PCI and SI indices during the study period in all selected rain gauge stations in Golestan province. Mann-Kendall test is one of the non-parametric tests to determine the trend in hydroclimate time series. The advantages of this method include its suitability for use in time series without a specific statistical distribution, as well as the effectiveness of this method in data with extreme values in time series. In order to determine the spatial pattern of PCI and SI indices in different time scales (annual, seasonal, and dry and wet periods), the method of inverse distance weighting was employed in GIS environment. In this method, a weight has been assigned to each point that decreases with increasing distance from the known value point. On the other hand, the effectiveness of the known point in estimating the unknown point and calculating the mean also decreases. In this regard, the best results are obtained when the behavior of the mathematical function is similar to the behavior of the observed phenomenon. The study area in terms of extent, topographic diversity, type of land use has a high heterogeneity that affects the characteristics and temporal and spatial occurrence of dry and wet periods. The average annual rainfall varies from about 150 to 750 mm over the study area.
According to the results, the average of PCI for annual, spring, summer, autumn, winter, dry and wet periods in the research area were obtained 13.15, 11.96, 13.15, 10.72, 9.96, 14.72, and 1072, respectively. Also, Chat station with 0.79 (seasonal distribution with dry and wet seasons) and Shastkalateh station with 0.47 (mainly seasonal distribution with short dry season) had the maximum and minimum of SI in the Golestan province, respectively. In addition, 27 and 14 of studied stations had the increasing (Significant and no-significant) and decreasing (Significant and no-significant) trend for PCI and SI.
Non-compliance of precipitation in Golestan province with a single temporal and spatial pattern is another achievement of the present study. The results of the current research can be used as a roadmap for water resources planning and policy making in the study area. It is noteworthy that the PCI and SI indices do not emphasize the cumulative values of precipitation and address the pattern of rainfall distribution, which can be a better criterion for assessing changes in precipitation patterns at different time scales. In this regard, determining the priority of areas for protection and management of water and soil resources, and spatial pattern of agricultural crops. The trend of changes in PCI and SI indicators and its relationship with important climatic components can be considered in assessing the changes in pattern of precipitation and climatic variables.


Dr Fariba Esfandiary Darabad, Sedigheh Layeghi, Dr Raoof Mostafazadeh, Khadijeh Haji,
Volume 8, Issue 2 (9-2021)

The zoning of flood risk potential in the Ghotorchay watershed with ANP and WLC multi-criteria decision making methods
Extended Abstract
Flood is one of the most complex and natural destructive phenomena that have many damage every year. The northwestern region of the country, due to its semi-arid and mountainous climate and thus of high rainfall variability, is one of the areas exposed to destructive floods. Flood risk zoning is an essential tool for flood risk management. Therefore, the purpose of this research was to determine the flood risk zones in the Ghotorchay watershed by using the analytical network process (ANP).
In this research,, with geographic information system (GIS), satellite images, synoptic station data, analytical network process and the combination of layers, the flood potential of has been modeled in the Ghotorchay watershed. The final map of flood risk based on a combination of factors and climatic and physical elements including land use, geology, vegetation, topography, slope and land capability was prepared. The weight of each criterion was determined by ANP method and used by weighted linear composition (WLC) method for spatial modeling and incorporation of layers.
The results of flood risk zoning showed that the Qal layers from geology, slopes of less than 3 precent, land capacity of units 5, 6 and 7, and as well as poor vegetation cover were identified as flood zones. The results obtained from the analytical network process model indicate the fact that part of the watershed is affected by the risk of flooding with the very high potential, which is mainly located in the downstream of watershed. For this reason, the streams of rank 3 and 4 are considered as flood zones and flood guide areas to the downstream areas. Also, river networks of 5 and higher ranks are in the range of floodplains or river coastal and usually have surface and extensive floods.
The flood prone areas and providing effective solutions for flood management is one of the main steps in reducing flood damage. Therefore more precise management and control of basins with multiple dams, embedding flood alert systems in flood plain areas and performing basic measures is one of the most urgent measures to prevent, improve and control this natural disaster.
Key words: Analytical network process, Biological protection, Floodplain, Flood risk assessment, Ghotorchay
Dr Raoof Mostafazadeh, Vahid Safariyan-Zengir, Khadijeh Haji,
Volume 8, Issue 4 (3-2022)

Road accidents is the outcome of driver behavior, road condition, vehicle status, and environmental factors. Therefore, identification and assessment of effective parameters on road accidents can be considered as an appropriate way to reduce the accident events, driving violations and increase the road safety. Determining the effects of meteorological factors on the road accident events has gained more attention in recent years.
  The The main objective of this study was to investigate the relationship between the number of road accidents and the meteorological variables in the intercity road of Grmi-Ardabil in the Barzand route.
In this regard, the effects of climatic factors (including rainfall amount, the minimum absolute temperature, and the number of frost days) on the frequency of perilous events were analyzed. The data of accident events (in recent 4 years) were obtained from the trooper department of Ardabil Province along with the meteorological parameters of Germi station through a 11-year period. The statistical tests were performed using R programming software through statistical analysis.
Findings and Discussion:
The results showed that the majority of accidents were occurred in winter season which is in consistent with the frequency of frost days and also corresponded to the absolute minimum temperature. According to the results, the highest significant positive correlation at (R2= 0.43) was observed between the number of injured people and frost days. In addition, the relationship between the absolute minimum temperature and the number of were identified as significant negative correlation.
As a concluding remark, the poor road conditions caused by climate element can be considered increasing the frequency of accident events. Accordingly, the proper strategies related to behavior change could be
considered in setting the rules and regulations to reduce the accidents and the number of injuries.

Keywords: Climatic hazards, Correlation analysis, Frost days, Minimum absolute temperature, Germi-Ardabil road

Dr Fariba Esfandiari Darabad, Dr Raoof Mostafazadeh, Eng. Amir Hesam Pasban, Eng. Behrouz Behruoz Nezafat Takleh,
Volume 9, Issue 1 (5-2022)

Soil erosion is one of the environmental problems that is a threat to natural resources, agriculture and the environment, and in this regard, assessing the temporal and spatial amount of soil erosion has an effective role in management, erosion control and watershed management. The main aim of this study was to estimate soil erosion in Amoqin watershed and its relationship with well-known vegetation-based and topographic-related indices. The meteorological data has been used to determine the rainfall erosivity. The rainfall erosivity index was calculated using the modified Fournier index during the 10-year available recorded rainfall data. The value of LS factor has been calculate using digital elevation model. Meanwhile, C and P factors were determined based on the utilization scheme and condition of the study area. Data were analyzed and processed using ArcMap 10.1, ENVI 5.3, and Excel software. In this study, RUSLE model was used to estimate soil erosion, in GIS environment. According to the results, the amount of factor R in Amoqin watershed varies from 12.32 to 50.52 MJ/ha/h per year. The variation of soil erodibility index (K) over the study area is between 0.25 to 0.42. The amount of LS factor varies between 0.19 and 0.38, which is more in high slopes, especially around the waterways and uplands of the study area. The variation of C factor was estimated to be around -0.18 to 0.4. In general, it can be said that the central part of Amoqin watershed has less C value due to the greater area of agricultural activities and the highest amount is related to western areas, especially southwest areas because existing the rangeland areas. Due to the lack of protective measures in the study area, the amount of factor P was considered as unity for the whole region. The base layers of RUSLE factors were obtained and overlayed in GIS to calculate the soil loss in tons per hectare per year. The map of annual soil loss indicate that the erosion amounts varies between 1.21 to 5.53 tons per hectare per year in different parts of the study area. According to the results, the vegetation factor with a coefficient of determination 0.47% had a significant correlation with soil loss. The stream power index with the coefficient of determination of % 0.07% had the lowest correlation with soil erosion values.
Eng. Ebrahim Asgari, Eng. Mahboobeh Noori, Dr Mohammadreza Rezaei, Dr Raoof Mostafazadeh,
Volume 9, Issue 2 (9-2022)

 Determining Strategies for Improving Environmental Resilience in Gharehshiran Watershed in Ardabil using SOAR Analysis Technique
Ebrahim Asgari - PhD Student of Watershed Science & Engineering, Yazd University, Yazd, Iran. Email:
Mahboobeh Noori - PhD Student of Geography & Urban Planning, Yazd University, Yazd, Iran. Email:
MohammadReza Rezaei - Associate Professor of Geography and Urban Planning, Yazd University, Yazd, Iran. Email:
Raoof Mostafazadeh - Associate Professor Department of Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. Email: (Corresponding author)

Extended Abstract
Introduction: New approaches of crisis management have changed from the concepts of vulnerability to resilience and emphasize on strengthening the system's ability to deal with the risks of natural disasters. Therfore, the aim of this study was identifying the watershed capabilities of Qarahshiran and crisis management planning with emphasis on environmental resilience.
Methodology: The SOAR analytical technique and expert opinions of 52 experts were used to formulate the strategy, determine the strengths, opportunities, ideals and measurable results. The results of SOAR technique and crisis management prevention and preparedness strategies were compared with the environmental resilience of the field.
Results: Based on the results, reducing direct and indirect flood damage with 51.9% and low amount of soil erosion and water loss with 42.3%, were the most important results of the SOAR model. Out of 15 components of environmental resilience, the performance of 5 components was accepted as significant (α<0.05 confidence level). The evaluation of environmental resilience using one-sample t-test showed that the environmental dimension of resilience (2.67) with a significant level (α=0.003) has a significant that indicates high vulnerability and low resilience.
Conclusion: Considering site selection of watershed management structures, creating more opportunities and using the private sector potentials, and local NGOs will be useful in crisis management. Analysis of watershed resilience components in achieving integrated watershed management, proper knowledge of watershed function, possibility of self-regulation and recovery of balance and acceptance of adaptation to natural hazards, co-design of watershed residents, preparedness and coping with crisis can be more effective over the study area.
Key words: SOAR Model, Strategic Planning, Prevention and Preparedness, Resilience, Gharehshiran Watershed

Leyla Babaee, Nahideh Parchami, Raoof Mostafazadeh,
Volume 10, Issue 1 (5-2023)

Changes in the hydrological response due to climatic parameters and human induced activities can be derived from indicators based on the analysis of flow duration curves. The purpose of this research is to determine the flood and the low flow parameters using the flow duration curves. The trend detection technique can be used as a useful tool in deterimining the temporal changes of the different hydro-meteorological parameters. The river gauge stations of the Ardabil province were used for the analysis of high and low flow occurrence in this study. The spatial variations of the flood events can be used as a preliminary guideline for the prioritization of the watershed in the vulnerability assessment and management-oriented measures. Also, the assessment of low flow condition is a useful tool in the allocation of environmental flow allocation and utilization of river surface water resources.
In this research, temporal and spatial changes of Q10, Q50, Q90, Q90/50 and Lane indices in 31 hydrometric stations of Ardabil province during the period from 1993- 2014 were evaluated. The flow duration curve of each river gauge stations was derived. The flow duration curves also were plotted based on the dimensionless flow divided by the mean discharge and the upstream area of each river gauge station. Also, the temporal variations of the of Q10, Q50, Q90, Q90/50 and Lane indices were analysed using non-parametric Man Kendall trend test. Then the significant level of upward and downward trend directions were determined. In this study, the results of 5 river gauge stations were presented as example based on the the river flow ranges, which includes low, medium and high river flow discharge (Hajahmadkandi, Nanakaran, Shamsabad, Polesoltani, and Booran).
Based on the results, the trend of Q10 (Flood flow index) was significant at the stations located on the main trunk of the Qarehsou river. Meanwhile the Q50 (average flow index) has a significant decreasing trend in most of the studied river gauge stations. In addition, Q90 and Q90/50 indices have a significant decreasing trend in most stations. In addition, Q90 and Q90/50 indices had a significant decrease at (p<0.05) regarding the Lane index as a flood related indicator in the Arbabkandi and Dostbeglo stations, which are affected by the dam construction there is a significant decreasing trend.
I summary, the values of flood flow index in the upstream rivers of the Ardabil province had a increasing trend.

Page 1 from 1     

© 2023 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb