Search published articles

Showing 2 results for SharifiKia

Jalal Karami , Aminah Mohamadi, Mohammad Sharifikia,
Volume 3, Issue 2 (5-2016)

Resilience are concepts that are finding increasing currency in several fields of research as well as in various policy and practitioner communities engaged in global environmental change science, climate change, sustainability science, disaster risk-reduction and famine interventions (Vogel,, 2007). Where the risk is a probability of damage, injury, liability, loss, or any other negative occurrence that is caused by external or internal vulnerabilities, and that may be avoided through preemptive action (Benson,, 2004). Among natural disasters, earthquakes, due to the unpredictable nature of these events, are one of the most destructive. Iran is one of the most earthquake-prone countries in the world that its cities most affected by this phenomenon. Among the cities of Iran, Tehran, as the country's first metropolis, due to dense population, poor physical development, structural density, and lack of standards, is potentially facing a serious threat. The purpose of this study is to investigate the spatial flexibility of Tehran over the region 12 after the earthquake incidence.

The present study is dealt with the data preparing and analysis using geospatial methods. The several geospatial data such as Peak Ground Acceleration (AGA) map, urban structure, infrastructure and population collected from Tehran Disaster Management Center were provided and analysis based some GIS known algorithms. In other to urban spatial resilience zonation the AHP (analytical Hierarchy Process) was implemented to generation risk map. Finally OWA (Ordered Weighted Average) method was implemented in order to Production spatial flexibility map of earthquake incidence over the District 12 of Tehran. AHP model uses of priorities straight experts, but OWA provides of control the level of compensation and risk-taking in a decision. Using the conceptual of fuzzy quantifier with OWA makes the qualitative data analysis enter to decision.

    According to flexibility of the final map with fuzzy operator (All) equivalent to the operator MIN, the worst result Was obtained and resulting the highest risk and lowest flexibility respectively (Districts Nos. 2,12,7,8 and 11).By taking all the criteria of a criterion without compensation by other criteria as "non-risk" is obtained .

Map obtained with fuzzy operator (Half) has the high potential to provide suitable options,  because in addition to integration criteria the importance of each parameter based on the weight given to the criteria are considered. In this map Districts Nos.2.6 and 8 (Baharestan, Emamzadeyahya and Sanglajedarkhangah) respectively were most Risk to earthquakes and therefore less flexibility to the earthquake. The map obtained with the fuzzy operator "Atleast one" is equivalent to MAX operator districts Nos. 2,12,7 and 8 (Baharestan ,DarvazehGhar of Shush,Abshardardar and Sanglajedarkhangah)  respectively were most Risk to earthquakes and therefore less flexibility to the earthquake.

The fuzzy conceptual map quantifier showed that districts Nos. 2 and 12 (Baharestan and DarvazehGhar of Shush) were most vulnerable and therefore less flexibility to the earthquake as final results.

Mohammad Sharifikia, Ali Mosivand, Maral Poorhamzah,
Volume 9, Issue 3 (12-2022)

Risk assessment of Maroun gas and oil pipelines due to land sliding hazard

based on D-InSAR technique

Mohammad Sharifikia, @ Associate professor, Tarbiat Modares University, Department of Remote Sensing-


Meral Poorhamzah, postgraduate in Remote Sensing, Tarbiat Modares University

It is importance to note that Iranian oil company have to transfer this valuable enrage from one side to other side of
country passing form several ridge and valley prone with several natural hazard. This is because the natural sources
of oil and gas generally lied in south west part of Iran locally calling Manathegh Nafte Khize Jonoub (south oil field
area). This area is closed to one of most active geological zone of Iran (Zakrose) covering thousands of kilometer
from south east to north west. Supplying natural enrages to central port of country need to crossing from this zone
which is suffering with several difficulties as well as neutral hazard. Out of neutral hazards can found to excite in
this area, the landslide hazard is a main restriction for pipeline crossing over.
The present research is dale with radar interferometry techniques applying for risk assessment and mapping over the
oil and gas pipelines suffering to landslides hazard in the part of Central Zagros (Maroun-Esfahan). For this purpose,
two individual radar dataset in C (ASAR) and L (PALSAR) band with deferent time were collected. Furthermore,
the D-InSAR technique was applied for land surface movement and land displacement detection. The outcome map
was showed the maximum rate of land displacement in this region is about 7.4 cm uplifted and 3.9 cm subsidence
with duration of almost one year. this is due to shape of landslide over the area’s slop. Overlying the landslide map
with the pipeline crossing route shown at lies three active landslides over the Maroun-Esfahan gas and oil pipelines.
For investigation about this three landslide and damage estimation over the pipeline the field study has been done
for accuracy assessment and land movement rat measuring and evaluation. Which, successfully identified and
mapped 3 landslides were located across the pipeline and damage it. Furthermore, map surveying by DGPS in RTK
method over the one of landslide shown that sliding transfer 20 m with falling 10 m over the length of 45 m of gas
pipeline. moreover, the press of landslide made curvatures on straight pip hogging pipe 43 cm. continued this
landslide activation and more pressing in close further can make a fracture and pessimistic pipe expulsion. With can
a kind of disaster if the event be close to settlements are.
The outcome landslide map shown the active landslide points (small area) very well, but the main think need to
suffusion information about interred area. For this exigency have to convert points data map to area as prediction
hazard. For this proses and to understanding the amplitude of landslide hazard in area the information value model
was applied for hazard zonation and mapping. The landslide hazard map resulting from D-InSAR technique as
inventory map along with 8 data set maps namely, lito-logy, soil, land cover, lineaments, faults, roads, derange
pattern and slop, has been interred to model for zonation and hazard estimation over the area. Furthermore, this map
was reclass in 5 individual hazard and risk class from low to high risk. The hazard map analyses and calculation was
show about 20 percent of area study was marked as high and very high risk zone. This is mainly because of
morphological and lito-logical exclusivity of area resulting by active tectonics. Crooning and overlaying the
landslide hazard map with pipeline track has been shown 28.5 percent of line length crossing over the high and very
high risk zone, where the 52 percent was prone with low and very low risk zone. This mine that near 1/3 of mention
pipeline length suffering from hazardous area which can classified as high risk part of pipeline.
Interpreting the hazardous classes on the prediction map is an important concern in landslide prediction models. For
this purpose, the prediction-rate curve was generated using validation group of landslide locations to validate the
prediction map obtained. This rate curve explains how well the model and factors predict the landslide. Results from
the success-rate curve are very promising, since the 3% area predicted as the most hazardous, includes 42.35% of
the total area affected by landslides, and this value grows to 90%, when about 25% area of highest susceptibility is
considered. The prediction accuracy can be assessed qualitatively by calculation the area under cover. The total area

equal to one means perfect prediction accuracy. In this model ratio area was 0.633 that means the prediction
accuracy was 63.3%.
Keywords: Differential SAR Interferometry, PALSAR, ASAR, Landslide, Oil and Gas Pipeline risk

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb