Search published articles


Showing 2 results for karampour

Mostafa Karampour, Mohammad Saligheh, Meysam Toulabi Nejad, Zahra Zarei Choghabaki,
Volume 3, Issue 1 (4-2016)
Abstract

In issues related to air pollution, the thickness of the boundary layer is known as the depth of the mixed layer because the pollution on the ground surface is mixed in this entire layer through turbulence processes. In most cases, the boundary of the area is clearly visible on big industrial cities. The depth of the mixed layer has an important effect in the concentration of air pollution which is dependent on the intensity and duration of solar radiation and wind speed. Usually after 2 to 3 hours from the time of maximum solar radiation, air temperature near the earth's surface reaches its maximum value. At this time convection of heat is formed in the air near the earth surface and transfers the heat from the surface to higher altitudes. These vertical movements will cause atmospheric turbulence and increase in instability. This is when the growth of the mixed layer reaches to its highest level. After sunset, night temperature inversion occurs near the surface. This temperature inversion is due to the rapid cooling of the Earth's surface. In such condition, the cold air layer is near the earth's surface and the warm air layer sits on top of it and air is in a stable condition.  As a result, the accumulation of contamination, if there are sources of pollutants, will increase in the earth's near-surface layer. If the conditions remain steady during the day, the mixed layer will not have much growth and as a result, contamination in the shallow layer near the surface of the Earth reduces solar radiation.

Each year, thousands of gaseous pollutants and particulate matter are emitted in the metropolitan area of Tehran and due to the geographical and climatic conditions of Tehran, temperature inversion phenomenon is not something unexpected. By formation of the inversion layer, these pollutants will remain near the earth's surface for a long time which in turn will be the cause of a lot of heart and respiratory problems. Therefore, identifying the characteristics of this layer on polluted days is of particular importance to the health of the residents of this city.

In this research, the study area is Tehran which is in the foothills of the southern Alborz and between longitudes 51 ° 2 'to 51 degrees 36' east and latitude 35 degrees 34 minutes and 35 degrees 50 minutes northern. The height of the northernmost point of this city is 1800 and up to 1200 meters in the center and 1050 meters in the south.

To conduct this research, inversion data including temperature, wind, atmospheric pressure and humidity and vertical navigation radiosonde data at the Mehrabad weather station from January to 29 December 2013, were taken from the Meteorological Organization of country. Then the statistics of daily vertical scroll of atmosphere above the Mehrabad synoptic station was received from the University of Wyoming. Also, the hourly data of air pollutants including gaseous pollutants CO, N2O, O3, SO2 and particulate matter (PM10) were prepared from the air quality control center (AQCC) for the stations Aghdasiyeh, Geophysics, Poonak, Rey and District 11.

After receiving information about the vertical scroll of the atmosphere in Mehrabad station, in order to have a closer examination of the vertical profiles of potential temperature changes in the lower atmosphere, using daily data from the radiosonde to obtain potential temperature changes in height were measured. Then, in order to identify the days with high pollution levels (the unhealthy condition for sensitive groups) and days with good conditions, so that all stations under study were the same, based on a standard index of air pollution Table 1 was developed. In the end, 4 days with critical inversion of potential temperature, including two polluted days (February 6th and August 16th) and two clean days (9 February and 5 June) were detected. Then according to the proposed method of Hefter, the approximate height of the boundary layer was calculated for these 4 days.

In this study, it was observed that the boundary layer height in contaminated cold season of the year reached 1,200 meters in the morning hours while in the afternoon in the cold samples, it grew to 1900 meters. In the warmer months based on the height of critical inversion layer in the selected days it reached more than 6,000 meters. In pure samples of warm and cold seasons, the boundary layer height had significant growth to the extent that in the cold sample of the year it reached to 2,100 meters in the morning and 2,600 meters in the afternoon. On June 5, which is intended to represent the clean and pure heating season, boundary layer height was of 5300 meters in the morning hours which shows a 4,000-meters increase in comparison to its polluted counterpart. The point to be noted is that since the active track of potential temperature can be considered as a measure of air stability, in the critical inversion, for the case of polluted samples of morning hours that were irradiated with inversion, active track of the potential temperature was very high in them. Thus on days with radiated inversion (polluted days) we can say that border of boundary layer was based on the inverted layer. Also the methods used in these types of inversions are more efficient for the determining height of the boundary layer.


Hamed Haidari, Dariush Yarahmadi , Mostafa Karampour,
Volume 7, Issue 3 (11-2020)
Abstract

Dust phenomenon is one of the climatic fronts that is often formed in the dry and desert regions of the world, and is known as a natural hazard. Occurrence of walnuts causes dust, damage to the environment and the occurrence and exacerbation of respiratory, cardiac, air traffic and threats of tourism, agriculture and so on. Also, in the health section of the compounds in calcium dust, more than 2.5 g of it causes the appearance of kidney stones, and blood vessels. Iron causes swelling of the conjunctiva and retinal inflammation, as well as the syndrome. Magnesium causes depression, depression and dizziness of the individual. Short-term breathing of aluminum leads to coughing and irritation of the lungs and prolonged breathing causes damage to the lungs. In recent years, the identification of dust source areas has attracted the attention of researchers in numerous studies, and have introduced various areas around the world as the main source of generous production. The country of Iran, and in particular the Western and Southwestern logic of Iran, is constantly experiencing the phenomenon of dust and its problems. In the west of Iran, desert areas are located in the deserts of southern Iraq, Saudi Arabia and far away from Syria and North Africa. The geographic location of the southwestern part of Iran and its proximity to these deserts have led to a frequent occurrence of the phenomenon of dwarfs, which are different throughout the year.
In this research, two categories of data were used: the first group is data on climatic elements or unstable elements.
The annual climatic layers of the region were used for a 30-year statistical period of 2016- 2016. Measurement data on the temperature of surface temperature was obtained from a MODIS sensor in a 17-year statistical period (2000-2016). The second group of data layers and information on the ground factors or factors were stable. The layers of these variables included:
  1. The digital elevation layer of the area with a precision spacing of 30 meters from this layer was used as the elevation layer of the area.
    2. The slope of the region, in percent, which is the layer derivative of the digital elevation model and derived from the same specifications of the DEM layer.
    3. The surface layer of the surface layer that was taken from the MODIS surface coating product
    4. Layer of vegetation on the surface of the earth, which was also taken from the 1 kilogram MODIS vegetation cover
    5. Soil layer that was prepared by the country's water and soil organization
 The method of conducting analytical and statistical research in which the main objective is the determination of areas conducive to the formation or expansion of dust cores. In this regard, the establishment of land-based and climate databases is the first stage of work, after forming the required databases, the formation of information layers These data are in the GIS environment. In order to form these layers, the interpolated models in GIS were used and the optimal model was selected in such a way that less error values ​​were obtained. After forming the existing layers, we classified and weighed each layer based on the AHP weighting algorithm. Finally, due to the assigned weights, the overlaying of the weights of the layers in the GIS environment was obtained and finally a potential capability map of the formation of local dust collectors in Lorestan province was obtained.
 The rainfall factor is the most important and most important factor in determining the areas susceptible to becoming dusty. The weight of this factor in determining and identifying areas susceptible to dusty cores was equal to 239%. Vegetation factor, which was prepared using the NDVI indicator of the MODIS product, was the second factor in the development of dust-prone areas with a weight of 199.99. Relative humidity factor is the third factor or component that influences the determination of suitable areas to become the local focus of dust. The weight of this factor is equal to 0.15. The wind speed factor is in the fourth place in terms of determining the areas susceptible to dust. The relative weight of this factor is estimated at 116.0. As shown in Table 14, slope and elevation factors are the least important factors that can play a role in the production and development of dusty centers. The weight of these factors in identifying areas susceptible to formation of dusts is 0.024 and 032.2, 0 is detected. The calculated incompatibility index for this weighing is as high as 4.8, as shown in Table 15, which indicates that the contradiction between the offered weights of indices relative to each other is less than the allowed threshold (12).
 Neutbay expressed the highest concentration of areas susceptible to dust mites in the eastern region, especially the northeast of the province, which includes the cities of Azna and Aligudarz. There are also parts of this category in the southern regions of the study area, including the cities of Poldokhtar and Rumshagan. In the central regions of the province as well as in the northwest of the province including the Khorramabad, Delfan, Dynasty and Dorood districts this class is not observed. In the southern parts of the city of Kohdasht, small parts of the floor of the potential centers of dust are also observed. This flooring has the most risk of becoming a dusty focus. The power source of many of the province's dusty incidents can also be said to be areas where some of them are currently potential sources of dust. Since they have played a major role in the identification and detection of these areas, rainfall and vegetation cover, these areas are exactly in line with parts of the province, which, firstly, have a mean rainfall of less than 250 mm, and the density of vegetation is less than 2 / 0 (NDVI index), which represents a very poor vegetation and, in fact, a lack of viable vegetation. In terms of land use, these areas, or inferior land, or very rangelands, are very weak.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb