Search published articles


Showing 26 results for City

Hossien Hataminejad, Mohammadreza Rezvani, Fariba Msc of Spatial Planning,
Volume 1, Issue 4 (1-2015)
Abstract

Today urban livability reflects a powerful discourse in urban development and city design that is prevalent in urban planning literature suggests that there is an ideal relationship between the urban environment and the social life .On the one hand, the livability indicates the strong urban influence and attraction. On the other hand, the livability will further strengthen the urban connectivity and influence by attracting more investment, human and cultural resources. The livability of a city is closely related with a healthy and ecological city and sustainable urban development. This study aimed to measure the livability in the neighborhood of  region(2) of Sanandaj city and research methodology is descriptive-analytical.  A base map of the study area was prepared using Arc view Software. The region (2) is located in the central parts of the Sanandaj city.and the population of region is 239,965. The sample size was calculated using the formula Cochran. Therefore, 370 residents of neighborhood filled the questionnaire and expressed their viewpoint about the indicators of livability. A data collection method with respect to the merits of subject is Library and field method. The filled questionnaire by residents of different aspects of livability is measured. According to the Social features, facilities, geographic, economicfacilities and services available in the region , urban managers and experts have weighted the dimension and index of urban livability.The index of economic, social and environmental livability was calculated and  the sum of these three dimensions is considered as total livability.To assess the livability of neighborhoods, data from filled questionnaires by people have been analyzed by the software GIS, SPSS and Excel. Using hot spots, three indicators and total livability of each neighborhood displayed.The results of the analysis of economic indicators showed that the areas in  the western parts of the city  are hotter and more color spots, But in the East and South East areas neighborhoods, like Shahrdari, Sepahdegaran  have  in colder and less color spots. This actually shows the cluster distribution of economic indicators. Also the results of the analysis of social indicator showed that spatial distributon is cluster neighborhoods like Khosow Abad, Masnav, Chahar Divari, Mobarak Abad are in the hotter spots and neighborhood Adab, Varmaghani, Hassan Abad are in colder spots.The resualts for environmental indicator reveals  that spatial distribution is cluster. Mriginal neighborhoods are in colder spots and Nezam Mohandsi and Shardari town and Degaran allocated the lowest Z. In contrast neighborhood like Mobarak Abad and Khosrow Abad are in hotter spots. Analysis of hot spots for total livability implies that neighborhood in West area of city follow clusters of  hotter spots and the South East neighborhood follow colder spots. This can result in injustice in space services and  the lack of performance in order to improve the quality of the environment and quality of life in area, livability is defined as one of the aspects that could contribute to a high quality of living, because high quality of living will affect citizen's lifestyles, health condition and shows stability of the built environment. most researchers agree that livability refers to the environment from the perspective of the individual and also includes a subjective evaluation of the quality of the place so measurement of urban livability   for all places promote the perception of urban managers and planners and with such knowledge, the path will be open for practical, creative and futuristic management of the urban environment. In relation to the livability of neighborhoods to each other, spatial and non-spatial analysis shows that areas with different ratings are compared to each other. With respect to results of measurements of livability: centrally located neighborhood is more livable than their peripheral counterparts which may calculate that location has significant importance in the pattern of livability. Therefore spatial distribution of dimension and index of livability is not the same extent.The results showed that between main dimensions of neighborhood livability is not different. But in terms of spatial distribution, three dimensions are not equally distributed and it is cluster. Ranking based on total index indicate neighborhood of Khosrow Abad with score (3.279) is ranked at first and Sharif Abad with score (2.228)is ranked at last.


Mahdi Zare, Farnaz Kamran Zad,
Volume 1, Issue 4 (1-2015)
Abstract

The Iranian plateau formed by the active tectonics of the Alpine-Himalayan belt, is situated between the Eurasian and Arabian plates. The plateau is considered as one of the most seismically active regions in the world and is faced with different earthquakes each year. Active tectonic conditions, different faults and seismic sources and a large population in earthquake-prone areas makes it necessary to perform more considerations and scientific studies in order to analyze the seismic hazards and risks.

In this paper, different aspects and effects of the Iranian seismicity has been determined. In order to review the status of seismicity and distribution of earthquakes in Iran, we need first to consider the tectonic setting, structural environment and the active faults of the country. To date, there have been some different studies to divide the the seismotectonic setting of Iran into different seismic zones which are explained in this paper briefly. Moreover, the seismicity and most destructive past earthquakes in the Iranian plateau and distribution of earthquakes are shown.

    One of the most important tools in studying earthquakes is to perform continuous recording and monitoring of the seismic event and ground motions which is implemented using seismic and strong motion networks. The systematic networks have been set up within the country and are working and responsible for data collection and monitoring of seismic events permanently. These networks including the Iranian Seismological Center (IRSC), broadband seismic network of the International Institute of Earthquake Engineering and Seismology (IIEES) and strong motion network of the Road and Housing and Urban Development Research Center (BHRC) are also introduced in the current study.

Given the high seismicity rate in Iran and rapid development and growing of the populated cities and buildings on seismic hazard prone areas, attention to seismic hazard and risk assessments has been become as a particular issue that should be addressed carefully. Therefore, seismic hazard analysis and estimation for the constructions of human structures has become an enforcement for which several seismic regulations and codes have been defined. In this regard, deterministic and probabilistic seismic hazard methods have been developed as the two most important techniques. The deterministic method is a conservative approach that is mostly used to determine the highest level of strong ground motion (acceleration) for a special site (such as dams and power plants). On the other hand, the probabilistic method provides probabilities of different strong ground motion levels considering different uncertainties and the useful life of a structure.

    In addition, considering the level of seismic hazard in a region and its population can lead to risk assessment, vulnerability and resiliency of the human societies. Thus, parallel to seismic hazard and risk analysis, it is so important to conduct crisis management, reduce efforts and a continuing assessment of the situation in the country. In the present study, problems and challenges facing the crisis management, as well as urban distressed areas are mentioned.

    Regarding the existence of constant threat of natural disasters, especially high risk of earthquakes, there is a serious need to conduct more scientific researches in various fields, including detailed research on various aspects of seismology in Iran, retrofitting of constructions, crisis management and disaster risk reduction. To achieve this purpose, we need a scientific network in Iran. There sould be several experts and organizations as the members of this network who are able to understand and control the earthquake effects on the society. Necessity of such a scientific network is due to that it is impossible to take efforts in order to reduce the earthquake risks without a holistic perspective and earthquake data completion.

In this regard, we need significant infrastructures in terms of human resources and technical cooperation to motivate a set of organizations, universities and research institutes. The responsible organizations such as geological survey of Iran, National Cartographic Center of Iran, meteorological organization, Institute of Geophysics of the University of Tehran, International Institute of Earthquake Engineering and Seismology, Road and Housing and Urban Development Research Center, National Disaster Management Organization, Red Crescent Society of the Islamic Republic of Iran, as well as universities and NGOs must work together to make it possible to review and integrate the existence potentials and to share the information and data of the earthquakes in Iran and define various response scenarios faceing natural disasters, especially earthquakes.


Farimah Bakhshizadeh , Hani Rezayan, Mehry Akbary,
Volume 2, Issue 1 (4-2015)
Abstract

Air pollution has become one of the main problems of cities. Among the sources of air pollution, vehicular traffic plays an important role. Planning for efficient management and control of the air pollution caused by vehicular traffic requires accurate information on spatio-temporal dispersion of the pollutions. This research studies 3D spatio-temporal dispersion of NOx pollution caused by vehicular traffic at Valieasr-Fatemi intersection resides in Tehran, Iran. It is selected for being crowded and having the required meteorological and pollution data sensed by the Air Quality Control Corp. of Tehran Municipality.

This study uses GRAL that is a local micro-scale air dispersion model defined based on Euleran-Lagrangian dispersion models. It investigates the level of spatio-temporal autocorrelation generated by GRAL simulations at both 2D and 3D modes and discusses how it adapts with the reality.

Adopting the GRAL air pollution dispersion model, streets are defined as the linear source of pollution of NOx caused by vehicular traffic. The traffic rate is estimated based on street areas and directions, the designed average traffic velocity, traffic volume and car passage counting at the intersection. The 3D geometry of the buildings is also added to the model. All the required data that were available for winter of 2007 are gathered and introduced into the model.

The model is executed at 9 heights vary from 1.7 m to 52.5 m. These heights are defined covering a range from an average human level height to average building height and above. These levels are considered both separately in 2D mode and integrated into a 3D mode. The formation of NOx clusters is investigated analyzing their autocorrelation using Moran Index at global and local scale.

The calculated Moran-I at global scale at each 9 levels of heights, varies from 0.7 to 0.9 that depicts the validity of the GRAL model adopted to simulate the expected autocorrelation of pollution density affected by spatial issues. The Moran-I increases at higher levels as less air turbulence happens. However the result show that the turbulence increases temporarily at about 10m to 15m which are the average building heights. At local scale, the Moran-I/Anselin shows that HH clusters dominate at lower levels, around streets central areas that are farther from the buildings, and around the intersections. At higher levels, esp. higher than buildings average height, the LL clusters dominate. However the HH clusters formed around intersections, while are shrank, are still visible at high levels. The turbulence caused by building fronts and their down wash effect is also shown in the result as no definite cluster is formed near the buildings front and back.

The autocorrelation analysis is also carried for an integrated 3D model consists of all the 9 levels of heights. Considering the weight matrix for a 20m 2D neighborhood and 1m/s dispersion of the pollution vertically, the global calculated Moran-I equals 0.229 which shows existence of a spatio-temporal autocorrelation of the results generated by GRAL. At local scale the results show that the HH clusters have higher temporal dispersion rate than LL clusters.


Ahmad Zanganeh, Hamidreza Talkhabi, Feredon Gazerani, Mohsen Yosefi Feshangi,
Volume 2, Issue 1 (4-2015)
Abstract

The extent of poverty, inequality and environmental differences patterns in large metropolises are the results of a dual economy with free market capitalism rule in these cities. Urban spatial structure expansion and incoherent, irrational focus on different parts of the city and its facilities and services, economic development, social inequality in them. Urban environments, complex systems with complex phenomena, relations and interactions between the components are different. Cities in the twenty-first century are undoubtedly one of the great challenges which are facing to them is their poverty focus. The physical differences reflect the existing inequalities in societies based on market economy. Undoubtedly, the developments in the past few decades have a large share in these settlements in the metropolises of the country. . Although the extent of urban poverty phenomenon is not new in urban planning literature, referred in ancient societies, such settlements are massive and complex phenomenon, which is entering its second phase of capitalism, the capitalist industrial and disturb Aboriginal settlement system is embodied in the geographic ranges. This astonishing growth in the South with the growth of the tertiary sector of the economy on the one hand and on the other hand, the recovery of the agricultural sector in rural areas occurred. Geographers look at the formation of the spatial extent of poverty regarding both humans and nature.

     Poverty is caused by humans in the absence of proper mechanisms in human society develops. Arak urban space reflects the socio-economic imbalances and the spatial extent of poverty in the Border areas of the city.

     This research aimed to identify and Rank urban poverty in the Arak city. According to recognition type of this problem, descriptive – analytical  methods are used in this research. The multiple components of economic, social and physical are studied.  ArcGIS is used to determine the Density factor () and the distribution of each indicator. Then, according to the purpose of the study, stratification between the known areas (including: the city center, 20-meter-Mighan, Davaran and Koshtargah, Roodaki and Bagh Khalaj, Footabal, Shahrake valiasr and Qanate Naseri) And the quantitative model and  AHP  & ELECTRE Regionalization are used. In this way ranking options instead of a new concept called "non-non Ranking” used. Multi-criteria problems to deal with a set of options, indices and values ​​expressed preference. In this way all options non-ordinal comparisons were evaluated using non-effective options and be removed from list. The results of this paper showed two spatial extent of urban poverty and Regionalization of the settlements with the use of multiple components classified. The results showed that due to the combination of multiple indicators of social, economic and physical, seven main ranges were identified that except for the central part, all extents located in the Border areas. According to the results, the central district (first), 20-meter-Mighan Street and Rudaki and Bagh Khalaj neighborhoods (second), Football neighborhood and Vali-e-Asr (third) and neighborhood of  Qanat-Naseri (fourth). Review the history of the formation and spatial differences in this field indicates the fact that different mechanisms are involved in creating them. These ranges are more vulnerable to poverty and poor economic conditions in the exodus of migrants entering and after industrialization city. It can be said that in order to identify the extent of poverty, systemic view of the external and internal mechanisms in terms of time - place is essential.


Esmaeil Ali Akbari, Nafiseh Saadat Miraii,
Volume 2, Issue 1 (4-2015)
Abstract

Urban planning has to perform seismic pathology of urban streets in seismic cities. Streets and roads are the most important spaces and urban elements in the cities which should be considered not only in space occupation and connecting spaces and urban activities but also in seismic vulnerability and on this basis it is planned to reduce environmental hazards and on top of earthquake-related. Many physical and functional characteristics of urban spaces and the distribution and concentration of the urban population take shape to comply with the location, capacity and function of the city streets network. Therefore, one of the most essential and the most important topics in the study of seismic cities is understanding of the relation between seismicity and urban streets through seismic vulnerability studies. This paper aims to assess factors and patterns of seismic vulnerability of urban networks with a prevention planning view in the 3rd district of Tabriz City.

    This research has descriptive-analytic method and the statistical population is street network of 3rd district of Tabriz city. Data and layers of information have been prepared by documentary method and have been processed using the Delphi method and the method of ranking and rating IHWP in GIS. The main factors and indicators influencing streets vulnerability have been selected based on the eight indicators. These indicators include distance and proximity to faults, quality of buildings, the degree of closeness (width of the wall), building density, population density, the traffic service or traffic volume toward roads capacity, access to health centers and services and the land use system. The final map of seismic vulnerability has been produced by combining eight layers of information related to above mentioned indicatorsand based on it the seismic vulnerability levels and factors of the street network has been analyzed.

    The final results of the seismic vulnerability of streets have been categorized in the 5 classes of vulnerability including very low, low, medium, high and very high. From total area 18.4% is estimated very low, 29.37% low, 31.77% medium, 14.21% high and 6.22% very high. Thus, taking into account the streets with medium, high and very high degree as vulnerable axes, it is concluded that 52.2% or more than half of the streets are seismic vulnerable and other half are relatively stable.

    Within the vulnerable and unstable network, more than 20% of the streets are in high and very high vulnerable classes. Street network with high and very high vulnerability are mainly arterial streets with commercial and service land uses in the scale of trans-regional or secondary roads leading to artery of trans-regional which have high population density. These streets compose a high degree of closeness, increase in traffic service level, population density and land use system with the concentration of commercial, recreational and trans-regional land uses are the main causes of vulnerability. But, in the narrow streets (8 to 10 meters), the degree of closeness of arterial streets, traffic parameters and user system have increased the seismic vulnerability index. Spatial pattern of streets vulnerability has an increasing trend from East to West and from North to south. The results show Spatial intensity of vulnerable streets is located at the center of the district and on Vali Asr, Shariati, Aref  and Razi Streets. Thus, the efficient and sustainable streets are located in the East of the under studied district.

    The results also show that high vulnerable streets has less distance to fault and more distance from medical centers. In addition, they have high traffic and lower quality buildings and high risk land uses (electric and gas infrastructure) are located there. Since the wide streets are more often subject to less obstruction, this characteristic in seismic time cause to transfer the traffic of narrow passage to the main streets. Grid pattern of streets and frequency of intersections by slowing down the speed of the vehicle increase the volume of traffic and lead to an increase in seismic vulnerability.


Mesysam Jamali, Ebrahim Moghimi, Zeynolabedin Jafarpour, Parviz Kardovani,
Volume 2, Issue 3 (10-2015)
Abstract

The process of urbanization and development in high-risk areas such as river banks has increased the vulnerability of urban communities to environmental hazards. The banks of Khoshk River in Shiraz is one of these areas. These hazards are two parts : hazards resulted from river and waterways erosion (destruction, transportation and sedimentation) and the hazards resulted from floodings over the surrounding urban areas.

In order to prepare the literature review for this study, the various books, theses and articles were applied. Also, in order to determine the spatial position of this section, the Satellite Images and Google Earth pictures were used. The Global Positioning System (GPS) was also applied for the field observations such as collecting spatial data, extracting the kind of formations, Geological structures and faults. ArcGIS and Global Mapper 16.2 were also used for data processing and mapping.

 The geomorphological hazards in Khoshk River bank were evaluated in two parts:

  1. The evaluation and analysis of the role of river and flooding processes in creating the environmental hazards for Shiraz.
  2. The evaluation and analysis of the role of humans as the intensive factors of riverine and floods hazards in city.

 The evaluation of longitudinal profile in the river indicates that when the stream is entered to plain, the water moves with more speed because of faults and high steepness over the  Drake alluvial fan. One indication of this process is the presence of coarse sands and angled gravels. In this part, the erosion of riverbank is much higher than the erosion of river bed. In this section, the longitudinal profile of the river has a regular trend of concave and convex sections due to the erosion in convex parts and sedimentation in concave parts. In addition, there is a balance between deposition and digging process. The erosion is very intensive in regions where arc meander is close to  the flooding plain of the bank and causing the destruction of all facilities.

 The longitudinal profile in the river indicates that the height and slope of river has been reduced from North West to Maharloo River. The average slope of the river is 2.40%.

         In order to determine the role of flooding in creating risks for Shiraz, the floodwater discharge data were collected from Regional Water Organization. Furthermore, in order to understand the role of maximum discharge values, various experimental relations were used in the basin. The un- ordered development of urban areas especially in the north west, destruction of natural areas intensified the amount of  runoff and reduction of vegetation cover.

 The pick values of maximum discharges in Khoshk river  with the return periods of 50 and 100 years waere estimated 115m3/s to 131.4m3/s respectively which may result in overflowing of water on the streets. The human factors include the construction of bridges on the river, fencing river with stones and construction of beach, construction of bypasses for public transportation and reducing the traffic in the riverbed and trespassing to the river bed in Shiraz caused the overflowing of water from the river. The last floods in Shiraz occurred in 1987 and 2002 that caused major losses to the houses and commercial places close to Khoshk River. In order to analyze parts of river that are close to the town and have more important influences on the hazards and disasters, the satellite images of khoshk river basin in the town were taken and the river was classified in three sections with regard to risks level, river morphology and river classification based on its hazards for close areas as high risk (Maali abad Bridge limits to Fazilat Bridge and Sardkhaneh Bridge to Maharloo River), low risk(Tange sorkh to Maali abad Bridge) and medium risk (Fazilat Bridge to Sardkhaneh Bridge).


Ali Shammaii, دانشگاه خوارزمی تهران , ,
Volume 2, Issue 3 (10-2015)
Abstract

Human and social crisis and natural hazards are of great importance and urgency in urban development planning. As a result, in order to reduce the loss of life and financial damages, one of the necessities of urban planning and spatial analysis is identification of vulnerable areas. In Piranshahr city due to its sensitive geographical location and zoning the implementation of passive defense in urban planning is of utmost importance. The importance of this study is to examine vulnerabilities in order to operate an optimal crisis management. The main objectives of the study are:

- Identifying the most vulnerable neighborhoods of the city.

- Identification of vulnerable facilities and equipments.

The research method is descriptive - analytical and research space is Piranshahr city limits. In order to identify the characteristics and distribution of facilities and equipment in the border town Piranshahr library and field methods have been used. The results of the last census (1390) of Statistical Center of Iran, observation and interviews with local people and experts was used. The master plan and detailed studies of 1391 and relevant maps of the municipalities, the aggregation and dispersion of urban facilities and equipments were used. To value the passive defense importance in the city sixteen vulnerability variables were defined and measured according to opinions of people and experts. Then the data were analyised with the  Delphi software. The main variables include: Lifeline, crisis management centers, military bases, equipment and support centers. After determining the rating of each factor and sub-sectors, by using AHP and Expert Choice software vulnerability of each of the following criteria were calculated. For mapping the city Piranshahr fuzzy model is used.

The results showed that the variables of vital artery with coefficient of (0.469), crisis management centers and joint support centers with coefficient (0.201), municipal equipment by a factor of (0.086) and military centers coefficient (0.043) are among the most vulnerable facilities and equipments in Piranshahr city. The neighborhood of western, central and south-west of the city, including the Kohneh-Khaneh and Grow of a cultural1 neighborhoods, Ghods, Isargaran, Zrgtn and Mom-Khalil, were the most vulnerable neighborhoods in the city regarding the military attacks. Spatial analysis of vulnerability of the city resulted in three vulnerability regions. The neighborhoods of the West, Central and South West (Kohneh-Khaneh and Grove neighborhoods and part of a cultural1 neighborhoods, Ghods, Isargaran, Zrgtn and Mom-Khalil) are the most vulnerable neighborhoods of the city. The reason for this situation are the physical characteristics of the city such as texture, organic, fine texture and high density residential units, existence of urban infrastructure, core founding of the city (the Kohneh-Khaneh neighborhood) and the secondary core (Zrgtn neighborhood). whereas the neighborhood (Park City and part of Koy-e-Khayyam and new neighborhoods of Mohammadkhan in the north and the south and southeast of the city) due to the preparations made for the perfect skeletal indices as well as the extent of large open spaces are somewhat immune and safe regarding the passive defense.

Keywords: Spatial analysis, vulnerability, Passive defense, city of Piranshahr.


Hassan Afrakhteh,
Volume 2, Issue 4 (1-2016)
Abstract

The City-region of Tehran is encountered with various environmental problems, including traffic, air pollution, lack of drinking water and green space, physical texture conflict, flood and earthquake. Capital accumulation has considerable role in shaping spaces which can create and intensify environmental disaster in special socio-economic situation. The second cycle is the conversion of capital to fixed and long-term assets with the aim of further benefits, which in fact produces two types of artificially environment during this process namely the built environment for production, and the built environment for consumption.

The third cycle is aiming to connect science to production and increase production capacity by investment in science and technology. When production of surplus value reduced in the first cycle, surplus value of second cycle increases through speculation and real estate transaction (real estate capital). Therefore, the owners of the lands and buildings are encouraged in production, trade and supply of these type assets.

In the courtiers that are legally and administratively encounter with tax receipt problems,  urban lands ownership is deposited to market system without any control, hosing transaction continues without any limitation, situation is moving forward to personal vested interests, asset value rises rather than production value, the price of land and construction increase severely. In the above mentioned condition, beneficiaries attempt convert the natural resources including park, mountain, river privacy and road privacy to marketable commodity and legally or quasi legally seize them. Therefore, unreasonable construction and population density increases and city-region will encounter with environmental disasters.  

The main objective of this research is to understand the underlying factors of capital accumulation through construction and its impacts on createion and intensification of environmental disasters in the Tehran city-region.

  Five different regions of Tehran were selected for data collection. "Q-methodology" was used for gathering and analyzing data. The society of communication or people whom the study sought to identify their mentality towards the research topic, were 25 experts selected through purposive sampling. To set the concourse of communication, a combination of primary (experts commented in an interview) and secondary (sources of credit) sources have been used and   34 statements have been developed. After sorting the data for analysis, SPSS software data matrix is ​​formed. Factor analysis, as main method of analyzing Q data matrix has been used based on Q logical methodology.

The results of Q analysis depicted four viewpoints with variance of 95.911 percent on the underlying cause of capital accumulation through construction and its contribution on increasing risk of natural hazards in Tehran city-region.

The first viewpoint has devoted 52.800 percent of total variances and can be titled as" Function of real estate transaction and Non-productive economic domination".

The second viewpoint which has received 18.914 percent of total variances is accordance with "commodification of land and housing". The third viewpoint is" management and monitoring of the city-region space" with 15.163 percent of total variances.  The fourth viewpoints under the title of" monitoring and control of natural resources" has assigned 9.034 percent of total variances.

As result of these processes, land and housing business have weakened society's productive capacity by extensive land use change in the urban peripheral area's due to its huge and quick profit. The above process accompany with selling excess density policy created a powerful political and economic stratum which harmed city sustainable development. The mountainous area of north, north east and west of Tehran, have annexed to metropolis as a result of above mentioned regulation and  may gardens have converted to construction by different gropes and institutions.

Q method analysis depicted that the Tehran City-Region has converted from use value to exchange value. It means that values of the city including work, security, education, leisure and welfare have been lost in favor of exchange value. In other words, the city has been converted to a commodity for exchange and selling in pursuit of profit, rising cost of urban land, building and housing. Consequently, the city-region construction site is extended to the river beds, steep slops and surrounding natural environment. This in turn is leading to rapid land use change and violation of environmental and spatial rules and regulations and intensification of environmental hazards.


Mehdi Mohammadi Sarin Dizaj, Mohsen Ahadnejad Roshti,
Volume 3, Issue 1 (4-2016)
Abstract

Iran, due to its geographical location and its human and environmental characteristics including those at risk of natural hazards there. In the area northwestern Iran, Zanjan city in three dangerous fault ,Zanjan in the north, fault Soltanieh in south and Byatlar located in West And based on a hazard map for earthquake country, prepared by the International Institute of Earthquake Engineering and Seismology as well as Based on Earthquake Resistant Design of Buildings (Regulations 2800) prepared by the Research Center, Department of Housing and Urban Development and Urban Country, the relative risk of high-grade is zone. A major part of the Physical structures of Zanjan in recent decades regardless of the strength and stability of the regulations, such as Regulations 2800 is applied.On the other hand the lack of required data, including geometric and non-geometric data of the infrastructure and buildings in the city Such as the problems that have not been noted. Accordingly, this study examines the relationship between resilience Zanjan city's Against Earthquake And indicators and factors affecting resilience Physical and infrastructure to identify And will evaluate the resiliency Physical and infrastructure in the city of the study.

The results of scientific and experimental studies in the field of natural hazards and the head of the earthquake, in the last few decades shows That the best way to deal with these risks, is be more resilient settlement in different dimensions. Settlements in risk reduction approach, resilient system that can temporarily or permanently absorb risks And with conditions changing rapidly, adapted without losing its function.

In this study, the analysis and evaluation; the region and evaluation criteria include Quality building, types of structures building, Old building, facade building, building density,  particle size distribution and land use compatibility. With the explanation that in the analysis of the dimensions and physical infrastructure and support multi-criteria decision-making methods (model Todim) and produced for the processing of the above mentioned methods, is used Arc GIS software. This study is applied and in terms of methodology, quantitative comparative and analytical. This study from to goal ,applied and in terms of methodology, quantitative- comparative and analytical.

International :::union::: strategy for disaster risk reduction program titled "Strengthening the resilience of nations and communities to disasters" in the Hyogo Framework for 2005 to 2015 plan adopted, The program, in addition to reducing vulnerability of communities in crisis, will tend to increase and improve the resilience of communities.

Hyogo Framework for Action (HFA) to motivate more active at the global level in the wake of the International Decade for Disaster Reduction natural framework (2000-1990) and Yokohama Strategy adopted in 1994 and the International Strategy on Disaster Reduction (UNISDR) in 1999, was formed. After the Hyogo Framework period (2015-2005) in order to improve the resilience of nations and communities to disaster, Sendai framework (2030-2015) aimed at the Third World Conference of the United Nations Disaster Risk Reduction in Sendai, Japan in dated March 18, 2015 was adopted.

Generally, in this paper, according to the definitions and objectives resilience, resilience include: 1. The destruction and damage that a system can absorb, without being out of equilibrium, 2. The ability of a system to organize and self-renewal in different situations and 3. Create and increasing learning capacity and strengthen the system's ability to cope with the situation.

In this study, the analysis and evaluation; district and Evaluation criteria include the quality, type of structure, building, old building, the facade of the building, building density, particle size distribution and consistent user. With the explanation that in the analysis of the dimensions and physical infrastructure and support multi-criteria decision-making methods (Todim,s model) And for processing materials produced by the above mentioned methods, GIS software ARC GIS, is used. Todim,s technique is one of the techniques used to solve multi-criteria decision making problems. The technique using pairwise comparisons among decision criteria, accidental incompatibilities of this comparisons to remove it. In this study, according to seven criteria affecting the physical dimensions and infrastructure (quality building, building structures, old building, the facade of the building, building density, particle size distribution and consistent user) to assess the resilience of the 24 districts in Zanjan, a matrix of 24 * 7 production was.

After performing calculations according to the formulas described in steps 1 and 2 of this technique, the performance of each supplier to obtain. Finally, according to the formula Step 3 to obtain the minimum and maximum for each criterion to rank the areas according to the values 0 and 1 action. The highest value obtained from the best available option. This study is applied and in terms of methodology, quantitative comparative and analytical.

Our results can be inferred from That regions corresponding to the North and East of Zanjan due to Old low and relatively new texture That neighborhoods Zibashahr, Amirkabir and PayenKoh, Golestan Andishe and Daneshgah alley, Golshahr Kazemieh, poonak, Vahidieh and Ansarieh covered And most have regular access to the local system and network resilience were presented. But the central and southern parts of city, That old and historic neighborhoods such as Hosseinieh and Bazar, Yidde Borogh, Yery mosque and Dbaghlar are included ,Because of Ancient and worn out textur and also Islamabad Neighborhoods, trans and Bisim, Fatmieh as problematic texture, the degree of resilience of poor and very poor were evaluated. Given the discussion above earthquake fault lines that crosses the city from two sides, Strength and high-level security measures should also be implemented in the arteries of infrastructure and structural elements. On the other hand, in the historic old city neighborhoods in the city should strengthen endogenous development based on standard building regulations 2800 and the geographical structure of the region be made available.


Adel Solimani, Hassan Afrakhteh, Farhad Azizpour, Asghar Tahmasebi,
Volume 3, Issue 2 (5-2016)
Abstract

The latest report of the Intergovernmental Panel of Climate Change (IPCC) on climate and global warming Indicates that climate change and global warming in particular is one of the most important challenges of the world and drought, as a consequence of climate change around the world, has always influenced the many countries, including Iran. However, it seems that the climate changes, particularly in the West and Iran, especially among farmers and rural communities vulnerable to the effects of economic, social and environmental impacts that are more significant. In other words, Continuous droughts are faced villagers and farmers with various problems and challenges, In this regard, villagers Choose the local and specific strategies in the face of this creeping disaster that improve them adaptive capacity to drought. Nowadays, special emphasis is put on the notion of adaptive capacity instead of vulnerability. So the need to have research in rural levels obvious, especially in Iran where there has not yet been any deep and encompassing study on the concept of adaptive capacity in rural level. adaptive capacity to climate change is the ability of a system or an individual to adjust to climate change or climate variability so as to minimize the potential damages or cope with the consequences. Therefore, adaptive capacity is the ability to plan and use adaptation measures to moderate the effect of climate change. There is an increasing need to develop indicators of adaptive capacity to determine the robustness of response strategies over time and to understand better the underlying processes.

Adaptive capacities of villagers depend on certain factors or attributes such as their knowledge on and number of times they use a particular adaptation strategy. Other factors are the availability and accessibility of the adaptation strategy. Also, the number of consultations that a villagers makes on a particular adaptation strategy affect whether the villagers will be lowly or moderately or highly adaptive to drought.

Identifying the overall level of adaptive capacity to drought in rural areas, in order to Effective management is special importance, Because that by identifying and ranking of adaptive capacity in rural areas, adopt appropriate management strategies to reduce the damage caused by drought is possible.

Therefore, the purpose of this study is assessing the adaptive capacity to drought of between four villages in the central part of the city Rawansar in Kermanshah province. For this purpose five most effective and important index to measure the  adaptive capacity to drought as follows:  Knowledge, Use, Availability , Accessibility and Consultation, according to the literature, were selected. Then by using one sample T-test, the effectiveness of each of the above-mentioned indicators on the villagers adaptive capacity were reviewed and approved from the point of view Village contributors of the central city Rawansar (N = 48) who were selected by census method. In the next step, to determine the index weight, using the snowball technique and purpose sampling, 10 experts in jahad  agricultural  office in Rawansar city were selected and their comments were used. The results by TOPSIS technique based on these indicators, showed that rural areas of Hasan Abad and Zalu Ab  in the Rawansar city, had the greatest adaptive capacity to drought, While  rural areas of Dawlat Abad and Badr had fewer adaptive capacity to drought. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which  is based on the concept that the chosen alternative should have the shortest geometric distance from the positive ideal solution (PIS)and the longest geometric distance from the negative ideal solution (NIS).It is a method of compensatory aggregation that compares a set of alternatives by identifying weights for each criterion, normalising scores for each criterion and calculating the geometric distance between each alternative and the ideal alternative, which is the best score in each criterion.The findings of this study could have recommendations for rural planners to effective crisis management in order to reduce vulnerability and enhance resilience villagers to drought.


Alireza Mohammadi, Bahman Javid Moghvan,
Volume 3, Issue 3 (10-2016)
Abstract

Most of the large cities in developing countries have faced with the problem of informal settlements. The formation and growth of these settlements for reasons such as rapid and outside the customs building construction are the threatening issue for their communities. Informal settlements are areas that often shaped and expanded in major and middle cities of the Iran’s cities including the city of Parsabad. During the last decades, the rapid growth of urbanization and the lack of appropriate planning for low-income families housing leads to the formation of the urban informal settlements in most cities of the Iran. In most cases, these settlements have a structural and demographic dense texture. The structural texture of these settlements is often fine aggregate, impermeable, and unstable. In times of crisis, the possibilities of human and material losses to them are high.

Environmental hazards such as earthquakes are a serious threat to these settlements. However, these hazards in most developing countries, due to the unavailability and lack of preventive actions, end to the crisis. We cannot prevent earthquakes. But we can reduce the losses and damages caused by the earthquakes. Remove of the disaster is impossible, but it is possible to reduce the damage caused by the disaster. One of the most important ways to reduce the risk of earthquakes is preparation to deal with earthquakes. Preparation means having previous programs and plans.

     Iran is one of the countries where earthquakes always happen. Because Iran located in the world's earthquake belt, each year on average about 1,000 earthquakes happening in Iran. Ardebil and Pars-Abad city, located in an area that the possibility of earthquakes shakings in these areas, is more. The Zire Nahre Torab Neighborhood is one of the Parsabad city’s informal settlements that located in the northwest of the city. Regarding the possibility of an earthquake in the city of Pars Abad, identification and assessment the vulnerability of the neighborhood during an earthquake, is essential. Therefore, identifying and assessing the vulnerability, especially in the poor neighborhoods to offer strategies for dealing with the injuries, is essential. The aim of this study is assessing vulnerability of the informal settlements during an earthquake by using spatial data and GIS. This study, have been prepared in fifth main parts including: introduction and background, methodology and presentation of case study, theoretical framework, analysis and conclusions.  

This research in terms of the nature is practical and is descriptive and in terms of the method is analytical. Three methods including library, documentary and survey have been used for data collection. In the first phase, data and base maps were extracted from documents and reports of projects such as city comprehensive and detailed plans. Also, in this phase of the study data were updated. In the second phase, the problem, questions and research objectives were defined. In the third phase, the 3 criteria and 12 sub-criteria based on research literature and according to available data were selected. In the fourth phase, after preparation of databases related to each of the criteria in GIS, input layers were prepared for each of them. In the fifth step, the method of network analysis process (ANP) was used to determine the significance of criteria. In the sixth phase, the weighted overlay index (WOI) was used for combining output layers.

The results of this study show that more than 80% of neighborhood buildings are vulnerable against the risk of a possible earthquake. Also, research findings suggest that physical characteristics such as building structure, quality and age of the buildings will have the greatest role in determining the neighborhood buildings vulnerability level. Doing activities such as resisting buildings, improving roads, locating facilities in appropriate places, training and informing citizens to prevent a crisis caused by the possible earthquakes, is essential. Other recommendations are listed in below:

  1. Identifying vulnerable buildings
  2. The use of GIS in the management of settlements
  3. Preparations cities, to deal with urban hazards
  4. Empowering citizens to deal with environmental hazards
  5. Action to reduce earthquake risk
  6. Civil engineering Renovation of buildings
  7. New practices in the urban construction
  8. Equip cities with facilities and relief supplies.
  9. The use of specialists in urban planning.
  10. Conducting workshops on urban resilience.


Asghar Nazarian, Hossien Sadin, Kaveh Zalnejad, Mahnaz Esteghamati, Mahdi Valiani,
Volume 3, Issue 3 (10-2016)
Abstract

Today slum refers to those areas of the city which are not necessarily situated at the corners of the city, but to those which are in margins from economic, social, cultural, and other urban life aspects, that has formed a settlement in which the least living-supplies of healthy water, electricity and gas, transportation system and a clean environment suffice their lives. This type of settlement is due to the asymmetry and commonality of features and conditions of living in the main parts of the city. And generally indicate the low level of living conditions in comparison with the average standards in the main city specifically, and also in living conditions in cities as a whole. On the other hand, informal settlement refers to the discordance of settlement with the approved regulations of governmental organizations and particularly of municipalities. Those areas which are situated outside the servicing scope of the general and governmental organizations such as electricity, gas, and telecommunications offices, along with municipalities accompany various phenomena such as urban poverty, poor housing, immigration from countryside to cities, environment pollution, unhealthy environments and etc.

            In Iran, slum began in the 30s (solar calendar) with the immigration of village dwellers to the cities, and after a decade, it was prospered due to land reforms and economic-social policies of the day, a growing increase which has never stopped since. Slum or informal settlement in the outer parts of the cities is not just a physical notion but is an outcome of the macro structural factors in economic, social, cultural, and political aspects in a national or regional scope. The reasons for this phenomena vary which can differ from one place to another. Nevertheless immigration is one of the main reasons for slum settlements. It can simultaneously play two roles; it can be a solution to demographic crises. It leads the surplus population out of the region and accordingly the human power is directed where is needed most. It balances the structural asymmetries of population and by reducing the development imbalances in different regions result in the betterment of the status quo. And on the other hand, it might be possible that by immigration of the human power, the economic equilibrium between the source and destination community would be disturbed, and by having a community without any human power, it generates complex social and cultural situations; which all in all leads to a congested crowd overpopulating specific big cities and regions.  In this way, it brings about problems in servicing and efficient regulation of issues and thus be regarded as a disturbing element of development and mutual understanding. The investigated region has been exposed to the crises of immigration and slum settlements recently, so much so that based on the population and housing census of 2006, population growth rate of Shahriar rose by a far distance from other cities to 8.7 percent. Thus, this research was conducted to investigate the elements of immigration and slum dwelling in Shahriar city. And it aims to answer these questions:

  1. How social, economic, and demographic factors influence the slum settlements of those who have migrated to this city?
  2. How is the local dispersion in Shahriar?

On this basis, with the researches and investigations conducted at the outset of the study, district 2 was selected as a fit choice out of the three districts of 1, 2, and 3 which settled slums. Since all the locals were not slums in this specific districts, with proper investigation the slum areas were identified which had a high rate of immigration; with whom interviews were ran and questionnaires distributed. To this end, by following Cochran formula, 200 people were selected as samples through cluster random sampling out of the statistical community. To analyze data, descriptive statistical methods such as central index, dispersion and inferential statistics like Chi-square, Wilcoxon and Friedman tests were utilized.

The results of the  study indicates that the slum in Shahriar are situated in the old and cheap sections of the three districts of 1, 2, and 3. Also, after a detailed examination it was proved that Shamloo local in district 2 is more suitable than the other ones. On the other hand, by investigating the economic factors (such as job opportunities and income) it was indicated that immigration is very important from the aspect of providing job opportunities. Secondly, social factors are more important in slum settlements issues. For instance, one can refer to urban and welfare facilities, educational facilities, health and recreation facilities are all social factors. On the other hand, those people who have migrated due to pursuing education, higher level of welfare, better facilities etc. are all below 30 years old. Based on the findings of this research, families were not significantly changed after immigration in comparison with the period before it, but it is a vital element in three membered families in times of immigration. All has been done to meet the financial needs of the family. Therefore, one can claim that most immigrations to slum areas have been due to economic and social deficiencies of the source society.


Bohlole Alijani, Meysam Toulabi Nejad, Fariba Sayadi,
Volume 4, Issue 3 (9-2017)
Abstract

Urban climate is strongly influenced by the processes of urban work and life. Expansion of cities and consequently increased human constructions causes to changes in urban climate. The rising temperature of cities rather than the surroundings is one of the effects linked to direct human intervention.
Building heating, air pollution and the use of inappropriate materials in the flooring streets (like asphalt streets due to dark colors in energy-absorption) are effective in phenomenon of urban heat islands that makes unfavorable environment for citizens. Paying attention to the urban surfaces like sidewalk, streets and rooftops has a great role in decreasing effect of this phenomenon. Due to growing urbanization and subsequently cities development, urban heat islands have taken a growing trend in big cities.
In general, the urban heat-island is a result of urbanity features, air pollution, human warmth, presence of impervious surfaces in the city, thermal properties of materials and geometry of urban areas. Heat island phenomenon is a result of many factors that are summarized below: (1) urban Geometry (morphometry) (2) thermal properties of materials which increase the sensible heat storage in the urban texture (3) released human heat as a result of fuel combustion and animal metabolism (4) urban greenhouse gases, leading to an increase in long wave radiation, atmospheric contamination and therefore warmer atmosphere (5) reduction of evaporation levels in cities, which means that energy will be released more as tangible rather than latent heat (6) reduction of turbulence and heat transfer through the streets.
This study aimed to simulate and calculate the maximum amount of heat island (UHI max) according to the conditions of urban geometry in the   region of Kucheh bagh in Tabriz that is a pioneer study in Iran.
The study area is located in Kuche bagh region at the intersection of the streets of Ghods and Farvardin in the city of Tabriz.
The Oke’s numerical-theoretical equation was used for this study. First, the geometry of the target area using the radius of 15 meters from the axis of the road was divided into separate blocks. The ratio of street width (W) and height of buildings (H) was calculated in GIS software and at the end, the intensity of UHImax was calculated and simulated using Oke equation.
The urban geometry including building height and street width is calculated using Equation 1.
The theoretical- numerical basis of this equation shows that simulation of H/W ratio is an appropriate ways to describe urban geometry. Increasing the value of this ratio could lead to an increase in urban heat-island through modeling. This model has many advantages compared to other methods used to estimate the urban heat island. So, the selected parameter to calculate urban geometry and the model used to estimate the maximum intensity of heat island is the ratio of H / W and OKE model, respectively. In addition, the average height of buildings located within a radius of 15 meters and an average width of passages were calculated from the equation 2 and 3, respectively.
After calculating the geometry of the study area, the results showed that the blocks E, G and D in terms of height of the buildings have a heterogeneous distribution, but the distribution of blocks C, I and J is illustrative of their standard configuration. Although the blocks E, F and J in terms of street width are less diverse compared to other blocks, but in terms of height of buildings (8.6, 7 and 5 meters) have a different pattern that  maximum values of  their UHI are 8.3, 7.5 and 6.3 degrees, respectively. Three blocks B, H and I, in addition to their similarity according to street width and height of the buildings, in terms of the ratio of H / W and heat island intensity with the values of 9.6, 9.8 and 10.2 degrees are homogeneous.
It was also found that the greatest difference between the H / W ratio is related to block A (0.54) and block H (1.98); this difference has caused that greatest difference between the maximum intensity of UHI would calculated between the two blocks equal to 5.2 degree.
Misconfiguration causes that energy leaving from city surface deal with the problem due to narrow passages and high buildings. Therefore, consideration appropriate width of passages  and streets and height of buildings are necessary to ease heat leaving and reduce intensity of UHI.
These simulations showed that high buildings and narrow streets intensify the heat islands. While in the presence of short buildings and wide streets, the UHI max is lowered. When the ratio H / W in the studied urban area is between 0.54 to 0.81, UHI max remains between 5 to 6.6 C˚, when this ratio increases to 1.01 to 1.98, UHI max will be between 7.5 and 10.2 C˚. The result also revealed that block A and H with 5 and 10.2 C˚ have the minimum and maximum value of UHI intensity, respectively. So can be concluded that block A and H have the most standard and non-standard urban configuration in the region. The estimates from regression model showed that the street width (91.6%) is more effective than the height of the buildings (6.6%) in changing UHI max.

 

Faryad Shayesteh, , ,
Volume 5, Issue 1 (6-2018)
Abstract

The role of tropospheric vertical anomalies in rainfall solid Case study: the hazard of hail in Kermanshah
Climate risks is one of the Types of hazards that damages human communities such as the phenomenon of hail, in the micro-scale, it causes financial losses and casualties. Hail is associated to the atmospheric elements and geo-location factors. Whenever weather conditions and appropriate physical processes are combined with geo-location creates and intensifies this phenomenon.
Losses resulted from hail has been more effective in the agricultural sector and in the effect of damaging the crops When growth and budding. However, it disorders in other sectors such as, blemishing residential buildings, Losing large and small animals also, damaging to the aircraft flight and its components. Hail considerable damage in Kermanshah province every year so that Farmers insure their crops against this Phenomenon and the government will incur heavy costs for
damage that is inflicted on the sector of activity.
Research methodology
The current weather data has been used with 3-hour intervals in the statistical period of 65 years (1951 to 2016) from synoptic stations of Kermanshah Province that includes the stations of Kermanshah, West Islamabad, Ravansar, Kangavar, West Gilan, and Sar-e-Pole-Zahab.
Among the 100 present weather code, Codes 99, 96, 91, 90, 89, 87 and 27 have been considered that including hail phenomenon by varying intensities and includes any appearance of this phenomenon in Hours scout and three hours earlier. Then, based on the above code, Were coded in Excel to identifies Codes 96, 91, 90, 89, 87 and 27 When entering from the Meteorological Data To the desired program among Group VII of the data, And when the written code, were identified, Hail days were marked.
Given that in this study Hail is studied regarding the synoptic conditions and temperature anomalies. Therefore, for the synoptic situation, Pressure data, vorticity, Special moisture, Components U and V, Omega transverse profile And outgoing longwave radiation, And for the temperature anomaly, Temperature and isothermal anomalies components Were getting from esrl.noaa.gov/psd site And using the software Grads were drawn maps for a selected day To determine the formation of hail.
Commentaries Results
The frequency of occurrence of hail has reached 187 in the period 65 years in Kermanshah province. This phenomenon generally occurs from mid-September to mid-June. The most number has been in Kermanshah station and the Least in Sar-Pol-Zahab station.
April has had the highest number of hail frequencies in Kermanshah province and the greatest losses in the month related to the agricultural sector. Therefore, Select System hail seems essential to examine how the temperature anomalies and the formation of hail in the month.
On the day of the event, trough hail has been formed in the East Mediterranean.Wrying the trough axis From North East to South West resulted in cold air from high latitudes to the East of the Mediterranean.
The establishment of trough in the middle and low pressure level in sea level and its following Convergence in the balance has created positive omega until balance of 200 hPa and most serious it is at the level of 400 hPa. Negative omega has maintained its association from ground surface until High levels in the study area.
The airflow of vorticity balance 1000 and 500 Hpa Suggests vorticity positive settlement area on the case study. Establishment of short wave in the vicinity of the study area and intensifying ascending conditions also Prolong Positive trough conditions from surface of Earth until 500hpa balance have been The necessary dynamic conditions for Hail in this day.
Special moisture and wind Vector with 700hpa balance of Moisture transfer has been done by two opposite vorticity system. Trough rotary motion Based on the Mediterranean and along the Red Sea on the one hand and Moving anticyclone over the Arabian Sea And the Persian Gulf and Oman Sea on the other, have conveyed Moisture of all moisture sources from The seas around to The study area.
Also OLR anomalies for the hail event day indicates being Negative in the study area and the sharp decline of Outgoing longwave in this day Compared to its long-term average And hence the conditions of cloudiness and the formation and intensification of convection has been provided.
1000 hpa positive anomaly 2 ° is representative the Higher than the average temperature conditions and in the 500hpa anomaly balance Minus 2 degrees Celsius is representative Lower than normal temperatures in the balance. These factors aggravate the vertical temperature gradient in the study area these days. 20+ degrees Celsius the Isothermal curve and -20 ° C. Respectively, the levels of 1000 and 500 Drawn to the area of study And has created a large temperature difference Between the upper and lower levels.
Keywords: Synoptic analysis, Hail hazard, Tropospheric anomalies, Vorticity, Kermanshah Province

Mrs Masoomeh Niyasti, Mr Seyed Amir Hossein Garakani,
Volume 5, Issue 1 (6-2018)
Abstract

Study of vulnerability of settlements in rural areas A comparative study of salvage towns and villages in the eastern part of Golestan province
There are important choices to be made after the various accidents and the numerous financial and psychological effects of rural settlements, including decisions on how to intervene in rural settlements and the adoption of reconstruction policies. This intervention is identified as four types of identification, relocation, continuous development, or integration and integration for the reconstruction of damaged or destroyed villages due to natural hazards.Many scholars and scholars believe that among the above models, aggregation and integration have economic advantages in supplying facilities and services. The ruler's insight has led to less attention to its economic, social, physical and environmental implications. It seems that this indifference has led to the implementation and implementation of relocation and integration plans of rural settlements with the change in their vulnerability in the economic, social, physical and environmental dimensions and the development of the vulnerability of affected society Increase against future accidents. Extreme rainfall in the eastern province of Golestan province in August 2005 resulted in two devastating floods, one of the most damaging floods in the country. The Islamic Revolutionary Guard Housing Foundation has been providing housing for the affected population and in order to reduce the resettlement of villages due to the occurrence of future floods, the eleven villages in the city of Kalaleh, which had been damaged in recent floods in Golestan Province, were displaced. This research is descriptive-analytic and its data have been collected in two sections of library and field. The statistical population of this study is a collection of residents of the walled city and villagers who have returned to the villages of Chatal, Ghapan Oliya and Sofla. To test the vulnerability in two samples, independent samples t have been used. Comparison of two sample returns in villages Chatal, Gapan Oliya and Sofla with the displacement and aggregation of villages in the recreational city showed that each of the studied samples had weaknesses and strengths in different dimensions of vulnerability. The vulnerability of the Faragi city in the economic dimension, using the average for each of the three villages and the city of recreation (3.18 and 2.89, respectively), shows that the resettlement policy in the area of study has increased the vulnerability, especially in the outskirts of the Faragi city Is. The results of this research in the economic sector are consistent with the results of Firouznia and colleagues (2011) and Stadekelai et al. (1394). Regarding the role of resettlement in social vulnerability after examining the criteria, the average for each of the three villages and the Faragi city (3.21 and 2.77 respectively) shows that the resettlement policy from the social perspective in the scope of the study increases the level of vulnerability especially in the Faragi city. The results of this research in the social section are consistent with the results of Montazarian (2011), Mohammadi, Professor Kalayeh et al. (1394), Zaharan et al. (2011), Peik et al. (2014) and Navara et al. (2013). In the physical dimension of the environment, it can be said that resettlement in general has reduced the level of vulnerability and improved life indicators in the Faragi city. The average for each of the three villages and the Faragi city (2.89 and 3.57, respectively) shows that the resettlement policy from the physical-environmental perspective in the study area has reduced the amount of vulnerability in the outskirts of the Faragi city to the three villages. On the other hand, the zoning of physical-permafrost
range shows that although the physical injuries of the outskirts of the Faragi city are lower than the three villages, but considering the location of the Pishkamar's site in the zone with moderate damage, the physical-peripheral city of leisure also vulnerable. In most post-traumatic reconstruction programs, the policy of removing the entire or part of the settlement as a suitable technical solution to reduce the vulnerability and safety of phenomena such as floods, landslides and so on Considered
. However, the review of various experiences suggests that displacement of settlements, although effective in reducing physical morbidity, is mainly due to numerous social and economic consequences. The displacement and consolidation of 11 villages of Golestan province in the post-flood Pishkamar site of 1384 were unsuccessful due to the lack of planning and designing, with macroeconomic and social costs, in reducing the dimensions of vulnerability of a settlement, including social and economic. This has led to the return of villagers to their old villages. The quantitative results of this research also confirm the hypothesis that increasing the migration to cities, returning to old villages, ethnic conflicts, reducing production levels, increasing bank debt and the prevalence of insecurity in the outskirts of the Faragi city are one of the most important factors in increasing the vulnerability in the social and economic dimensions of the study area. The investigations indicate an increase in the amount of vulnerability in recreational areas in terms of economic and social dimensions and reducing its physical-environmental vulnerability to three villages. Since reducing the vulnerability of settlements is subject
to control and reduction of damage and damage in all aspects, it seems that the
reconstruction of rural settlements after the flood of 2005 in Golestan province has been
effective in increasing the vulnerability of this area.
Keywords: Vulnerability, Relocation, Resettlement, Faragi city, Golestan Province.

Jamileh Tavakolinia, Alireza Mehrabi, Ehsan Allahyari,
Volume 6, Issue 2 (9-2019)
Abstract

Today, air strike on installations and urban areas, is normal. As such, vulnerability assessment cities and provide the right solution for harm reduction is essential. The purpose of this investigation was to identify factors causing damage in the district of twenty in Tehran. The research method is descriptive-analytic and Data collection is library and field. Data analysis is based on using Ahp and GIS. Results show, In the district twenty , There are three zones vulnerable. Including, The old Central, The high-density Dolatabad and sizdah aban neighborhood. These zones are 34 percent of the land. The reason of it is Poor physical structure. Statistical Society is Twenty district in Tehran. Sample size is 384 people of residents of the district. Because, in this area there are strategic factors, is An important part of the tehran city. in the end, are provided The right solution of Reducing vulnerability.


Zahra Taghizade, Ahmad Mazidi,
Volume 6, Issue 3 (9-2019)
Abstract

Abstract

Urban heat island (UHI) is one of the environmental phenomenon which has made difficult environmental conditions for citizen. This study aims to evaluate the spatial and locational variability of Esfahan urban heat island according to the role of land use. Thus an area about 190.2 square kilometers (km2) in Esfahan, as the microclimate, was studied. In order to analyze the relationship between land use and land cover changes on Esfahan urban heat island, the images of Landsat 7 (TM and ETM +) and Landsat 8 (OLI / TIRS) on 20 July 1989, 17 August 2005, 18 August 2014 have been used. The results show that the urban areas has experienced 31% changes in positive direction; while the agricultural sector and green space havehad a reduction of 25% in their area. The analysis of the intensity of heat island show that heated cores are related topoor and barren lands with about 37/33 and 36/5. Although the most area of thermal classwere related to warm thermal class in 1989 and 2005, the average thermal classes were about 63/8%in 2014. Moreover, the locational variation distribution of Esfahan heat island shows that the locationof the heat island has gradually changed. For example in 2014 it included small parts in the south of the city, military zones and barren lands in the south, some parts in the north west and north east areas and small areas in the east of Esfahan. This means that urban development isn’t the main factor of the surface temperature increase and urban heat development, but rather the type of land use has influenced the decreasing or increasing of air temperature.

.


Hossein Negaresh, Samad Fotoohi, Reza Soraya,
Volume 7, Issue 1 (5-2020)
Abstract

Identification of the factors influencing the hazards and the difference in the volume of sediment accumulated in the villages of Nimroz
 
Abstract
Seasonal lakes or playas are considered as a major source of wind sediments and dust storms due to locating in post-topographic areas in dry and desert areas with strong winds system and also the presence of fine-grained and separated particles. Sediments and wind deposits in Sistan have caused the lives of thousands of people in these areas and especially the students to be at risk. The volume of wind sediments in this county has been multiplied in the last ten years; therefore the purpose of this research is to identify the effective factors on the volume difference of accumulated wind sediments in the schools of the villages of Nimroz County. The research method in this study is quite field and as direct observation, besides library resources has also been used. After the initial investigations, it was found that the geographical location, type of soil and topography have little effect on the volume difference of accumulated sediments in the studied schools. The findings of the study show that the three factors in Bash Delbar area, Hamoon Lake and lack of agriculture and the lack of vegetation in Deh Isa area are the most important factors in increasing or decreasing the volume of wind sediments.
 
Keywords: wind deposits, primary schools, Human Beast, the lake plain, the city of Nimroz
 
Mr Mohamad Saeid Hamidi, Dr Abbas Alipuor, Mr Ehsan Alipuori,
Volume 7, Issue 1 (5-2020)
Abstract

The geographical location of Yazd province has greatly influenced the creation of spatial and climatic diversity and the provision of appropriate facilities for the formation of various natural and cultural attractions. Nevertheless, these areas need more attention in terms of the potential of tourism development for social sustainability. This research is done with the aim of spatial analysis of tourism capacity of desert areas and its role in social sustainability, and according to its nature, it is an applied type. The research method is descriptive-analytic. Documentary and field data are used to collect data. The data were analyzed quantitatively (one-sample T-test, Pearson test and AHP and Barda methods). The findings show that according to the experts' opinion, the effective indicators in identifying tourism capacities are distance from roads, distance from historical attractions, distance from residential centers, distance from natural attractions, type and soil suitability, distance from water resources , Elevation, direction of gradient, slope, land use and precipitation. The results show that 24 percent of the total area of the area has relatively good capacity and is located in the central, eastern and northeastern parts of the province. The most important criteria that have made these areas selected as optimal areas are the density of natural-ecological elements such as the existence of diverse deserts and deserts, geotops, glacier cirques, and historical-cultural elements such as traditional water reservoirs, markets, shrines and temples And so on. Also, 26% of the area has average power, which is mostly located in the east and northeast of the province. Finally, areas with inappropriate and relatively inappropriate power are found in parts of the eastern province of Karshra that occupy 51% of the total area of the zone. The results of measuring the social sustainability status of desert and desert areas based on indicators (population distribution, transport infrastructure, immigration status and deprivation rate) show that Yazd city has the highest ranking and Ardakan, Bafgh, Mehriz , Taft Meybod and Abarkuhh moderate sustainability, and finally Khatam, Saduj and Bahabad are among the unstable and less developed cities of Yazd province. The results of Pearson correlation coefficient showed that there is a significant relationship between tourism development and social sustainability in different regions of Yazd province at 99% level. This means that areas with demographic, demographic, and low levels of social sustainability have lower attraction and tourism capabilities than other Yazd province cities.
Dr. Javad Sadidi, Mrs. Zahra Judaki, Hani Rezayan,
Volume 7, Issue 2 (8-2020)
Abstract

Designing and implementing a 3D indoor navigation web application
              Extended abstract
Nowadays, due to the complexity of interior space of buildings, the need arises for indoor navigation inside such spaces. Indoor navigation systems may be helpful for emergency evacuation of the crowd in natural hazards such as earthquake as well as human-made disasters. These systems can also act as a decision support system for officials. Literature survey on indoor navigation services shows that a large number of researches have been conducted around designing and implementing such systems but automatic indoor spaces topology extraction of the current building information models remains as a challenge. This research aims to introduce, design and implement a web-based indoor navigation system using CityGML data model in LOD4 (level of detail) to overcome the mentioned problem.
The architecture of the current research is a browser-based web application service such that the data model processing and graph creation is implemented on the server side, the client interface and calculated path are represented on the client side (browser). Through the CityGML data model processing, firstly, the building navigable spaces such as room floor, doors and stairs are extracted and then, each space as a node and the connections between the nodes are defined as edges, are imported to the navigation graph. Programming on the server side has been performed by Python language and web development languages including HTML (Hypertext Markup language), JavaScript, JQuery and AJAX are used on the client side. Cesium virtual globe has been exploited to display the data model and the calculated route.
To evaluate the introduced methodology and designed service, a three floor house with CityGML format in LOD4 was used as the case study. Generally, a client can request a 3D calculated path by selecting the source and destination points on the client browser. The server receives the request and returns the response as a 3D line to the client browser on the Cesium environment. In addition, a descriptive graphical user interface for visual inception of the route is offered to the users on their browser.
One of the advantages of the designed web application is that, the service is implemented on the browser. Hence, all devices equipped with a browser have possibility to run the 3D routing service. Besides the mentioned cross-platform capability, average expectation time of the graphical interface loading, data module processing and path finder module are 7.03 milliseconds, 12.42 seconds and 2.44 seconds respectively that visits a valuable criteria in emergency situations like an earthquake phenomenon. Regarding this fact that CityGML is a new data model and supported by a few software, the introduced architecture causes less implementation costs as well as automation of these systems.
 
Keywords: 3D indoor navigation, web application, interior space of buildings

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb