Search published articles


Showing 21 results for Earthquake

Ali Saei, Seyed Ali Badri, Nasrin Kazemi, Fayezh Tajik,
Volume 1, Issue 3 (10-2014)
Abstract

Various community groups can play important role in disaster management. Countries with different segments of people directly participate in activities to reduce the risk. Therefore, regarding the role of women's participation in disaster management process and as a part of human society will have an important role in this process, identify and analyze the factors affecting women's presence is essential. However, the central role of women in families and communities remains unknown in most parts of the world specially in planning and managing the disaster. The purpose of this study is to identify and understand the different capabilities of women to participate actively in the cycle of disaster management and providing strategies for increasing women's participation in the prevention, preparedness, response and recovery of probable disasters.    This study is an original and practical research. According to the theoretical research, a questionnaire was designed in four parts and it was completed through sampling. The sample population is women living in 22 districts of Tehran. This study implies that there is the low participation rate of women in disaster management among citizens of Tehran. To complete the data, proportional sampling was used and data were analyzed using factor analysis. Using this method, the data and the variables were summarized and the most effective factors were set in the partnership. These factors include disaster management, cultural factors and gender, fatalism, a feeling of power and confidence that the results of the factor analysis was performed using four dimensions. Based on tradition of social research and the findings of previous empirical research on women's participation in disaster management and the factors influencing voluntary participation, contextual condition of social variables (including socio-economic condition, occupation, marital status, number of children and age), as well as religious and fatalistic attitude would studied and evaluated the factors influencing the motivation and willingness to participate as a volunteer in the field of disaster management.    The findings show that KMO value was equivalent to 0.74 in four factors of disaster management and the total values of the sector were defined 67.42% of total variance of  the variables. KMO value in the sense of power and confidence variables was 0.72 and 65.27% of this segment can be explained by four factors the variability of the variables. In fatalism variable the KMO value was 0.599 and 59.56% of the four factors could explain the variability of variables. Finally, the KMO of socio-cultural norms was 0.71 and 70.52% of the variability of the variables was explained by five factors in this sector. Women cooperation alongside men play a major role in the use and implementation of policies and programs related to accidents. Thus, participation as one of the arguments in crisis management requires people involved in all processes related to the crisis management cycle. Since public participation opportunities and fields are different in societies and in different groups, so, to attract the participation in each group, identifying effective components is essential.    Finally, after using factor analysis and extracting four factors, including knowledge of effective crisis management, cultural factors and gender, fatalism, a sense of power and self-confidence were classified. In general, most people do not do any activities in disaster management and their awareness and knowledge does not lead to disaster management needs. Thus, organizational barriers, structural, administrative and educational activities to promote social and cultural constraints are considering strategies promoting women's participation in disaster management cycle.


Ahmad Pourahmad, Asadollah Divsalar, Parvaneh Mahdavi, Zahra Gholamrezai,
Volume 1, Issue 3 (10-2014)
Abstract

  Iran is a wide and great land that is located on Alps earthquake belt of Himalaya. Great part of the urban and village residency of the country have been exposed to the intensive earthquake and destructive. Sarab city with several other cities, including Tehran, Karaj, Abyek, Qazvin, Roudbar, Khalkhal ,Tabriz, Marand and khoy are located on Earthquake belt that Earthquake risk is too high.   In Eastern-Azerbaijan and Sarab, potential earthquake risk is very high, since there are a lot of active faults and historical evidences show the horrific and destructive earthquakes.   Sarab city located in the Sarab plain which have abundant faults in various directions. Earthquake as a natural phenomenon doesn’t have good results but what can make it a catastrophe, is the lack of prevention from its effects and no preparation for coping with its aftermaths.   The unsuitable establishment of structural elements and urban land-uses and atypical web of urban open spaces, the old ages of and low quality of the structures in the decayed area of the factors like this have main role in the increasing the amount of damage entered to the cities against to the earthquake.   It is necessary to reduce the vulnerability of the cities against the earthquake and to consider it as one of the main goals of the urban planning.   Main objective of this paper is planning for reduction of damages arising out of earthquake in Sarab city. The study area is the Sarab city with four urban regions and 15 districts. The present research is an applied study.   For this purpose, considering the goal of the study, nine factors including the type of structural materials, the quality of the buildings, the number of the floors, the population density, pedestrian width , the availability of open space and distance from river were identified and evaluated, so that for each of the indicators or factors, one layer of map with shp format was produced and then in an analytical hierarchy process and weighting to the variables, layers overlaying operation using available analytical functions was implemented in Arc Gis software. Finally the vulnerability map of the Sarab city was prepared. According to the results of AHP model, it is concluded that Sarab in terms of vulnerability has no appropriate status against earthquake risk so that the whole Sarab city is vulnerable to earthquake, but some of its neighborhoods due to low quality of buildings and vulnerability of streets network and inaccessibility to open areas and excessive compression are more vulnerable. Deteriorated urban area is one of the most vulnerable parts of the Sarab city during the occurrence of the earthquake. Therefore, to reduce the health and wealth damages which can cause by the earthquake in the city.  


Abolfazl Ghanbari, Ali Zolfi,
Volume 1, Issue 4 (1-2015)
Abstract

In advance crisis management of natural disasters, particularly earthquakes in urban areas is one of the necessities of urban planning. However, nowadays with the help of technology we can determine the risk of crisis in the urban areas and settlements. Due to population growth and increasing urbanization, the occurrence of natural disasters such as earthquake can cause terrible disasters in the cities. The need to reduce the vulnerability of the cities is one of the main objectives of physical planning of urban areas and city designing. The city of Kashmar in one of Iran's earthquake-prone areas (due to its adjacency to the Lut fault)  has  witnessed the sever destruction from  the September 25, 1903 earthquake (with a magnitude MS= 5/9) and Torbat Haidariye earthquake on 25 May 1923 (a magnitude MS= 5/8). It is very important to identifying vulnerable areas to earthquakes in advance. Accordingly the objective of this study is to identify the vulnerability of urban areas of  Kashmar city to the earthquake by using VIKOR model of urban planning. The vulnerability of the city was computed on several parameters among which the population density is the most important one.

     In order to carry out the research eleven population and other indices were used. These indices are as follows:

  1. Building Materials;
  2.  The quality of the building;
  3. Old buildings;
  4. Number of floors;
  5. The materials of facades of building;
  6. Compatibility of land uses;
  7. Access to network passages;
  8. Distance from the main fault;
  9. The building density;
  10. Numbers of population; and
  11.   Relief and rescue centers.

 By using the VIKOR ranking model the vulnerability of the urban areas of the city was identified and classified. The correlation between the city vulnerability and each of these indices was calculated. The impact of the indices on the city vulnerability was calculated according to the AHP model.

      The results of the study showed that the zone 3 had the highest and the zone 8 had the lowest physical vulnerability in the model. Based on the results of the Spearman correlation, the impact of the population on the vulnerability was about .5866 which is relatively noteworthy.  This means that highest degree of vulnerability can occur in very populated areas of the city. All of the city was regionalized according to the degree of vulnerability to earthquake.

The lack of amenities and facilities such as health centers, fire stations, building materials and weak areas within the city will increase the losses and casualties. It is noteworthy that comprehensive city planning in the future must improve and the needed facilities should be provided. In addition providing services to the residents, especially in critical times after the earthquake should be provided.


Javad Sadidi, Hamed Ahmadi,
Volume 2, Issue 3 (10-2015)
Abstract

The term "Game GIS” implies to real spatially enabled games in which a special part of the world is virtually simulated, represented and managed. In fact, game GIS is an integrated system consists of video games and geographical information systems, aimed to simulate and representing spatially enabled environment. The achieved result of implementing a game GIS service can be exploited before a crisis for wise designing of a city and diminution of the aftermath casualties. As the decision making process plays the key role to reduce the losses, the need arises for using the models as much as close to the reality. By this, it is possible to use the virtual world in in the form of a game rather than experiencing the real world with real wounded and killed persons in. This enables us to recognize and manage a test environment for promoting the managing the real environment of a city during and before a natural hazard disaster like an earthquake. The game GIS may be counted as a service for sharing and dissemination of spatial information as well as online GIS to have a visual and synoptic management of the earth plant facing various disasters. The current research is aimed to design and implement a software architecture for an earthquake game in Tabriz city (Iran).

The study area is district 10 of Tabriz located within a fault zone. According to field surveys, 82.1 percent of buildings in the study area may be vulnerable against earthquake in terms of the quality of building construction.

Methodology of the research to design, program and implement the game GIS service are undertaken as the following processes: data collection, database creation and software production.

The collected data includes master plan maps of the district 10, building quality, number of floors, building façade materials, age of building, street network (adopted from the master plan of Tabriz) and population of each parcel.  Also, some regions are assumed as hospital, relief-rescue center and treasury money.

To design the software, 2D environment of MapControl and for implementing the game into the 2D environment, ArcEngine of ArcGIS have been exploited. The mentioned engine gives us possibility to use of analysis and modelling capabilities as much as closer to the ground reality which are compatible with available geometry of the terrain (Amirian, 2013, 17-19). The MapControl is a framework in which the map and game area are displayed. Symbology is used to show the persons as well as equipments. Briefly, the stages undertaken during the current research can be explained as the following:

  • Data collection based on available sources via field surveying.
  • Data processing and creating a database from street networks and building owned the age, materials, floors fields.
  • Calculation of vulnerability rate for each building separately as well as the amount of deconstruction damage per Richter.
  • Drawing the street and alley network to prepare network analysis dataset.
  • Preparing special network analysis database and evaluation in various situations.
  • Using the gained layers and implementation of the scenario.

After that, the conceptual architecture of the software has been designed based on the scenario.

The game GIS services has been designed with 6 different classes offer numerous functionalities responsible for displaying program commands and different views of the game. Finally, the service is designed and implemented in a real schema for crisis management application. The resulted game is played in 4 stages. In the first stage, the player starts with a 5 Richter magnitude earthquake and ends while the player gets to 8 Richter. The designed software simulates the destruction rate of buildings based on the influential factors, wounded transfer routing and rescue operation. The game player gains credit according to his quickness and agility. The player would go to the next stage with one Richter magnitude higher, if gains enough credits during each stage. The result of the current research as a Game GIS service, can be used in earthquake simulation happens in various magnitudes for management of decreasing the effects of earthquake, quick reaction, maneuver and education. Considering the achieved results, designing and performing the game GIS service over the web based on open source technologies rather than being desktop and commercial service, can be suggested as a new research frontier for the future researchers.


Hadi Soltani Fard, Ahmad Zanganeh, Marzih Nodeh, Farzanehsadat Hossini,
Volume 3, Issue 1 (4-2016)
Abstract

As an important factor to be considered, rapid population growth, lack of resources and appropriate management has led the natural hazards threatening human societies increasingly. Although it is impossible to eliminate the effects of natural hazards, however, risk reduction and risk cities against natural phenomena has become the main topics of urban planning and design in recent years. Iran is one of the countries that are faced with numerous natural hazards. With Location and geographical characteristics, Iran is a main country located in earthquake belt; therefore earthquake is one of the main natural hazards in human settlements. Now, more than 70 percentage of Iran are at risk of earthquake. This study investigated spatial effects of urban roads and network on vulnerability in Amirieh neighborhoods. The aim of this study, identification and isolation of factors affecting the vulnerability of urban streets and quantify the effect of each factor is the vulnerability. Amirieh neighborhood with 10 (he) area, located in center of Sabzevar city. Amirieh is part of the detorated urban fabric in Sabzevar, therefore, earthquakes it is one of the main threats of this urban historic neighborhood. As a holistic approach, safety and immunization of the city is in regard with the recognition of constituent elements of urban structure completely. Comprehensive identification is aimed at reducing the vulnerability of urban and urban elements. In order to, one of the most important elements is the road network and impacts on the vulnerability of urban neighborhoods. Neighborhood is smallest unit of urban spatial planning that has the most important role in the planning and reduction at the risks of natural hazards. The spatial relationships between the components of an urban system that can fit through association with the whole city would be reduced environmental hazards, particularly earthquakes.-From planning perspective, any activity be organized in small-scale and size, will increase the possibility of its constituent elements in crisis management. The vulnerability of urban networks in related to spatial structure and impact on other infrastructure directly. The nature of the vulnerability of urban streets can be based on three factors: the structure, origin and traffic. As a structure, form and pattern of urban access associated with the vulnerability that this pattern is in related to urban network movement geometry and topological properties. Road network and access can be analyzed spatially by both composition and configuration. Composition of road network affected by the physical geometry and presented in different scales and defined by location, form, length, angle and direction. While the configuration is sets of the points witch defined by the related lines. Roads determine accessibility to critical points, and are including topological features, displacement, time travel or transport costs.

In analysis process of data and maps, scientific methods and models were used such as geographic information systems (GIS), the Analytic Hierarchy Process and method (AHP) and weighted overlaying map. Research method involves the following steps:

  1. Introduction of indicators: In order to determine the vulnerability of the network in the various aspects needed to be based on the criteria established to determine the vulnerability and damaging. In this study, selected Indicators include: Type of road, the width of road, construction quality, density, population density and age of the buildings.
  2. To determines the importance and ranking criteria: Each of the above criteria has the sub-criteria which based on expert opinions, and comparing them with field studies. The (AHP) was used to weight sub-criteria for the experts and paired comparison.
  3. To weight the criteria: At this stage, the selection criteria are weighted by research. To determine weights, the criteria and sub-criteria, were quantified by which is determined measure the intensity excellence criterion of i to j. At this step, the above criteria and sub-criteria in the form of a questionnaire was given weight by the Group of Experts. Then, weights of each criterion was determined the final weight by Expert Choice software.
  4. Layers integration and production of Vulnerability final map: in order to produce the final map of vulnerability, the command Raster Calculator and weighted overlap method was used in the GIS environment. Density calculation is one of the suitable methods of spatial analysis. we calculated the density to represent the value of points or lines in the form of levels. In this study was used Kernel density equation for converting line to surface value, due to represent of spatial value. Map applying numerical value to each pixel density is formed in the periphery.

In Amirieh neighborhood, Results show that width of streets, land use, population density, quality of construction and age of building will be in the range of medium to high vulnerability. In this study, 50% of the length of passages, more than 73 percent of the quality of the existing structure, 69% of land uses, and more than 40 percent of population density were classified in the range of high to very high vulnerability. The final vulnerability map shows that more than 58% of the total area is in the range of high and very high vulnerability. The areas with moderate vulnerability involve 19 percent of the entire neighborhood approximately. The final map shows that areas with low vulnerability appropriate width placed adjacent to the passages open while the passages the end and low width are critical zone of significant congestion. Too, the results showed that the topological characteristics of the network involved in the formation of critical points. So that in the event of a crisis and then could impair relief and evacuation of the neighborhood. From spatial perspective, vulnerability is influenced by two urban network properties:

  1. Urban network structure: The street network is determined based on geometric features. This communication and spatial distribution of the points and roads in the neighborhood.
  2. Spatial hierarchy: Spatial hierarchy access to the neighborhood of the important points is that the crisis could guarantee public services.

Mehdi Mohammadi Sarin Dizaj, Mohsen Ahadnejad Roshti,
Volume 3, Issue 1 (4-2016)
Abstract

Iran, due to its geographical location and its human and environmental characteristics including those at risk of natural hazards there. In the area northwestern Iran, Zanjan city in three dangerous fault ,Zanjan in the north, fault Soltanieh in south and Byatlar located in West And based on a hazard map for earthquake country, prepared by the International Institute of Earthquake Engineering and Seismology as well as Based on Earthquake Resistant Design of Buildings (Regulations 2800) prepared by the Research Center, Department of Housing and Urban Development and Urban Country, the relative risk of high-grade is zone. A major part of the Physical structures of Zanjan in recent decades regardless of the strength and stability of the regulations, such as Regulations 2800 is applied.On the other hand the lack of required data, including geometric and non-geometric data of the infrastructure and buildings in the city Such as the problems that have not been noted. Accordingly, this study examines the relationship between resilience Zanjan city's Against Earthquake And indicators and factors affecting resilience Physical and infrastructure to identify And will evaluate the resiliency Physical and infrastructure in the city of the study.

The results of scientific and experimental studies in the field of natural hazards and the head of the earthquake, in the last few decades shows That the best way to deal with these risks, is be more resilient settlement in different dimensions. Settlements in risk reduction approach, resilient system that can temporarily or permanently absorb risks And with conditions changing rapidly, adapted without losing its function.

In this study, the analysis and evaluation; the region and evaluation criteria include Quality building, types of structures building, Old building, facade building, building density,  particle size distribution and land use compatibility. With the explanation that in the analysis of the dimensions and physical infrastructure and support multi-criteria decision-making methods (model Todim) and produced for the processing of the above mentioned methods, is used Arc GIS software. This study is applied and in terms of methodology, quantitative comparative and analytical. This study from to goal ,applied and in terms of methodology, quantitative- comparative and analytical.

International :::union::: strategy for disaster risk reduction program titled "Strengthening the resilience of nations and communities to disasters" in the Hyogo Framework for 2005 to 2015 plan adopted, The program, in addition to reducing vulnerability of communities in crisis, will tend to increase and improve the resilience of communities.

Hyogo Framework for Action (HFA) to motivate more active at the global level in the wake of the International Decade for Disaster Reduction natural framework (2000-1990) and Yokohama Strategy adopted in 1994 and the International Strategy on Disaster Reduction (UNISDR) in 1999, was formed. After the Hyogo Framework period (2015-2005) in order to improve the resilience of nations and communities to disaster, Sendai framework (2030-2015) aimed at the Third World Conference of the United Nations Disaster Risk Reduction in Sendai, Japan in dated March 18, 2015 was adopted.

Generally, in this paper, according to the definitions and objectives resilience, resilience include: 1. The destruction and damage that a system can absorb, without being out of equilibrium, 2. The ability of a system to organize and self-renewal in different situations and 3. Create and increasing learning capacity and strengthen the system's ability to cope with the situation.

In this study, the analysis and evaluation; district and Evaluation criteria include the quality, type of structure, building, old building, the facade of the building, building density, particle size distribution and consistent user. With the explanation that in the analysis of the dimensions and physical infrastructure and support multi-criteria decision-making methods (Todim,s model) And for processing materials produced by the above mentioned methods, GIS software ARC GIS, is used. Todim,s technique is one of the techniques used to solve multi-criteria decision making problems. The technique using pairwise comparisons among decision criteria, accidental incompatibilities of this comparisons to remove it. In this study, according to seven criteria affecting the physical dimensions and infrastructure (quality building, building structures, old building, the facade of the building, building density, particle size distribution and consistent user) to assess the resilience of the 24 districts in Zanjan, a matrix of 24 * 7 production was.

After performing calculations according to the formulas described in steps 1 and 2 of this technique, the performance of each supplier to obtain. Finally, according to the formula Step 3 to obtain the minimum and maximum for each criterion to rank the areas according to the values 0 and 1 action. The highest value obtained from the best available option. This study is applied and in terms of methodology, quantitative comparative and analytical.

Our results can be inferred from That regions corresponding to the North and East of Zanjan due to Old low and relatively new texture That neighborhoods Zibashahr, Amirkabir and PayenKoh, Golestan Andishe and Daneshgah alley, Golshahr Kazemieh, poonak, Vahidieh and Ansarieh covered And most have regular access to the local system and network resilience were presented. But the central and southern parts of city, That old and historic neighborhoods such as Hosseinieh and Bazar, Yidde Borogh, Yery mosque and Dbaghlar are included ,Because of Ancient and worn out textur and also Islamabad Neighborhoods, trans and Bisim, Fatmieh as problematic texture, the degree of resilience of poor and very poor were evaluated. Given the discussion above earthquake fault lines that crosses the city from two sides, Strength and high-level security measures should also be implemented in the arteries of infrastructure and structural elements. On the other hand, in the historic old city neighborhoods in the city should strengthen endogenous development based on standard building regulations 2800 and the geographical structure of the region be made available.


Jalal Karami , Aminah Mohamadi, Mohammad Sharifikia,
Volume 3, Issue 2 (5-2016)
Abstract

Resilience are concepts that are finding increasing currency in several fields of research as well as in various policy and practitioner communities engaged in global environmental change science, climate change, sustainability science, disaster risk-reduction and famine interventions (Vogel, et.al, 2007). Where the risk is a probability of damage, injury, liability, loss, or any other negative occurrence that is caused by external or internal vulnerabilities, and that may be avoided through preemptive action (Benson, et.al, 2004). Among natural disasters, earthquakes, due to the unpredictable nature of these events, are one of the most destructive. Iran is one of the most earthquake-prone countries in the world that its cities most affected by this phenomenon. Among the cities of Iran, Tehran, as the country's first metropolis, due to dense population, poor physical development, structural density, and lack of standards, is potentially facing a serious threat. The purpose of this study is to investigate the spatial flexibility of Tehran over the region 12 after the earthquake incidence.

The present study is dealt with the data preparing and analysis using geospatial methods. The several geospatial data such as Peak Ground Acceleration (AGA) map, urban structure, infrastructure and population collected from Tehran Disaster Management Center were provided and analysis based some GIS known algorithms. In other to urban spatial resilience zonation the AHP (analytical Hierarchy Process) was implemented to generation risk map. Finally OWA (Ordered Weighted Average) method was implemented in order to Production spatial flexibility map of earthquake incidence over the District 12 of Tehran. AHP model uses of priorities straight experts, but OWA provides of control the level of compensation and risk-taking in a decision. Using the conceptual of fuzzy quantifier with OWA makes the qualitative data analysis enter to decision.

    According to flexibility of the final map with fuzzy operator (All) equivalent to the operator MIN, the worst result Was obtained and resulting the highest risk and lowest flexibility respectively (Districts Nos. 2,12,7,8 and 11).By taking all the criteria of a criterion without compensation by other criteria as "non-risk" is obtained .

Map obtained with fuzzy operator (Half) has the high potential to provide suitable options,  because in addition to integration criteria the importance of each parameter based on the weight given to the criteria are considered. In this map Districts Nos.2.6 and 8 (Baharestan, Emamzadeyahya and Sanglajedarkhangah) respectively were most Risk to earthquakes and therefore less flexibility to the earthquake. The map obtained with the fuzzy operator "Atleast one" is equivalent to MAX operator districts Nos. 2,12,7 and 8 (Baharestan ,DarvazehGhar of Shush,Abshardardar and Sanglajedarkhangah)  respectively were most Risk to earthquakes and therefore less flexibility to the earthquake.

The fuzzy conceptual map quantifier showed that districts Nos. 2 and 12 (Baharestan and DarvazehGhar of Shush) were most vulnerable and therefore less flexibility to the earthquake as final results.


Alireza Mohammadi, Bahman Javid Moghvan,
Volume 3, Issue 3 (10-2016)
Abstract

Most of the large cities in developing countries have faced with the problem of informal settlements. The formation and growth of these settlements for reasons such as rapid and outside the customs building construction are the threatening issue for their communities. Informal settlements are areas that often shaped and expanded in major and middle cities of the Iran’s cities including the city of Parsabad. During the last decades, the rapid growth of urbanization and the lack of appropriate planning for low-income families housing leads to the formation of the urban informal settlements in most cities of the Iran. In most cases, these settlements have a structural and demographic dense texture. The structural texture of these settlements is often fine aggregate, impermeable, and unstable. In times of crisis, the possibilities of human and material losses to them are high.

Environmental hazards such as earthquakes are a serious threat to these settlements. However, these hazards in most developing countries, due to the unavailability and lack of preventive actions, end to the crisis. We cannot prevent earthquakes. But we can reduce the losses and damages caused by the earthquakes. Remove of the disaster is impossible, but it is possible to reduce the damage caused by the disaster. One of the most important ways to reduce the risk of earthquakes is preparation to deal with earthquakes. Preparation means having previous programs and plans.

     Iran is one of the countries where earthquakes always happen. Because Iran located in the world's earthquake belt, each year on average about 1,000 earthquakes happening in Iran. Ardebil and Pars-Abad city, located in an area that the possibility of earthquakes shakings in these areas, is more. The Zire Nahre Torab Neighborhood is one of the Parsabad city’s informal settlements that located in the northwest of the city. Regarding the possibility of an earthquake in the city of Pars Abad, identification and assessment the vulnerability of the neighborhood during an earthquake, is essential. Therefore, identifying and assessing the vulnerability, especially in the poor neighborhoods to offer strategies for dealing with the injuries, is essential. The aim of this study is assessing vulnerability of the informal settlements during an earthquake by using spatial data and GIS. This study, have been prepared in fifth main parts including: introduction and background, methodology and presentation of case study, theoretical framework, analysis and conclusions.  

This research in terms of the nature is practical and is descriptive and in terms of the method is analytical. Three methods including library, documentary and survey have been used for data collection. In the first phase, data and base maps were extracted from documents and reports of projects such as city comprehensive and detailed plans. Also, in this phase of the study data were updated. In the second phase, the problem, questions and research objectives were defined. In the third phase, the 3 criteria and 12 sub-criteria based on research literature and according to available data were selected. In the fourth phase, after preparation of databases related to each of the criteria in GIS, input layers were prepared for each of them. In the fifth step, the method of network analysis process (ANP) was used to determine the significance of criteria. In the sixth phase, the weighted overlay index (WOI) was used for combining output layers.

The results of this study show that more than 80% of neighborhood buildings are vulnerable against the risk of a possible earthquake. Also, research findings suggest that physical characteristics such as building structure, quality and age of the buildings will have the greatest role in determining the neighborhood buildings vulnerability level. Doing activities such as resisting buildings, improving roads, locating facilities in appropriate places, training and informing citizens to prevent a crisis caused by the possible earthquakes, is essential. Other recommendations are listed in below:

  1. Identifying vulnerable buildings
  2. The use of GIS in the management of settlements
  3. Preparations cities, to deal with urban hazards
  4. Empowering citizens to deal with environmental hazards
  5. Action to reduce earthquake risk
  6. Civil engineering Renovation of buildings
  7. New practices in the urban construction
  8. Equip cities with facilities and relief supplies.
  9. The use of specialists in urban planning.
  10. Conducting workshops on urban resilience.


Arasto Yari, Majid Parishan,
Volume 4, Issue 1 (4-2017)
Abstract

Disaster risk which is the potential loss expressed in lives, health status, livelihoods, assets and services, can occur in a particular community or a society due to the impact of a natural hazard. Disaster Risk Reduction is a systematic approach to identify, assess and reduce that risk. Or (in identifying, assessing, and reducing …) To be specific, the purpose of this or (the current) approach is to minimize vulnerabilities and disaster risks throughout an education factors (throughout an educational factor Or throughout educational factors) to avoid or limit the adverse impacts of natural hazards.

Knowledge and education are recognized as the key components of disaster risk management. Occurrence of enormous disaster in the world shows ( or pinpoints) the need to use  (or for using , in order to prevent repetition of the same structure) knowledge, innovation and education to build a culture of safety and resilience at all levels. The role of education for disaster risk reduction strategies can thus be presented based on three types of activities, including Save lives and prevent injuries should a hazardous event occur; Prevent interruptions to the provision of education, or ensure its swift resumption in the event of an interruption, and finally Develop a resilient population which is able to reduce the economic, social and cultural impacts should a hazardous event occur. Education for Disaster Risk Reduction promotes critical thinking and problem-solving as well as social and emotional life skills which are essential to the empowerment of groups threatened or affected by disasters.

Iran is crossed by several major faults, 90% of whom are seismically active and subject to many earthquakes each year. Qazvin Province, which is located among active zones, suffers less earthquakes, but these may be more powerful because stresses have longer to build. Occurring earthquakes often affected rural settlement and societies. The main aim of the article is to respond how is the role of education in risk management and decreasing vulnerability level of rural areas based on earthquake in Qazvin province? The purposes of this article are to outline the existing seismic risk in Qazvin and to identify the crucial role of education in advancing culture of safety and the resilience of Qazvin rural communities to destructive earthquakes.

From objective points of view, this paper is practical kind of research and from analytic points of view; it would be categorized as the qualitative and quantitative research. The information contained in this article is based on a variety of sources and have been collected by means of both documentary and questionnaire techniques.

This research has adopted or adopts the qualitative and quantitative methods to respond to  (or to answer a basic question) a basic question. To formulate the strategies of earthquake risk reduction 29 villages were selected by cluster sampling and then it was estimated the samples by Cochrane method. For data collection, 386 households were selected by random method.

According to the research topic, the main criteria divided into two groups: formal and informal education. The formal education includes indicators as the number of showed films, corrugated education about earthquake and the informal education encompasses indices as  the effect of media or institutions raising awareness for earthquake, the effect of the earthquake, affected rural and peoples and finally experiences  concerning  the earthquake training.

Based on the results of the current research, the level of education plays an important role in enhancing the effects of hazards and ensuing vulnerability of rural areas after the occurrence of natural hazards (earthquakes).

The result of this research also shows that the rural or regions of Qazvin province are the more vulnerable and the range of knowledge of peoples about earthquake risk is low. It is necessary to consider the earthquake risk management to (or so as to) decrease the earthquake risk among the studied regions/areas in all earthquake phases. In order to reduce the vulnerability of rural settlements in Qazvin County, it is necessary to increase awareness and knowledge.

Regarding/ considering the results of this research and the role of education in risk reduction to  reduce the vulnerability of rural spaces, some strategies such as strengthening disaster risk management awareness, increasing knowledge among rural residents, improving communication skills regarding/concerning disaster risk management  have been proposed.


Seyed Reza Azadeh, Masood Taghvaei,
Volume 4, Issue 3 (9-2017)
Abstract

The field of natural hazards research has a rich history in geography, appropriately so because it involves conflicts between physical processes and human systems. Natural events occur without direct human effect and endanger his social life. Events that enforce average annual up to 150000 human damages and more than 140 milliard dollars financial damages on counties and especially developing countries. Among all the natural disasters, the earthquake is one of the most serious ones. It brings tremendous economic losses and deaths of people, as well as the enormous effects on the harmonious and continuous development of society. Iran is an event ism country in the world. In this field look at the recent decades earthquakes statistics that reveal average once in every five years.
Gilan province is located in south western of Caspian Sea in mountainous area of Talesh and central Alborz range that endure many earthquakes up today. The most ancient earthquake ever occurred in this area refers to Marlik civilization which is located near Rudbar – Rostam Abad. One of the recent earthquake in the 20th century in this area is Rudbar earthquake in 21 Jun 1990 with magnitude Ms = 7.7 Richter that caused many destruction. In one hand according to complex tectonic of central Alborz and in the other hand locating Gilan in the south west of Caspian sea that demonstrate many seismic activities, it illustrates as a result that this area is one of the active high potential seismic area of Iran.
The current study is aimed at investigating the earthquake vulnerability of rural and urban settlements of Gilan province. To this end, Euclidean distant analysis and raster overlay have been conducted in GIS. To run the procedure, the first step is to calculate distance (pixels in 86 m dimension) between province and active and inactive fault line based on Euclidean analysis distance in Arc Map. The next step is aimed at standardizing the calculated distances using Raster Calculator Command. The, zoning of earthquake vulnerability of Gilan into five zones (based on active/inactive faults) is the primary goal. As a matter of fact, standardization leads to fuzzy maps. Standard score (distance) is calculated by dividing each score by sum of the scores. The next step tries to categorize zoning map and to translate Raster map into vector one in order to calculate the area of each risk category. Finally, overlay of urban and rural layers base on zoning map may help us analyze seismic hazard urban and rural regions of Gilan province.
Results have shown that 40.72 % of total area of Gilan province are in 15 km distance from active fault. Also, 21.51 % of total area of Gilan province are in 15 to 30 km distance from active fault. Additionally, 64.45 % of total area of Gilan province are in less than 8 km distance from inactive fault (Table 1).
 
Table 1. Seismic hazard zonation according to faults
Probability of earthquake hazard Distance to fault lines Relative area
Active Faults Passive Faults Active Faults Passive Faults
Very low risk 0-20 60-76 32-42 7.29 1.42
Low risk 20-40 45-60 24-32 13.82 3.96
Medium risk 40-60 30-45 16-24 16.66 8.13
High risk 60-80 15-30 8-16 21.51 22.04
Very high risk 80-100 0-15 0-8 40.72 64.45
sum - 100
 
According to seismic hazards due to active faults, 18 cities out of 51 urban regions are severely vulnerable to earthquake. Accordingly, 67.20 % of Gilan urban population are located at high-risk zone. Seismic hazard zoning map based on active faults have indicated that 20 cities are highly vulnerable to earthquake. (Table 2)
 
Table 2. Investigating the risk of earthquake in urban areas of Guilan province
Probability of earthquake hazard urban Settlement Population (2011) Relative population frequency (percent)
Active Faults Passive Faults Active Faults Passive Faults Active Faults Passive Faults
Very low risk 0-20 3 1 135846 17106 1.14 9.07
Low risk 20-40 6 4 86133 144021 9.62 5.75
Medium risk 40-60 10 8 739095 754968 50.43 49.37
High risk 60-80 14 18 380908 273137 18.24 25.44
Very high risk 80-100 18 20 155188 307938 20.57 10.37
sum 51 1497170 100
 
Seismic studies on rural settlement of Gilan province have indicated that 1350 rural out of 2925 rural residences are severely vulnerable to earthquake because they are near to active faults. These regions are the habitat of 24.9 % of the total rural population. Zoning map based on inactive faults have shown that 1679 rural regions are vulnerable to earthquake (Table 3).
 
Table 3. Probability of earthquake hazard in rural settlements
Probability of earthquake hazard Rural Settlement Population (2011) Relative population frequency (percent)
Active Faults Passive Faults Active Faults Passive Faults Active Faults Passive Faults
Very low risk 0-20 162 42 54240 30236 5.51 3.07
Low risk 20-40 379 147 183718 92018 18.68 9.35
Medium risk 40-60 481 291 255412 176183 25.96 17.91
High risk 60-80 553 766 245392 340448 24.95 34.61
Very high risk 80-100 1350 1679 244942 344819 24.90 35.05
sum 2925 983704 100
 
Studies have claimed that the majority of rural and urban regions of Gilan province are severely earthquake-prone. It is due to geographic and natural features of the mentioned province. To this end, some recommendations are given:
  1. Meticulous supervision on safety of building from the stage of plan-making to administration which have to be based on engineering principles for earthquake-prone cities including Baresar, Ataqur, Asalem, Haviq, and Roodbar which are next to active faults
  2. Prevention of formation of suburbs and towns on southern and northern parts of Gilan because these parts are really vulnerable to earthquake
  3. Prediction of temporary accommodation in central Gilan because this part is less vulnerable to earthquake
  4. To equip buildings, hospitals, schools, and other buildings located in big cities including Rasht, Bandar-E Anzali, Fuman, and Lahijan with facilities required in case of earthquake
  5. To hold training courses in rural and urban parts of the mentioned province to make residents prepared for earthquake and for emergency evacuation
  6. To prioritize reformation of old and historical buildings in Rasht because Rasht is mostly laden with old buildings which are really vulnerable to earthquake

, , ,
Volume 4, Issue 4 (1-2018)
Abstract

The earthquake is a natural disaster that damages structure and lifeline and is simply inserted into human artifacts. For this reason the structures and lifeline, earthquake loads shall estimate and in order to provide its design.in Iran earthquake, risk of natural disasters is dominant. It should be noted that Iran in recent years, an earthquake with a magnitude of 7.5 Richter scale or more frequently experienced. Focus most historical and instrumental earthquake along the northern margin of two young belts (Kope-Dagh and Alborz Mountain) and south (Zagros Mountains to the northwest - southeast) is located. The relative risk of different regions in the 2800 earthquake building and Housing Research Center Indicate that is about 73 percent of the main lines of the rail network in the regions with high relative risk and especially the Zagros mountain areas are the greater risk of earthquake. Construction of railway lines between Esfahan and Ahvaz on stage in this research study that evaluated against earthquake risk path it has selected. The research study also Zagros mountain interval passes and bridges, tunnels and numerous curves.
Rail between the two cities Esfahan and Ahvaz is studied.  In the years between 1050- 2011, more than 350 earthquakes occurred in the area, the biggest earthquake with a magnitude of 6.8 Richter scale in 1384 had the highest value. In this area there are 615 fault reverse fault Zagros Iran’s biggest fault zones perpendicular to that direction. Distinguishing feature of this exist geomorphologic unit including   high Zagross (Lordegan - Brojen), Zagross folded (Baghmalek - Lordeghan) and Khuzestan plain (Ramhormoz - Ahvaz), in addition to different geological units covers. The beginning and end of the range in a wide range of railroad in Ahvaz not consolidate the young sedimentary soils passes, the diversity of geological formations in the Zagros that most of the sedimentary formations have been broken by numerous faults. Based seismic study in the south Zagros bar is located. In this study evaluated the risk period.
The data used in this study are planned rail route Esfahan – Ahvaz  scale 1:250000 preparation of the Islamic republic of Iran railway research center, geological maps 1:100000  the geological survey Iran, satellite images IRS LISS III  the armed forces geographical organization, historical and device earthquake data geological survey. Thus, in the first stages of investigation historical and device earthquake based on semivariogram model and Kriging interpolation method, historical and device earthquake zones calculated. Fault lines of, geological maps 1:100000  mining and were used; of aster the 30 meter resolution ,slope ,Curvature, Profile, elevation it was prepared; lineaments, rippling unit, land use and vegetation cover of satellite images IRS LISS III it was prepared. For the analysis of variable composition due to the lack of homogeneity in terms of scale, the need to unify them was based on the degree of membership. Then, based on Gaussian fuzzy membership function was adjusted. In this study, sure to select the correct of gamma, merging were the values0.7, 0.8, 0.9 and 0.95. Then, were evaluated by Statistical Zone and select suitable gamma.
Obtained seismic zones on the basis of semivariogram model and Kriging interpolation method showed that rail lines in three intervals smaller than 4 Richter scale earthquake is facing. Whereas earthquake greater than 4.5 Richter scale on quaternary alluvial deposits are located, in addition to its range with a maximum magnitude of earthquakes on faults and lineaments as well as difference corresponded to the sudden formation. The case study is Iran’s biggest fault zones and more than 350 earthquakes occurred the 1000 year that adaptation layers fault, earthquakes and also historical earthquakes, indicates active region in terms of earthquake. Using a combination of variables of overlapping functions vegetation cover density, land use, historical earthquakes,4-5 earthquakes, greater than 5 earthquakes, change height level layer, slope, Curvature, Profile, faults and lineaments and drainage density layers; the amount of risk  in gamma0.8 earthquake was detected because the results showed that recent gamma have greatest difference between variables and classes risk. Zoning in 4 commodity risk respectively without risk, medium risk, high risk and very high risk classified and two long range and a short interval of railway on the scope of their compliance with the maximum risk.
 
The results show that in terms of topography, geology and system faults and joints related fractures there are tremendous diversity that diversity causes the damage of the earthquake differently. In other words proved to be highly destructive earthquake with magnitude of this range is different. Most gender diversity in both land and exposed the fault lines pass through the system, is one of the Shareza to Ardekan and other the Ramhormoz to Baghmalek. So magnitude earthquake in rail track will be a lot of changes. The beginning and end of the rail passes of new alluvial sediments lands due to being detached and empty spaces, the near Esfahan and Ahvaz areas are involved in the escalation vulnerability. Deposits range in the vicinity Gandoman and of wheat rail lines Izeh the screw with range of motion will face intensified by the earthquake.  There convex reflects of Dizajan to Izeh intensification of earthquake in vulnerable parts of the range. Seismic records of more than 5 Richter scale and shallow depth because of lack of data has little effect the result of risk that need to be considered as evidence of potential risk.
 

Mr Seyed Ali Badri, Mr Hossain Karimzadeh, Mis. Sima Saadi, Mis Nasrin Kazemi,
Volume 6, Issue 1 (5-2019)
Abstract


Analysis of Rural Settlements Resilience against Earthquake
Case Study: Marivan County
 
Iran is a seismic prone country located over the Himalayan-Alpine seismic belt. Striking earthquakes during the past years and decades are strong proofs for vulnerability of rural areas in this country; loss of lives, damage to buildings, even demolishing villages have been experienced in Iran rural areas. All these fatal effects are evidences to make villages more resilience and strengthen their structures because in the case of vulnerable structures, earthquake can be tremendously destructive. Therefore, losses of live and property can be avoided through making resilience rural social, economic and physical structure like construction of buildings that sway rather than break under the stress of an earthquake. Making villages resilience are directly related to saving rural residents lives and their property. Briefly, reaching or maintaining rural areas capacities to an acceptable level are the main purpose of this study by analyzing mentioned structures. This study conducted in Marivan rural settlements which exposed to earthquake.
According to Morgan Table, 310 samples responded to the questionnaires. The samples of this study were selected by chance from 6 districts and 18 villages. The main methods for analysis of collected data were Dimatel, ANP and Statictical analysis by SPSS. The results of ANP and Dimatel analyses led to the determination of relation among the factors. It should be noted we used Delfi method for this part. Moreover, for the final part ANOVA analysis is used by the authors. 
All around the world, countries have different approaches to deal with hazards in order to mitigate fatal affects. In fact, the goal of all management practices is to reduce hazard impacts. Iran faces a variety of hazards because of placing in a special geographical position; in this regard earthquake is the most important one. Resiliency approach can improve the flexibility of rural settlements through strengthen the capabilities of them and reduce their vulnerability. In the present study, analysis of rural settlements resilience against earthquake has been investigated. The results show that the resiliency is lower than the average in the studied villages. Also, there was a significant difference among the studied villages in terms of the resiliency against earthquake. The findings are consistent with the results of Nouri and Sepahvand in 2016 and Rezaei et al., in 2014.
Considering the analysis of data and ANP analysis of the internal and external factors in a general and separate way, the studied villages of Marivan city can be considered as non-resilience structures; in this regard, the most important reason is the inappropriate condition in the internal factors of rural settlements. The poor quality of construction and the inadequate structure of buildings must be considered, as well. Another obvious reason is the existence of eroded texture in this area. According to external factors, relief does not cover rural areas and led to reduce the resilience of rural settlements. Investigating the resilience of rural settlements based on external factors not only indicates the inappropriate situation of rural structure in this analysis, but also it proves a more favorable situation than internal factors. The findings show that structure and the amount of structure confinement in decrease the tissue texture of rural settlements play a profound role; changing these factors requires a long time and long-term planning. Regarding the post hoc test, variance analysis suggests the highest resiliency in Zarivar with an average of 2.99 and the lowest survival rate in KhavumirAbad rural district with an average of 1.87. Moreover, according to the one-sample T-Test, the socio-cultural dimension with a mean of 3.05 has the best situation in terms of resiliency against earthquake in the studied villages. For improving resiliency in the studied villages, authors’ suggests are including: managing and organizing preparation measures and response along with effective actions to reduce the risks of earthquake and providing a crisis management department; strengthen scientific and research studies to identify and reduce the risks; applying the rules to retrofit the buildings and increasing the safety factors in new construction; mapping the vulnerabilities in rural areas; increasing people participation and preparing them to deal with an emergency situation caused by an earthquake.
 
Keywords: Resiliency, Rural Settlements, Earthquake, Marivan County
 
 
Hossein Hosseinekhah, Asghar Zarrabi,
Volume 6, Issue 2 (9-2019)
Abstract

  
 
Role mode combination decision Waspas in Identify zoning Seismic
 (Case study: Population center, township Bahmaei in Kohgiluyeh and Boyerahmad province)
Hossein,Hosseinekhah[1], Asghar Zarrabi [2], Hamid Reza Varsi[3]
 
According placement Country of iran On the belt earthquake Alpine - Himalayas and Placement Partial of Iran Plateau Between two pages of Saudi Arabia (south) And Eurasia (north) And consequently the existence of active faults And the existence of seismic point And most importantly, record high intensity earthquakes, Etc in the township of Bahmei, in The present study will try, with Using the WASPA model, Identified and reviewed The Seismic zones. The main purpose of this study is Identify and zoning Earthquake risk in township Bahmaei and Secondary objectives research:
- Review and Assessment City Likak against earthquake risk.
- Identify and zoning district township Bahmaei against the danger of earthquakes.
- provide strategies to Reduce Damage and and physical and financial vulnerabilities of citizens.
According the nature of the subject and research objectives, Research Methodology Based on descriptive – analytical and functional. Collect dates provided in two part, weights and layers of information, based on Documentary method and using satellite images, Mapping organization, USGS organization. The statistical population of the research, the entire limits township Bahmaei based on dividing the national. Indicators used in the study, 10 key indicators, including Active faults, seismic areas, rivers, urban and rural settlements, the elevation, slope and more. To collect data Of the America Geological organization, National mapping organization, Satellite imagery and as well as to review and analyze data used is of ARC GIS software and Wapas model.
Results of the research show that from area 1245 square kilometers of Bahmei Township, there are 252.228 square kilometers, equivalent to 20 percent of the Township in an unsafe zone. 149 square kilometers equivalent to 12 percent is in the high risk zone and 167 square kilometers, equivalent to 13 percent in area with the high-risk. Also, of the area of 1245 square kilometers in the Township of Bahmei 386 square kilometers, equivalent to 31 percent is in the zone with low risk of the earthquake. The final weights achieved by each Propeller (weaknesses, strengths, opportunities and threats) in a separate and individual weighting with one another, have dominance of the dominating role of the matrix threat.
Results Research shows, 252 square kilometers, equivalent to 40 perecnt of Bahmaei township in zone safe, 386 square kilometers in the zone with low-risk, 289 square kilometers of the township In the zone with middle danger, 149 square kilometers of the township Equivalent with 12 percent of the township In zone with high risk and 167 square kilometers, equivalent to 13 percent is in the zone whit high-risk of ​​the earthquake
The city Likak as Bahmaei township center is in zone with low very risk Compared to the risk of earthquakes. Also The results showed The 160 sq. Km  of The central part of township Equivalent to 18 percent in zone with low-risk And 137 square kilometers, equivalent to %15 in zone whit high risk and 15 percent of central city The zone have very high hazard. Also the results showed of area 506 square kilometers Section Garmsar, 30 percent in the zone safe, %44 in the zone with low risk and 6 percent is in zone with the very high risk. The also results showed that 15 villages and villages (6%) are very vulnerable, 20 villages (8.43%) are in high danger zones and 112 villages are in zone with low risk.
Keywords: Waspas model, earthquake, Likak city, township Bahmae.
 

 

Mousa Kamanroodi, Moohamad Solemani, Mohamad Ghasemi,
Volume 6, Issue 4 (2-2020)
Abstract

 

 
Ecologically-based Management Factors and criteria of River-Valleys in Tehran metropolis-Case Study: River-Valleys of Kan
 
Abstract:
Iran has seasonal rivers because of dry climate, low rainfall and different topography. These river- valleys have main role in forming, genesis, and sustainability of human settlements and provide different ecological services. The main services include beauty, store of green spaces, water supply, reduce and create temperature differences, local air flow and natural ventilation which are part of the functions. Tehran is roughly the same area as 730 square kilometers and its population is 8.7 million people. It is located in51° and 17´ to 51° and 33´ east longitude and 35° and 36´ to 35° and 44´ north latitude. The height of this city is 900 to 1800 meters. The north and north east of this city are located in peculiarity range of the southern part of the middle Alborz. This city includes 7 river valleys to the names Darabad, Golabdareh, Darband, Velenjak, Darakeh, Farahzad and Kan. The ecological role of these river valleys is reduced because of non- ecological axis developmental interventions by urban management and citizens. These interventions have changed river valleys to high risk space of skirt movements and flood. Kan is the most important river valley because of the breadth of the basin and permanent water discharge rate. The part of this river valley has changed to park (Javanmardan) by municipality. The purpose of this research is that to provide factors and criteria of ecosystem based management to organize this river valley.
ANP has been used in this research. To use this method for analyzing   factors and criteria of ecosystem based management to organize this river valley, firstly, these factors have been identified by library studies and scrolling. These factors include 4 criteria (natural: 15 sub criteria, social: 3, management:  6, economic: 2). the books, journals, reports, maps, aerial photos, satellite images and internet sites have been studied in library studies. In site studies, some information from library studies have been edited. After that, the findings of these two methods in form of questionnaire called factors and criteria of ecosystem based management to organize Kan River valley, was in charge academics and professionals. They were elected among pundits of urban management science, urban planning, geography and environment in Tehran. At first the number of them was 30 people came to agreement in two process about 4 factors and 18 criteria and determined importance and priority by Delphy method. Findings in Delphy method were analyzed through ANP and SUPER DECISIONS. In this process, firstly, a conceptual model and relation inter and intra clusters and nodes determined. These relations in this process are very important because paired comparison depends on this process. Assumption of equality of effects and similar relations in these factors is illogical because there are the grading of effects and relations in this research. Second, the factors have been compared to each other to create a super matrix based on paired comparison. Generally, in this process decision makers compare two different factors to each other and paired comparisons have grading of between1to9. In double- sided valuation, each factor is used to show initial inverse comparison. Inconsistent rate in paired comparison must be less than 0.1 like AHP. Third initial super matrix is created. It is the weights created from paired comparison and identified the importance of each factor in each cluster. Forth, the weighted super matrix was created. The weights of clusters was calculated in this process to identify the weight of final super matrix. Fifth, limited super matrix was created. The weighted super matrix reached for infinity band each row convergenced to a number and that number was the weight of factor. By this way limited super matrix was reached.
Based on ANP and table 1, management: 46%, natural – ecological: 26% and economic and social factors: 14% are important respectively in ecosystem based management to organize Kan River valley. Based on reached results, inconsistent rate is 0.003 and it shows that the weight is valid and review is not necessary. Among sub criteria in management factor, organizational pattern: 32%, method of management: 23% and policies: 21% are the most important respectively in ecosystem based management to organize Kan River valley. Among sub criteria in natural- ecological factor, flood, domain movements and building and texture of soil are the most important respectively 23%, 18% and 11.5% also in social factor, participation, security and public trust have the importance respectively equal to 49% 31% 19%. In economic factor, environmental assets and stakeholder’s economic participation have the same importance.
Based on this research, management factor (organizational pattern and the method of management) is the most important in ecosystem based management. But this approach, the management pattern and intervention to organize this river valley, need comprehensiveness and integrity of the subject (nature, society, management and economic), purpose (protection, resuscitation and use), factors (government, city council, municipality, private sector and people), duties (policy making, planning, designing and perform), method (collaborative), tools (knowledge, skill, rule, program, budget, machinery and materials) and management domain. Use of these factors and criteria need some infrastructure and reforms. The most important reform is reform of management structure, production of subject matter and topical program special to organize river valleys by ecological approach to release Kan of loading and contradictory grabbing.so this management can follow protection, resuscitation, sustainable use and continuity of ecological services.
 
Key words: ecosystem, ecosystem based management, analytic network process, river valley of Kan
 
 
 


Abolghasem Goorabi, Seyed Mohammad Zamanzadeh, Mojtaba Yamani, Parisa Pirani,
Volume 8, Issue 3 (12-2021)
Abstract


 
Evaluation and comparison of the accuracy of fault and seismic data in fractal analysis of northwest Zagros tectonic
Introduction
Complexity of natural processes especially tectonic processes that shape landscapes cannot be evaluated by classic geometry. In comparison with integer dimension of Euclidean space, fractal geometry can analyze features with non-integer dimension (Turcotte, 1977:121). Fractal behavior in such features shows self-similarity that this component is independent of the accuracy of investigation (Baas, 2002, 311). In fact, fractal dimension, is scale-invariant (Phillips, 2002, 144). Spatial variations of fractal parameters are an important factor in studying the tectonic state of regions. By determining the fractal dimension of Linear structures such as faults, it is possible to compare their geometry disorder (Suk moon et al, 1996:5). This parameter affects seismic behavior of fault because earthquake is an event related to faulting (Bachmanov, et al, 2012: 221) and Their concentration in an area indicates tectonic activity. In this research we performed fractal analysis using box counting method on fault and seismic data of northwest of Zagros about different scales of fault and different time periods of earthquake epicenters of two organizations with various detail to find and examine their fractal behavior by fractal dimension.
Methods
Data in this research can be divided to three clusters: 1. Fault lines of two scales of geology maps (1:100000 and 1:250000), 2. Earthquake epicenters of two periods of times prepared by two organizations (20 century data of Institute of Geophysics and 1900-2020 data of International Institute of Earthquake Engineering and Seismology) and 3. The second cluster with exert of Magnitude of completeness of earthquakes that show the minimum magnitude above which the data in the earthquake catalog is complete. Fractal analysis applied on these data by box counting method. To achieve this goal firstly, under study area divided to 6 boxes that contain main fault trends horizontally and vertically (A: folded Zagros in west of Kermanshah, B: faulted Zagros around Kermansha and east of kermansha, C: folded Zagros near mountain front fault, D: An area between faulted and folded Zagros near Khoramabad, E: Area around Balarud fault and F: An area between Balarud and mountain front fault to faulted Zagros). To calculate fractal dimension of fault lines and distribution of earthquake epicenters, box counting method suggested by Turcotte (1997) were applied by using Hausdorff dimension, which in two quantity of size (side length of grids) and number (number of grid boxes containing earthquake epicenter or fault) are used to calculate FD (total fractal dimension) value (Schuller et al, 2001: 3). Relation between reciprocal of side length (quantity of size) and number of boxes containing point and linear features (quantity of Number) was drawn Logarithmically as a linear regression in Excel that shows fractal dimension.
Result and discussion
Larger values of fractal dimension indicate greater geometric disorder (Sukmono et al., 1996: 5). Analysis of faults of two scales represent that faults geometry is fractal and the amount of FD for scale of 1:100000 compared with scale of 1:250,000 is larger but their result approximately is same. The FD values for both scales are locate between 1 and 2 that expresses development of the fractal community of faults has a linear trend. On the other hand, for earthquakes, increase in FD values shows that earthquakes are not clustered and are distributed homogeneously (Oncel & Wilson, 2002: 339) along a line in understudy area. Calculated number-size values for faults and earthquakes represent both partial and popular FD changes. Based on partial FD, two populations can be classified: (a) Background with FD larger than popular FD; (b) Threshold with FD lower than popular FD.
Conclusion
Fractal analysis of faults of two scales of geology maps reveals that the order of active areas with high FD values in both scales are same but due to different details of faults in geology maps of geology survey and oil company, in scale of 1:100000 area labeled B and in scales of 1:250000 area labeled A is the most tectonically active region, however, area labeled E in both scales has lowest value. The order of active areas based on FD values for earthquake epicenters of 1900-2021 data of geophysics institute do not support other results because area labeled C with low density of faults and earthquake epicenters is in the first order and area labeled A is on the contrary of it. However, FD results of 20 century earthquake epicenters with exert of magnitude of completeness are reliable and higher magnitude of earthquakes spatially recent Ezgeleh earthquake in area labeled A is its evidence.
Keywords: Fractal, Tectonic, Northwest Zagros, Fault, Earthquake
 
Masoomeh Hashemi, Ezatallah Ghanavati, Ali Ahmadabadi, Oveis Torabi, Abdollah Mozafari,
Volume 8, Issue 4 (1-2021)
Abstract

Earthquakes as one of the most important natural disasters on earth, have always caused irreparable damage to human settlements in a short period of time. Severe earthquakes have led to the idea of developing an infrastructure plan to reduce the risks and damages caused by it. The urban water supply system is the most important critical infrastructure that is usually damaged by natural disasters, particularly earthquakes and floods; hence, the function of the pipelines of the water system determines the degree of resilience and design of the infrastructure against multiple natural and man-made hazards. Water network pipelines are the most vulnerable. In this regard, seismic modeling and spatial analysis of the effects of seismic urban water supply network in Tehran were investigated and seismic indices PGV, PGD.PGA of Tehran were calculated and the extent of the area's vulnerability was carefully evaluated. The ANP model was also used to weight the above indices. Questionnaires were prepared and completed by experts in the field of research in order to investigate the interactions between the criteria in terms of their effectiveness or susceptibility. The ANP conceptual model was developed and implemented in SUPER DECISION software. After drawing the hazard status, the calculation of the water supply network vulnerability using SAW method was considered and earthquake risk status on the water supply network was calculated. To calculate the earthquake risk based on R = H * V, the values of these two components (seismic power, vulnerability) are multiplied. This calculation was performed in GIS software on the layers of vulnerability and the final result of this calculation was shown in the amount of risk map. The calculated risk level for the entire water transmission network due to earthquakes has been shown. The results show that more than half of the transmission line network is located in the low risk zone and about 33 percent of transmission networks are in a relatively low risk zone. But high-risk and very high-risk areas account for about 20 percent of Tehran's total area, which is relatively large and will involve many neighborhoods
Mis Sedigheh Hashemi, Dr Ahmad Taghdisi, Dr Farhad Azizpur,
Volume 8, Issue 4 (3-2022)
Abstract


Introduction
Rural areas are more vulnerable to earthquake hazards than urban areas but the vulnerability of rural areas has always been neglected and few studies are worrying about it. Given the importance of villages and played the crucial role in socio-economic development and national security, providing adequate housing for villagers and addressing the problems in this area, in particular, providing them with security and relieving their vulnerability are of particular importance. One of the policies of Iran to reduce the risk of damage; improvement and rehabilitation of rural housing by the Housing Foundation of the Islamic Revolution Which has become one of the most important strategies in Iran due to the extent of natural disasters and their financial and financial losses and their expectations beyond ensuring security against accidents are also a continuation of rural life. neyriz Township is subjected to major and minor faults that the existence of these faults and the probability of earthquake causes vulnerability of the villages of the region. The housing estate of the Islamic Revolution of the Islamic Republic of Iran, from 2004 to 2013, has provided 5255 villagers of more than 20 households with facilities for the renovation and renovation of houses. The number of facilities was paid to 66 villages of more than 20 households in the city and supervision of the construction process was carried out. So what seems to be important is the activity that the Housing Foundation has had in its housing estate, its impact on the rural areas, and how much it has been able to achieve resistance and stability in rural housing; in addition to what degree, they have been able to influence their satisfaction. Therefore, the present study addresses the vulnerability of rural dwellings. In this regard, vulnerability is initially studied then the satisfaction of the villagers is examined finally, the share of each vulnerability level criterion is measured on the satisfaction of the villagers and appropriate solutions.

Data and Methodology
 The research methodology is based on its descriptive-analytical nature. Data gathering was conducted through surveying, library and field method. A small portion of the sample includes 230 households from 18 rural in the Neyriz Township. Reliability of the questionnaire was calculated using Cronbach Alpha (alpha = 0.79). In the qualitative section for the implementation of grounded theory, an interview was conducted with 40 villagers.

Results and Discussion
By studying the vulnerability of rural nursing homes in the Township of Neyriz, the villages of the studied villages are in an unfavorable position in terms of economic and social dimensions. Objective satisfaction indicators show that 51.8% of the villagers' homes were constructed responsive to concrete. 80.4% of the walls of the houses are made with bricks. The roofs of the houses are covered with 75% block and block. Of the studied rural households, 94.6% have personal housing and only 5.4% of the tenants. In the area of providing services in residential units, all the studied villages have water, electricity, telephone and 2.05 villagers are satisfied with the crop of agricultural products, parking lots, agricultural machinery and heating and cooling equipment for their housing.

Conclusion
 Findings showed that the vulnerability of rural housing is not only physical and environmental in nature, but also in social, economic and institutional-organizational dimensions. Meanwhile, vulnerability in physical and environmental dimensions in the study area is lower than other dimensions. Therefore, the existence of unstable housing in rural areas has led to a decline in their quality of life. This situation is strongly influenced by internal and external factors and forces. The lack of financial support, the traditional housing structure, poor design, poor monitoring and enforcement, social constraints, lack of building facilities, weaknesses in government support and regulatory policies, and government institutions are among the main problems of rural dwellings.
According to interviews with villagers, the following solutions can be made to reduce rural housing problems:
 - The costs of facilities and infrastructure are not at the expense of villagers. Therefore, the creation of continuous financial resources for councils and departments can be open.
 - Reducing the problems and obstacles facing applicants for loan use (through increasing credit, decreasing profits and raising the age), providing welfare services and reducing the total poverty of the rural community, granting loans or with benefits and installments Low for women-headed households; increasing the number of borrowers and creating rural people's interest and motivation for living in the countryside.
 - Preserving indigenous architecture, using indigenous materials, avoiding blind imitation of urban housing, etc., are unfortunately much neglected, and new rural houses have become homogeneous and adapted to the natural and physical environment of the countryside.
- In anti-poverty programs, the problems of villagers have been underestimated, which has led to their vulnerability. Therefore, investing in villages, creating complementary agricultural businesses, increasing production and, consequently, increasing rural incomes, can accelerate the growth and development of this sector.Energy saving is considered to be a problem with rural housing problems in terms of access to fossil fuels and mechanical equipment for heating and cooling buildings.

 Key words: Vulnerability, pathology, Earthquake, Neyriz Township

 
Dr. Javad Sadidi, Mr. Mansour Bayazidi, Dr. Hani Rezayan, Dr. Hadi Fadaei,
Volume 8, Issue 4 (3-2022)
Abstract

Designing a Volunteer Geographic Information-based service for rapid earth quake damages estimation


Introduction
The advent of Web 2.0 enables the users to interact and prepare free unlimited real time data. This advantage leads us to exploit Volunteer Geographic Information (VGI) for real time crisis management. Traditional estimation methods for earthquake damages are expensive and time consuming. In contrast, volunteer and web-based service are near real time with almost no cost services. the lack of accessible real time data collection services causes delayed-emergency responses for disasters like an earthquake. This drawback is critical when we encounter a problem like buried people with valuable seconds for emergency rescue operation.
The current research aims to design and implement a web-based volunteer data collection service for rapid estimation of earthquake damages and number of buried people.

Methodology
To investigate the capacity of VGI in rapid estimation of earthquake, a technical frame work based on the web technologies has been programmed and implemented. The designed service is comprised of server and client sides.
The client side is a two-side browser-based service includes volunteers (users) and managers pages. On the user page, volunteers have a web page to enter and fill in the blank forms and taking a photograph of the target building and compare it with pictures. They watch the sample pictures in different level of damages and compare their building with the samples and give a grade of the most similar picture with their building. This grading process leads the server to analysis and classify the incoming data and create the heatmaps for managers. On the managers page two online discrete heatmaps for the both earthquake damages and buried people are displayed. In fact, the heatmaps present the online and real time quantitative situation of the building damages and buried persons as hot spots. These hotspots have the first priority for giving emergency services. The manager page also exploits query tools to request different level of details and classes from the server side.
The server side is responsible for receiving, saving, spatial analysis and transmission of the requested result to the client side. This task is carried out by the exchange side. As the citizens are entered to the browser-based service and fill in the blank forms for building damages based on the mentioned guideline and report the buried people, These forms are transmitted to the server side and a geo-server performs spatial analysis including Heatmap, distance and clustering analysis. Then, a real time damage and buried people map are prepared and delivered to the client side. The server updates the created maps whenever a new data is submitted. By this, a real time damage and buried people maps are accessible for official managers to conduct a goal-oriented emergency operation and a preliminary earth quake damages on city building blocks.
After the technical frame work has been designed, it was tested in Oshanvieh city by 132 volunteers on the scene for an earthquake.

Results and discussion
To investigate the capability of volunteer geographic information for earth quake afterwards, the designed service mentioned in the methodology was utilized on Oshnavieh city. It was assumed that an earthquake has occurred. 132 volunteers participated for the data collection process. According to the crisis management organization experts, 102 reports of the total 132 reports are correct that shows the accuracy of 76.52 percent. Besides the building damage level based on the defined guideline, the citizens also select their vital needs after the earthquake.
  the most requested vital needs are warm stuffs, medicine, water and foods respectively. Unfortunately, the participation rate is ranged from some seconds after the earthquake to three days. This means that some citizens have filled and transmitted their data three days after the earthquake.
In the following, a comparison between the designed service and traditional earthquake damage estimation methods (in situ) was carried out. The result shows that field-based methods for a city like Oshnavieh need about 20 days. However, the designed volunteer-based service what is programmed and implemented in the current research does this job by 3 days.

Conclusion
As the results show, the proposed service designed in this research implements the damage estimation process 6.5 times faster than the governmental procedures. This proves the efficiency of the research achievements. Besides the velocity, traditional damage estimation methods are expensive compare to volunteer-based data collection and processing which are almost free, scalable and pervasive.

Keywords: Volunteer Geographic Information (VGI), earthquake damage estimation, heatmap, oshnavieh city.



 
Dr Kiomars Maleki, Dr Mostafa Taleshi, Dr Mehdi , Dr Mohammad Raoof Heidari Far,
Volume 9, Issue 4 (3-2023)
Abstract

The results of pathological evaluation of seismic zones in the terrestrial space indicate a significant concentration of residential spaces, especially cities. It has been economic and human. Therefore, one of the desirable models in identifying, analyzing and reducing damage in urban spaces is to use the structural and functional framework of passive defense. In many recent studies, the subject of reducing earthquake damage in the territory of the physical-spatial field has been to increase the building's resistance to earthquakes. While this study by recognizing environmental components, physical-spatial, social, economic and effective indicators in each component (45 indicators) to determine the pathology and risk areas of earthquakes in a comprehensive and desirable and based on that reduction strategies Redefines risk. In other words, by recognizing and analyzing the basic concept of threat network and risk ring with passive defense approach in earthquake assessment and vulnerability in Kermanshah metropolis to form the required database structure in appropriate software environment, appropriate policy and urban crisis management measures It is designed in proportion to the earthquake risk.
 
Masoomeh Hashemi, Ezatallah Ghanavati, Ali Ahmadabadi, Oveis Torabi, Abdollah Mozafari,
Volume 10, Issue 2 (9-2023)
Abstract

Introduction
Earthquakes as one of the most important natural disasters on earth, have always caused irreparable damage to human settlements in a short period of time. Severe earthquakes have led to the idea of developing an infrastructure plan to reduce the risks and damages caused by it. The urban water supply system is the most important critical infrastructure that is usually damaged by natural disasters, particularly earthquakes and floods; hence, the function of the pipelines of the water system determines the degree of resilience and design of the infrastructure against multiple natural and man-made hazards. Considering the inability to prevent earthquakes and the inability of experts to accurately predict the time it is necessary to know the status of earthquake-structure and seismicity in Tehran to determine the amount of earthquake risk in order to make the necessary planning for structural reinforcement. Theoretical and field studies of tectonic seismicity in the Tehran area show that this city is located on an earthquake-prone area around the active and important faults of Masha, north of Tehran, Rey and Kahrizak. The occurrence of 20 relatively severe earthquakes illustrates this claim. Regarding the location of faults in Tehran city, it is necessary to assess the vulnerability of Tehran water facilities.
Research Methodology
The present study is a practical-analytic one. Considering the severity of earthquake damages, it is necessary to conduct earthquake hazard zonation studies in different urban areas and to determine important indicators of damage assessment such as maximum ground acceleration, maximum ground speed, maximum ground displacement. Three indices were considered for mapping earthquake seismic zones and their integration into the GIS presented a seismic hazard map. In the analysis of earthquake risk, it is necessary to evaluate two indicators of risk and vulnerability. To prepare the general hazard power mapping the weights obtained from the ANP model were applied to the existing raster layers via the Raster Calculator command. In this way, the standardized layers are multiplied separately by their respective weights and finally overlapped. In order to evaluate the vulnerability, a series of evaluation indices are introduced and ANP techniques are used. The relative value of each index is then calculated using the multivariate approach using the SAW technique. In order to calculate the earthquake risk based on R = H * V relation, the values ​​of these two components were multiplied. This calculation was performed in GIS software on the risk and vulnerability raster layer and the final result of this calculation was displayed on the map.
Description and interpretation of results
In this study, we tried to estimate the relative risk and risk of seismic hazard on the water supply lines in Tehran, using available data and scientific methods, and map the risk level. These lines should be prepared first by the amount of earthquake hazard risk and then by the risk map, to estimate the earthquake risk on the water supply network. first the earthquake risk then the status of the hazard lines should be calculated. The vulnerability of the water supply lines was calculated using the ANP model by multiplying the total potential hazard risk then substrate transfer network vulnerability risk map obtained transmission network. The highest risk was in the west and north of Tehran. The maps showed the risk potential and the vulnerability of the lines. These areas had high seismic potential and the density of the lines was higher in these areas. Water transmission facilities are at risk and earthquake hazards may be affected by damage to the transmission lines, drinking water to a large population will be difficult, as well as performing necessary zoning to prevent future expansion of the facility in place. These analyzes are a prelude to applying corrective techniques to pipelines to reduce their vulnerability and prevent newly created pipelines from locating in vulnerable areas. Since the results of this study are risk maps along the route of the water supply lines, so in order to prepare a risk control program, we can identify the high risk pipeline map and identify the pipeline vulnerability. And, depending on its location, provided an appropriate prevention and control plan for the conditions surrounding the pipeline environment.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb