Search published articles

Showing 2 results for Man-Kendall

Nima Sohrabnia, Dr Bohlol Alijani, Dr Mehry Akbari,
Volume 7, Issue 2 (8-2020)

Modeling the discharge of rivers in selected watersheds of Guilan province during climate change
   In this essay, we investigated the effects of climate change on the rivers of selected basins of Guilan province, one of the northern provinces of Iran for the period 2020 to 2050 under three climate scenarios: RCP2.6, RCP4.5, RCP8.5. For this purpose, rainfall and temperature data from 45 climate data stations and 20 hydrometric stations from 1983 to 2013 were used. The average precipitation and temperature at basin level were calculated by drawing both Isohyet and Isothermal lines by usage Kriging method. Mann-Kendall and Sen’s slope estimator tests were used to determine the significance of the data trends and their slope, respectively. The results showed that temperature has increased in all catchments during the study period and this trend was significant in most of them but no significant trend was observed for precipitation. Discharge has also decreased in most basins and this trend was significant in Shafarood, Navrood and Chafrood basins. However, for future periods, precipitation is not significant in any of the climate scenarios, but the temperature is increasing in all scenarios except for the RCP2.6 scenario. Rivers discharge in the RCP2.6 scenario is not significant in any of the basins, but in the RCP4.5 scenario the Shafarood and Ghasht-Roodkan catchments have a significant reduction in the 95% confidence level. In the RCP8.5 scenario, the Chafrood and Shafarood basins have a 99% confidence reduction trend.
Population and technology growth, increased water consumption and climate change have led many researchers to study and model water resources in the present and future periods. Especially in areas like Iran that are facing a lot of water stresses. The purpose of the present study, which was carried out in the Guilan province, is to provide information on the present and future status of surface water resources, and to prepare them for facing the problems of potential water resources exploitation.
In this study 45 synoptic, evaporative and rain gauge stations and 20 hydrometric stations data with sufficient statistics were used. The period of study is also between 1983 and 2013. In this regard, after calculating the average precipitation and temperature values of each basin using Kriging model, first, the annual average of precipitation and temperature values ​​of each basin were calculated. Then, multivariate regression was used to obtain the regression equations between precipitation, temperature and discharge data, then by using SDSM model and climate scenarios (RCP2.6, RCP4.5, RCP8.5) future temperature and precipitation data were generated. By placing these generated data in the Created regression equations, the discharge of the rivers was calculated for the period 2020 to 2050. The trend of time series and their slope were analyzed respectively by Mann-Kendall and Sense tests.
   The study of the annual average precipitation trend of the selected catchments during the study period showed that all the basins had no significant trend at any of the confidence levels (95% and 99%). However, for the temperature there is an increasing trend. In Chafrood, Zilaki, Chalvand, Lavandevil, Tutkabon, Chubar, Lamir, Hawigh, Dissam, Shirabad, Ponel, Samoosh, and Polrood basins there is significant trend at 95% confidence level. For the Hawigh River basin there is significant trend at 99% confidence level. Also in most of the basins there is a downward trend of rivers discharge. In addition, in the three basins of Chafrood, Navrood and Shafarood, there is a significant decreasing trend at 95% confidence level, which is also significant at 99% confidence level for Navrood and Shafarood rivers.
Analysis of future data showed that precipitation is not significant in any of the climate scenarios, but the temperature is increasing in all scenarios except for the RCP2.6 scenario in RCP2.6 scenario. For rivers discharge there was no significant trend in any of the basins, but in RCP4.5 scenario there is a significant decrease in 95% confidence level in Shafarood and Ghasht-Roodkan. Also in the RCP8.5 scenario, a significant decreasing trend of flow discharge at 99% confidence level is observed for Chafrood and Shafarood basins. Finally, the catchments were grouped according to the level of risk involved with decreasing discharge. The results of grouping showed that most of the basins in the three scenarios were in the medium risk group but Shafarood, Chafrood and Ghasht-roodkhan watersheds have higher risk than the other watersheds, respectively.
Investigation of river discharge trends for the period 2020 to 2050 in different scenarios showed that the basins of Ghasht-roodkhan, Chafrood and Shafarood are more sensitive to climate change than other basins. Overall, escalating temperature trends in future and precipitation irregularities can create very difficult conditions in future to use these resources. Especially, this study's concordance with other studies in Iran and the study area confirms that such crises are more likely to occur..
Keywords: Climate Change Scenarios, Rivers Discharge, Man-Kendall, Sen’s Slope estimator, Guilan Province

Dr. Mostafa Karimi, Ms Sousan Heidari, Dr. Somayeh Rafati,
Volume 8, Issue 2 (9-2021)

The role of environmental and climatic environment on the transport and emission of carbon monoxide pollutants Iran in 2018
Air pollution, as one of the most important environmental hazards in urban areas, is closely related to weather conditions. Today, pollution in metropolitan areas has become an important issue that requires the study and presentation of practical solutions to improve living conditions in this area. Therefore, understanding the relationship between synoptic systems and air pollutants helps a lot in how to solve environmental problems and future planning. Therefore, in this study, compression algorithms of carbon monoxide emission and transfer from domestic and foreign sources were analyzed. For this purpose, GEOS-5 / GMAO / NASA satellite images were used. The results showed that the highest amount of pollution from the seasonal point of view is related to the cold and early morning seasons and the lowest is related to the early afternoon and hot season of the year. And Khuzestan are densely populated carbon monoxide cores. Low pressures of the eastern Mediterranean play an important role in reducing pollutants in the southwest of the country and in the south of the country, under the influence of atmospheric currents from the topographic cut of Bandar Abbas, air streams polluted with carbon monoxide are able to penetrate into the interior to the southern half of Kerman. Increased by low pressure systems in Afghanistan and Pakistan. The Zagros Mountains also play an important role in preventing the entry of pollutants produced by western neighbors into Iran. In summer, Iran is polluted by carbon monoxide carriers by monsoon currents from central and southern Africa to Iran and has caused a lot of pollution.        
materials and Method
The geographical location we study in this study is Iran. Iran is the 16th largest country in the world. Iran is located in the northern hemisphere, the eastern hemisphere in Asia and in the western part of the Iranian plateau and is one of the Middle Eastern countries. Meridian 5 44 passes east of the westernmost point of Iran and meridian 18 63 passes east of the easternmost point of Iran. 1648195 sq km is bordered by Armenia, Azerbaijan, and Turkmenistan to the north, Afghanistan and Pakistan to the east, Turkey and Iraq to the west, the Persian Gulf and the Sea of ​​Oman to the south. Iran is one-fifth the size of the United States and almost three times France. . Iran is a mountainous country. More than half of the country is covered by mountains and heights, and less than 1/4 of it is arable land. In general, Iran's heights can be divided into four mountain ranges: North, West, South and Central Mountains. East divided, which is therefore the twenty-third highest mountain in the world.                                        
This study is based on the method of environmental analysis to focus on circulation, so that based on the concentration of carbon monoxide in 2018, synoptic patterns of this phenomenon have been identified. Satellite imagery of surface carbon monoxide was then obtained from three GEOS-5 / GMAO / NASA organizations. Also for synoptic analysis, MSLP and WS satellite images were received and analyzed from GFS / NCEP / US National Weather Service organizations and also one of the sensors used for pollutant studies is MOPITT. The MOPITT sensor is a tool for measuring troposphere pollution that can detect atmospheric pollution. This sensor is the first satellite sensor designed for use in gas correlation spectroscopy and is part of NASA's Operational Program (ESE), which has been operating since 1999 and is installed on three satellites Terra, Aura, Aqua Depending on the type of mission in space, it acts as an orbiter. This sensor measures only two variables of methane and carbon monoxide in the atmosphere of the troposphere of the atmosphere, for which purpose 3 bands and 8 channels for measuring monoxide with a size of 62.4 microns (using 4 channels), 33.2 It uses microns (using 2 channels) and methane measuring 26.2 microns (using 2 channels). The MOPITT sensor is specifically designed to measure carbon monoxide. The geographical boundaries of the study area were also selected to include all atmospheric systems affecting the study area.     
The meteorological condition and the physical and dynamic properties of the atmosphere can play an important role in the level of air protection. The main factor that can cause the scattering and transmission of air forces is the use of the ground and the levels of reception of the atmosphere, and the synoptic systems as a service provider providing services for upward movement and distribution of air pollutants, as well as the definition of chalk. As a decision made in this field, Iran can use its images in this field in 2018 2018, MSLP, WS will provide you with GFS / NCEP / US National Weather Service. With great intensity you can go to Tehran and southwest to destroy yourself and access your officials. In the imagination carbon monoxide is possible and used in the southwest of the country. Now in your country and change the status of lists proposed by Coriolis, increase the high pressure of carbon monoxide in Mr. Tropical from the Middle East and Iran. This program allows you to modify your suggested lists. Carbon monoxide pollutants sent to a drawer in the international province of the country and available in Bandar Abbas, a road nest free from high mountains and as a corridor company you can get from this par of the air pollution as carbon monoxide through the air to this one Use the land up to the Kerman province.          
Keywords: Carbon monoxide, Compression systems, Monson, Atmospheric pollution, Topography

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb