Search published articles

Showing 2 results for Seismic Risk

Mahdi Zare, Farnaz Kamran Zad,
Volume 1, Issue 4 (1-2015)

The Iranian plateau formed by the active tectonics of the Alpine-Himalayan belt, is situated between the Eurasian and Arabian plates. The plateau is considered as one of the most seismically active regions in the world and is faced with different earthquakes each year. Active tectonic conditions, different faults and seismic sources and a large population in earthquake-prone areas makes it necessary to perform more considerations and scientific studies in order to analyze the seismic hazards and risks.

In this paper, different aspects and effects of the Iranian seismicity has been determined. In order to review the status of seismicity and distribution of earthquakes in Iran, we need first to consider the tectonic setting, structural environment and the active faults of the country. To date, there have been some different studies to divide the the seismotectonic setting of Iran into different seismic zones which are explained in this paper briefly. Moreover, the seismicity and most destructive past earthquakes in the Iranian plateau and distribution of earthquakes are shown.

    One of the most important tools in studying earthquakes is to perform continuous recording and monitoring of the seismic event and ground motions which is implemented using seismic and strong motion networks. The systematic networks have been set up within the country and are working and responsible for data collection and monitoring of seismic events permanently. These networks including the Iranian Seismological Center (IRSC), broadband seismic network of the International Institute of Earthquake Engineering and Seismology (IIEES) and strong motion network of the Road and Housing and Urban Development Research Center (BHRC) are also introduced in the current study.

Given the high seismicity rate in Iran and rapid development and growing of the populated cities and buildings on seismic hazard prone areas, attention to seismic hazard and risk assessments has been become as a particular issue that should be addressed carefully. Therefore, seismic hazard analysis and estimation for the constructions of human structures has become an enforcement for which several seismic regulations and codes have been defined. In this regard, deterministic and probabilistic seismic hazard methods have been developed as the two most important techniques. The deterministic method is a conservative approach that is mostly used to determine the highest level of strong ground motion (acceleration) for a special site (such as dams and power plants). On the other hand, the probabilistic method provides probabilities of different strong ground motion levels considering different uncertainties and the useful life of a structure.

    In addition, considering the level of seismic hazard in a region and its population can lead to risk assessment, vulnerability and resiliency of the human societies. Thus, parallel to seismic hazard and risk analysis, it is so important to conduct crisis management, reduce efforts and a continuing assessment of the situation in the country. In the present study, problems and challenges facing the crisis management, as well as urban distressed areas are mentioned.

    Regarding the existence of constant threat of natural disasters, especially high risk of earthquakes, there is a serious need to conduct more scientific researches in various fields, including detailed research on various aspects of seismology in Iran, retrofitting of constructions, crisis management and disaster risk reduction. To achieve this purpose, we need a scientific network in Iran. There sould be several experts and organizations as the members of this network who are able to understand and control the earthquake effects on the society. Necessity of such a scientific network is due to that it is impossible to take efforts in order to reduce the earthquake risks without a holistic perspective and earthquake data completion.

In this regard, we need significant infrastructures in terms of human resources and technical cooperation to motivate a set of organizations, universities and research institutes. The responsible organizations such as geological survey of Iran, National Cartographic Center of Iran, meteorological organization, Institute of Geophysics of the University of Tehran, International Institute of Earthquake Engineering and Seismology, Road and Housing and Urban Development Research Center, National Disaster Management Organization, Red Crescent Society of the Islamic Republic of Iran, as well as universities and NGOs must work together to make it possible to review and integrate the existence potentials and to share the information and data of the earthquakes in Iran and define various response scenarios faceing natural disasters, especially earthquakes.

Dr. Shahrokh Pourbeyranvand,
Volume 8, Issue 2 (9-2021)

Seismic risk investigation by Strain rate variation study in central
 Alborz by using GPS data
The Alborz Mountains, South of Caspian Basin and separates Central Iran from Eurasia.  Talesh and Kopeh Dagh bound the Alborz as major thrust belts in the west and east respectively. The tectonic evolution of this important region is still unsolved and there are many questions to answer, such as the origin of the Alborz Mountains as well as its crustal structure. The Alborz is of great important in natural and most particular, seismic hazard investigations, because of the existence of Tehran megacity. This importance resulted in development of a relatively dense network of GPS stations in this regions and adjacent areas. The Alborz Mountains formed successively during the collision of Central Iran with Eurasia in the Late Triassic (Cimmerian Orogeny) and the collision of Arabia with Eurasia. Tectonic activity in this belt is currently thought to be controlled by two motions with different velocities, the 5 mm/yr northward convergence of central Iran to Eurasia causing a compression from 7 Ma and the 4 mm/yr left‐lateral shear northwestward motion of the South Caspian Basin resulting in a left lateral transpressive tectonic environment in the Alborz . Since middle Pleistocene transtensional motion is also observed in the region because of acceleration of SCB motion toward North West.
GPS studies in the Zagros started in 2000 and are continuing by gradual expansion of the permanent GPS network and several GPS campaigns and temporary stations. These studies have significantly improved our understanding of the surface deformation in the Alborz. In this study the interpolation of GPS velocity vectors in a rectangular grid and calculation of the strain at the center of each grid cell, were used for the study of the strain rate variations in the central Alborz. We used velocity vectors from Djamur et al. (2010) to estimate the strain rate field in the Alborz. To avoid edge-effects in the strain calculation, we only showed the results for the central part of the dataset. The GPS velocities are interpolated onto a rectangular north-south grid of 0.2 by 0.2 degrees and strains are calculated at the center of each grid cell, following the methodology of Haines et al. (1998) and Beavan & Haines (2001). The study of the strain rate variations can help in understanding the tectonic settings of the region and the obtained results, combined with other geodetic, geological and seismological studies, already performed in the region, can provide a comprehensive insight into the geodynamic evolution of the range.
The results showed spatial variations in principle strain rate axes directions and areal strain rate or dilation, which in combination with seismicity data, reveals important information about the fault movement mechanisms in the area. Observed anomalies in dilation, showed important correlations with seismicity, subsidence and uplift, dip slip and strike slip movements on the faults in the region and confirmed deformation partitioning which takes place due to tectonic forces, acting on pre-existing faults and weak fracture planes. The partitioning of the deformation causes dominant strike slip motion in some parts of the Central Alborz, while shortening occurs dominantly on other parts of the mountain range. These different parts are spatially separated in the region and correlate with the seismicity with regard to the faulting mechanisms expected from the orientation of the major faults and the directions of strain rate axes.
Key words: areal strain rate Central Alborz, deformation partitioning, dilation, faulting mechanisms, GPS, seismic ris


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb