Search published articles


Showing 3 results for Vegetation Index

Mojtaba Rafiean, Hadi Rezai Rad,
Volume 4, Issue 3 (9-2017)
Abstract

The simplest definition of urbanization is that urbanization is the process of becoming urban. Urban climate is defined by specific climate conditions which differ from surrounding rural areas. Urban areas, for example, have higher temperatures than surrounding rural areas and weaker winds. Land Surface Temperature is an important phenomenon in global climate change. As the green house gases in the atmosphere increases, the LST will also increase. Energy and water exchanges at the biosphere–atmosphere interface have major influences on the Earth's weather and climate. Numerical models ranging from local to global scales must represent and predict effects of surface fluxes. The urban thermal environment is influenced by the physical characteristics of the land surface and by human socioeconomic activities. The thermal environment can be considered to be the most important indicator for representing the urban environment. Vegetation is another important component of the urban ecosystem that has been the subject of much basic and applied research. Urban vegetation influences the physical environment of cities through selective absorption and reflection of incident radiation and regulation of latent and sensible heat exchange Satellite-borne instruments can provide quantitative physical data at high spatial or temporal resolutions. Visible and near-infrared remote sensing systems have been used extensively to classify phenomena such as city growth, land use /cover changes, vegetation index and population statistics. Finally, we propose a model applying non-parametric regression to estimate future urban climate patterns using predicted Normalized Difference Vegetation Index and Heat Island Intensity.
I conducted all spatial analysis in the UTM Zone 39 Northern Hemisphere projection. The fundamental procedure I used for evaluating change in land surface temperature was to relative temperature for both images, so that the values are temperature difference between the coldest and hottest areas in Tehran metropolitan. subtracting these images from each other results in relative temperature change from 2003 to 2015. Landsat satellite data were used to extract land use/land cover information and their changes for the abovementioned cities. Land surface temperature was retrieved from Landsat thermal images. The relationship between land surface temperature and landuse /land-cover classes, as well as the normalized vegetation index (NDVI) was analyzed.
In this study, LST for Tehran metropolitan was derived using SW algorithm with the use of Landsat 8 Optical Land Imager (OLI) of 30 m resolution and Thermal Infrared Sensor (TIR) data of 100 m resolution. SW algorithm needs spectral radiance and emissivity of two TIR bands as input for deriving LST. The spectral radiance was estimated using TIR bands 10 and 11. Emissivity was derived with the help of land cover threshold technique for which OLI bands 2, 3, 4 and 5 were used. The output revealed that LST was high in the barren regions whereas it was low in the hilly regions because of vegetative cover. As the SW algorithm uses both the TIR bands (10 and 11) and OLI bands 2, 3, 4 and 5, the LST generated using them were more reliable and accurate. NDVI negatively affected LST and Urban Heat Island in vegetation areas in 2003 and 2015 in Tehran metropolitan. This analysis provides an effective tool in evaluating the environmental influences of zoning in urban ecosystems with remote sensing and geographical information systems. This method exhibits a promising performance in UHI forecast. The predicted LST confirms that urban growth has severely influenced UHI pattern through expanding the hot area. Our study confirmed that LST prediction performance is strongly depended on the resolution.
The results reveal that the urban LST is affected mainly by the land surface characteristics and has a close relation to the abundance of vegetation greenness. The spatial distance from the UHI centre is another important factor influencing the LST in some areas. The methodology presented in this paper can be broadly applied in other metropolitans which exhibit a similar dynamic growth. Our findings can represent a useful tool for policy makers and the community awareness of environmental assessment by providing a scientific basis for sustainable urban planning and management. This provides an effective tool in evaluating the vegetation greenness of different zoning in urban ecosystems with remote sensing and geographical information systems. From the perspective of land use planning and urban management, it is recommend that planners and policy makers should pay serious attention to future land use policies that maintain a relevant proportion of public space, green areas, and land surface physical characteristics.

Ali Mohammad Khorshid Doust, Ali Panahi, Farahnaz Khorramabadi, Hossein Imanipour,
Volume 9, Issue 2 (9-2022)
Abstract

The effect of climatic parameters on vegetation distribution in central Iran
Introduction
Climate or climate reflects the daily weather conditions in a particular place for a long time. Most climatic elements are closely related to ecological factors, which is why the analysis of the relationship between climate and plant distribution patterns has been discussed in scientific and research circles for many years. And in recent years, scientists have been using a combination of climatic characteristics with other environmental factors to describe vegetation around the world. Climate change and atmosphere condition will change the content and composition of many plant communities.

The Study Area
The geographic coordinates of the studied area are between latitudes 29°32’ to 33°59’ and 51°27’ to 55°5’. The position of the selected provinces of central Iran compared to the neighboring provinces are shown in Figure 1 The annual data of 8 stations have been analyzed during the stations period determined by the National Meteorological Organization. The stations characteristics including latitude, longitude, elevation and specific statistical period are shown in Table 3.

Data and research methods
In this study, the role of temperature changes and relative humidity on vegetation in Central Iran has been investigated using statistical models of analysis of the main components and hierarchical clustering. This research is applied and its method is slightly analytical. In order to investigate the climatic fluctuations of the center of Iran with respect to urban green space, statistical data related to average temperature and relative humidity during the 32-year period (1986 to 2018) selected central stations of Iran to come and statistical deficiencies such as Data loss was performed by reconstructing differential equations using SPSS software. The criterion for selecting stations is the availability of long-term statistics. Using statistical methods and Geographic Information System (GIS), vegetation classification was performed for Central Iran. ArcGIS, Minitab, SPSS and EXCEL software are used in this research. After identifying the stations, climatic variables including temperature and relative humidity were selected from the data of 8 meteorological stations and were analyzed using the techniques mentioned above. Then, using statistical regression analysis, the impact (topography, average temperature and average relative humidity) on how to distribute and distribute vegetation was investigated. Kendall-man non parametric test was used to investigate changes in the vegetation index trend.

Results and discussion
Analysis of temporal changes in climatic parameters and NDVI index
The results show that the distribution of relative humidity in Abadeh and Kerman stations has decreased by 3% and the temperature distribution in these stations has increased by more than one percent. Relative humidity changes in Kashan and Sirjan stations have a weak decreasing trend, while the relative humidity distribution in Isfahan station has decreased by about 2%.The temperature distribution of Shiraz and Yazd stations increased by 3%, Abadeh station increased by 2% and also Isfahan and Kerman stations increased by 1%. The distribution of vegetation in Yazd and Khor Biyabank stations has decreased by one percent, while the growth of vegetation in Isfahan, Abadeh and Sirjan stations is increasing by less than one percent.

Distribution of NDVI vegetation index in Central Iran using cluster analysis
The stations are located in three distinct areas in terms of distribution of vegetation, each group having the same climatic characteristics in the distribution of similar vegetation. Based on this, three climatic zones in the study area can be identified.

Conclusion
The aim of this study was to investigate the effect of climatic parameters (average temperature and relative humidity) on the distribution of vegetation in Central Iran using comparison of statistical models; by examining the distribution and density of vegetation, eight factors were identified. Among the factors, the first and second factors, with 81.57% of the total vegetation variance, have played the most important role in determining the climatic diversity of Central Iran. In total, these eight factors have justified about 100% of the vegetation behavior in the area Also, according to the analysis of images of Modis satellite measuring satellites from the vegetation situation in the last 5 years, Central Iran, the value of NDVI index in Central Iran varies between 0.2 to 0.64, the northwestern parts of Fars province have the highest vegetation density and The central parts of Isfahan, especially Yazd, lack vegetation. Based on the results, altitude has a direct and significant relationship with temperature distribution in plants, especially in the study area. However, the height of Iran's central regions has affected the distribution of vegetation.

Keywords:  climatic parameters, vegetation distribution, central Iran

 
, Dr Fatemeh Tabib Mahmoudi,
Volume 9, Issue 3 (12-2022)
Abstract

Investigation of the effects of Covid-19 pandemic on UHI in residential, industrial and green spaces of Tehran

 Abstract
Rapid urbanization in recent decades has been a major driver of ecosystems and environmental degradation, including changes in agricultural land use and forests. Urbanization is rapidly transforming ecosystems into buildings that increase heat storage capacity. Loss of vegetation and increase in built-up areas may ultimately affect climate variability and lead to the creation of urban heat islands. The occurrence of natural disasters such as flood, earthquake … is one of the most effecting factors on the changes in intensity of urban heat islands. So far, a lot of research has been done on how it is affected by various types of natural disasters such as floods, earthquakes, droughts and tsunamis.
Two major environmental challenges for many cities are preventing flooding after heavy rains and minimizing urban temperature rise due to the effects of heat islands. There is a close relationship between these two phenomena, because with increasing air temperature, the intensity of precipitation increases. Drought is also a phenomenon that is affected by rainfall, temperature, evapotranspiration, water and soil conditions. One of the major differences between drought and other natural disasters is that they occur over a longer period of time and gradually than others that occur suddenly. Another natural disaster is the tsunami, which increases the area of water by turning wetlands into lakes, thereby increasing the index of normal water differences, which has a strong negative relationship with surface temperature. Ecosystems in urban areas play a role in reducing the impact of urban heat islands. This is because plants and trees regulate the temperature of their foliage by evaporation and transpiration, which leads to a decrease in air temperature.
Applying the locked down of the Covid-19 pandemic since the spring of 2020 has led to the global restoration of climatic elements such as air quality and temperature. In this study, the effects of Covid-19 locked down on the intensity of urban heat islands due to the limitations in industrial activities such as factories and power plants and the application of new laws to reduce traffic in Tehran were investigated. In this regard, the Landsat-8 satellite taken from a part of Tehran city has been used.

Materials and Methods
In order to investigate the effects of locked down in the spring of 2020 on the intensity of urban heat islands; the status of UHI maps in Tehran during the same period of locked down in three years before and one year after has been studied. The proposed method in this paper consists of two main steps. The first step is to generate UHI maps using land surface temperature (LST), normalized difference vegetation index (NDVI) and land use / land cover map analysis. In the second step, in order to analyze the behavioral changes in the intensity of urban heat islands during locked down and compare it with previous and subsequent years, changes in the intensity of UHIs are monitored.
UHI maps consist of three classes of high, medium and low intensities urban heat islands, which are based on performing the rule based analysis on land surface temperature characteristics and normal vegetation difference index derived from Landsat-8 satellite images as well as land use / land cover map. LULC maps are produced by support vector machine classification method consisting of three classes of soil, building and vegetation. In order to calculate the spectral features used in the rule based analysis, atmospheric and radiometric corrections must first be made on the red, near-infrared, and thermal spectral bands of the image captured by the Landsat-8 satellite. Then, vegetation spectral indices including NDVI and PV indices are generated.

Disscussion of Results
The capability of the proposed algorithm in this paper is first evaluated in the whole area covered by satellite images taken from the city of Tehran, and then in three areas including residential, industrial and green spaces. The data used in this article are images taken by the OLI sensor of Landsat-8 satellite in the spring of 2017-2021.
In the first step of the proposed method, maps of urban heat islands are generated based on multi-temporal satellite images of Landsat-8 taken in the years 2017to 2021 in the MATLAB programming software. Then, by comparing pairs of UHI maps in each of the residential, industrial and green space study areas, the trend of changes in the intensity of UHI is analyzed and the effects of locked down application in 2020 are evaluated.
The results of changes detection in urban heat islands in the period under consideration in this study showed that the percentage of areas that are in the class of high UHI in 2020 due to locked down of pandemic Covid-19 compared to the average of three years before that is 55.71%, has a decrease of 17.61%. The percentage of areas in the class of medium UHI intensity in 2020 due to locked down compared to the average of three years ago, which is 39%, increased by 4.8%, and in 2021 this amount again has decreased to less than the average. Also, the percentage of low intensity UHI class in 1399 compared to the average of three years ago, which is 5.3%, has increased by 12.8%.

Conclusion
In this study, the effect of locked down application due to the Covid-19 virus pandemic, which was applied in Iran in the spring of 2020 is investigated on the intensity of  urban heat islands in a part of Tehran city and three selected areas with residential, industrial and green space. Detection of changes in the intensity of urban heat islands was done based on the post-classification method and on the UHI classification maps related to the years 2017 to 2021. In order to produce UHI maps, in addition to the land surface temperature, the amount of vegetation index and the type of land use / land cover class were also used in the form of a set of classification rules.
Comparing the results of the study areas of residential, industrial and green spaces, it is important to note that the rate of reduction of the area of UHI with high intensity in the residential area is 5.25% more than the industrial area and 6.1% more than the green space. However, the reduction of locked down restrictions in 2021 had the greatest effect on the return of the area of ​​the high UHI class and caused the area of ​​this class to increase by 23% compared to 2020. These results indicate the fact that restrictions on the activities of industrial units such as factories and power plants and the application of new laws to reduce traffic, despite the same weather conditions in an area have been able to significantly reduce the severity of urban heat islands.

 Keywords: Urban Heat Islands, Land Surface Temperature, Vegetation Index, Change Detection, Covid-19

 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb