Search published articles


Showing 29 results for Environment

Bohloul Alijani,
Volume 1, Issue 1 (4-2014)
Abstract

Environmental hazards include all kinds of hazards in the environment such as natural and technological or natural and man-made. The natural phenomena such as rains or floods are the normal behaviors of the nature which only when they cause damage to the human life, are considered as hazard. The technological events such as road accidents, air pollution and chemical pesticides are always dangerous to human life. Both kinds of two hazards are produced in the context of human- nature relation. For example if human beings avoid flood prone areas there will be no harm or damage. And if human beings control their waste in the urban areas they will never pollute the city. Thus, this is the human who causes risk and damage to his life. The relation between human and the nature is governed by the thoughts and beliefs of human or in general terms his world perspective and philosophy. It is the human perspective and belief which controls his action at any circumstances. A person who believes in the nature as his mother and supporter of life differs from the one who thinks of nature as a sole source to use and enjoy. The first one gets only his basic needs from the environment, but the second person tries his best to exploit the nature for his benefits. Therefore to understand the intensity and frequency of environmental hazards, we should investigate the mental beliefs of people living in different places. A brief discussion of the historical development of hazards will help us to have a better understanding of the philosophical basis of the environmental hazards. From the ancient times up to around nineteenth century life was very simple and man had been using nature only for his basic needs, there was no consideration of environmental hazards. Hazards were considered only as diseases threatening the human life. But later, especially after the industrial revolution, due to the increase of human population and demands, the use of natural resources was exponentially increased far above the production and recovery of the nature. This process triggered the occurrence and expansion of environmental hazards.  The human- nature relation is studied by different scientific fields such ecology, anthropology, and geography from different aspects. The ecologists mostly emphasize on the relationship of individuals with his environment, as the characteristics of environment controls his life. While geography studies the spatial relations between human population and environmental assets. As a result, the philosophical stances of these fields differ substantially. Ecologists want to see whether this relation is dominated by the needs and intentions of man or by the capacity and potentials of the nature. From this point of view three kinds of philosophies were developed including anthropocentrism, biocentrism and ecocentrism. On the other side, geography emphasizes on the spatial distribution of human population on the basis of environmental resources. This spatial relation between human and natural resources is believed to be controlled by the nature or human conducing to the development of two philosophies of environmental determinism and possiblism. Ecological philosophy of anthropocentrism was dominated in the earlier centuries, focusing on the will of human to use and enjoy the nature. In this view, the nature has the instrumental value for human. The result of this philosophy was depletion and destruction of the environment in favor of the human development. But during the twentieth century some philosophers stated that the human does not have the right to harm and damage all living creatures including animals and plants. This view ended with the biocentrism approach.  During the second half of the 20th century due to the over exploitation of nature by human, the philosophers and ecologists realized that the human kind in order to possess a sustainable living should not harm any members of the environmental system including even rocks, rivers, soil and etc. This approach developed the ecocentrism philosophy. The main controlling force in these philosophies is the ethical stance of humans. On the other hand, the older geographers believed that it is the nature that controls the human distribution and living conditions. The humans cannot change the natural arrangement of the environment and should limit their activities to the natural allowances. The development of the technology after the Second World War changed this view. Some geographers believed that human can change the environment by his techniques and developed the possiblism. The adoption of this philosophy and the growth of industrial development ended with the deployment and damage of the natural resources. It is clear from the aforementioned discussion that in all cases, the main reason for the depletion and destroy of the environment was lack of ethical considerations in human behavior toward the nature. If the ecologists have come with the ecocentrism, geographers developed the geocentrism philosophy. That is, to save the nature and prevent environmental hazards we, as human beings, should preserve the natural arrangement of resources. We should not disrupt the spatial order of any resources, because it will cause harmful results in the environment. For example eroding the soil will deteriorate the vegetation and cause floods and other hazards. The alteration of spatial order of surface temperature has caused the thermal imbalance and hence global disorder and warming. There is no doubt that the relation of each human should be controlled and put in the moral contexts, but to prevent the environmental hazards an overall effort is needed over the environment which is possible only through the preservation of spatial order of natural resources. Spatial management of land resources is the outstanding example of this philosophy and ethic.


Tajeddin Karami,
Volume 1, Issue 1 (4-2014)
Abstract

Although environmental hazards occur because of natural factors, however, political economy, controlling the sociospatial relations and conditions, also affect centrally the increase or decrease of physical and social vulnerability caused by hazards. In this regard, present paper has put the spotlight on “explaining the role of spatial distribution of social stratification in vulnerability to environmental hazards in the city of Tehran”. This is based on Political Ecology Approach which emphasizes the domination of prosperous social strata on the urban natural-ecological endowments and utilities and marginalizes low-income and inferior social strata. So, the recognition of social strata inhabitation across the city is significant for the analysis of social inequalities and their effects on the vulnerability of environmental and human hazards. The concentration of middle to high class and working and inferior classes has also caused the range of social inequality to increase in the metropolitan of Tehran and this trend per se has transformed Tehran to the spatial reflection of the contrast between poverty and wealth to the greatest extent in the country. Hence, regarding the fundamental role of social stratification and class structure and its evolution in explaining the dynamics of socio-economical relations in the dominant society and the process of urban space production and reproduction, explaining the role of spatial distribution of social stratification in vulnerability to environmental hazards in the city of Tehran is significant and necessary. Vulnerability to environmental hazards has been studied from the physical, biological perspectives, social construction perspective and contingency perspective. The present paper emphasizes the effects of social construction on the production of vulnerability. Scientists think radical and critical geography of space is a kind of social production. They believe that not only urban space, but also the entire space has a social structure and nobody can analyze it thoroughly regardless to the society’s work on the space. Thus in a world under the Capitalist System, urban space represents a reflection of the control and domination of superior social strata (owners of power, wealth and high status, or the owners of political, economic and socio-cultural assets) in its functional zones.  This has been appeared in the recent decades, within the literature of hazards and catastrophes and based on “an approach of vulnerability” which has been rested on Political Ecology. The mentioned approach has been concentrated on a series of socio-spatial conditions and political economy which shapes the hazards and catastrophes. Some of the effective social conditions in shaping the hazards and catastrophes and their amounts of vulnerability depend on the racial, ethnic and class characteristics. Racial, class, ethnic and political economy analyses, which dominate their social ties, are considered as part of understanding knowledge system of hazards and catastrophes. Since this causes detecting the role of political economy of inequalities and racial, class and ethical processes and the marginalization caused by it, in the emergence of hazards and exacerbation of catastrophes and crises impacts. To use job structure means to emphasize concrete class structures, according to which an image of social inequality can be offered. Thus in present study, for structure determination and main composition of social stratification in Iran and Tehran “Structure Determination and Composition of Social Strata Model” was used. According to this model and with the use of data from matrix tables, major occupational groups and occupational situation have been classified in 5 classes superior strata, traditional middle strata, new middle strata, working and inferior strata and farmers. The data were prepared and analyzed by ArcGIS and Ms Excel softwaares.   During the last century, uneven development process of the country was in favor of the Tehran and superior strata and powerful institutions located in this city. Regarding the processes and relations emerged from political economy of space and political ecology of Tehran, social strata inhabitation of Tehran has been in compliance with environmental capacities raised from topographic and microclimatic distinctions and ecological endowments. The findings of present paper also indicate physical and social vulnerability changes caused by probable hazards related to the general pattern of social strata inhabitation in north-south geographical direction. Spatial distribution of populated blocks in 1996, for which more than 30% of their inhabitants were “senior managers and experts” and “manufacturing jobs employees and laborers”, indicates the above mentioned issue and clearly show the poverty (old poor neighborhoods) and wealth (expensive and rich neighborhoods) spatial centers. In addition, according to the supporting studies on Tehran Comprehensive Plan, most of old urban tissues are in central and southern regions. Also according to the International Seismological Research Agency (JICA), the mentioned regions would be the most vulnerable in the Tehran probable earthquakes. Therefore, it can be said that findings and results of the present study indicate the determining place of political economy of space and urban political ecology and also the fundamental role of social stratification and class structure for recognition, analysis, explanation and understanding of the urban development challenges and problems. Hence, this is impossible to reduce social and physical vulnerabilities caused by natural and human hazards, particularly in the poor neighborhoods, regardless of political economy of space mechanisms and reduction of the gap and even urban development. 


Hassan Afrakhteh,
Volume 1, Issue 2 (7-2014)
Abstract

Settlement's Systems are evolving as any other systemic phenomenon. Multitudinous and different factors are involved in settlements evolution and shaping. One of the effective factors on settlement system evolution is society public power intervention and planning based on approaches which had been approved as predominant paradigm on its time.    

Creation and reinforcement of growth poles was considered as national economic growth instrument in developing country, till 1970. It was supposed that growth pole effect will cause surrounding area's prosperity. The theory of Perroux growth pole was one of these theories in regional planning.

During recent years, some rural settlements of country have experienced physical-spatial changes and have transformed to Towns. These processes have been rising based on theoretical approaches related to spatial development or according to political consideration and election requirements. This trend imposed inconsistency landscape to settlements, and has been the source of crises and economic, social, management and environmental disasters.

     The main question in this research is "what has been the environmental subsequent of Maklevan evolution based on rural planning and also political consideration, and alteration it into town from 2013? Study area of research is Maklevan in Fuman county, Guilan province, Iran. Required data are collected from documents, Satellite images, and field study and questionnaire fulfillment. Collected data has analyzed based on variable frequencies distribution and locational-spatial approaches. Documents show that Maklevan development trend was done without passing any gradual organic process and only inspired from growth pole theory. Assignment the role of service center (services including health, education, agricultural, post, bank, administrative, business services, and Saturdays week local market), creation of main big avenue and concentration of investment (although limited) with the purpose of hinterland development and population centralization, are some of these evidences. That outcome of current development trend in Maklevan is creation a situation which has reinforces incidence and prevalence of environmental hazards including:

  • Destruction and loss of agricultural soil, the soil of Maklevan was very rich for rice cultivation, because it is provided from alluvial of Masuleh Rudkhan River. Deficiency of arable soil is considerable, therefore arable soil elimination could result to food insecurity, unemployment, extension of unofficial jobs in the region and urban fringes. Research depicted that the area of paddy lands were reduced from 1.27 square kilometers to 0.8 square kilometers during 5 years (2010-2015), which means that 46 percent of rich paddy lands has been reduced. Agricultural lands and forest has been destructed by establishment of unnecessary roads and villas. Due to above mentioned changes the area of Maklenan (constructed area) was increased from 6.12 square kilometers to 12.11square kilometers during last five years (2010-2015).
  • Destruction of forest and flood extension risk, regarding to climate situation of area, topography and kind of soil, the probability of flood risk and landfall has been increased. The evidence of land destruction, housing and bridge by the flood obviously can be seen in the point of bridge between Maklevan and Kondesar.
  • As the experience of Masuleh shows, concentration of population in a location such as Maklevan will intensify the pollution of water resources especially Masuleh Rudhan River, because of the drainage of all wastewater are into this River.
  • Undermining the foundations of traditional production and its subsidiary production, elimination of handicraft production and vernacular architecture resulted into the attenuation of area tourism foundation. Extension of Tourism activities was one of the main goals of Maklevan development.
  • Due to Physical disturbance, functionally Maklevan has become a space that is urban space nor rural. Livelihood system shows the coexistence of agricultural, animal husbandry, service and business activities. Modern buildings are seen besides the cottages.

     As a conclusion it can be said that growth pole theory is not suitable approach for settlements development in the country, or at least in the studied area. Since land use control and management should be in accordance with existing local reality. Land use planning process should be responsible of three fundamental questions: where are we? Where are we going? How can we arrive there? Rational decision making, different situation flexible approaches, emphasis on conservation of sustainability, harmony with nature, can prevent from adverse consequences of interference in nature. Therefore, abrupt town creation without gradual processes and using indigenous knowledge and people participation doesn't lead to creation of sustainable cities, but its outcome will irreparable harm to people and natural resources.


Mahmud Falsolyman, Mohamad Hajipour,
Volume 2, Issue 2 (7-2015)
Abstract

The appearance of Hazards in human life is affected by natural and human forces. So far, human beings were the most powerful stimulant to create these hazards and to intensify them. The negative role of human beings in environment is caused by factors like lack of knowledge, weak reaction, technology lack, aggressive ideologies and competition; in social system, however, human behavioral engineering especially in dealing with nature is totally affected by management system.

One of the common human behaviors which place in economic system framework is extraction and exploitation of Mines that has many consequences for ecosystem. In fact, Mines are the result of human beings reactions in dealing with nature which their activity ranges are increasing. According to micro-scale to macro-scale in economics, economic life of a country like Iran is based on its huge natural/mineral recourses.

     On the other hand, environmental consequences of exploiting Mines in this country are numerous and varied. In this study, we tried to present a spatial-temporal analysis and explanation about environmental hazards phenomena in the case of exploiting Mines of the country caused by human beings with the title of "anthropogenic hazards in Mines” that is totally a result of its respective management system.

In terms of its objectives, this study is a practical research and it is a descriptive-analytic one. For data collecting, we reviewed the existing literature and surveyed the data base in Statistical Center of Iran. These data are extracted from 2009 census and 2013 census (because of limited statistical domain) which belong to all the provinces of the country. To perform the analysis, these data are collected based on 5 indices and 16 sub-indices and after completing data base, percentage distribution graphs for Mines  and environmental activities in the provinces (in 5 total framework) has been drawn by using GEO DaTM software. Following that, by using a multi-criteria decision making method (COPPARS) all the regions are ranked according to the level of their environmental hazards in exploiting Mines. Finally, to illustrate the spatial pattern and method of hazards in Mines in the country on the studied period of time, based on COPRAS method, the calculated standard deviation ellipse was drawn in GIS which is according to 2009 and 2013 data.

      Studying the increasing number of Mines  which are exploiting in the provinces of the country during 2009-2013 confirm that most of the provinces had experienced a positive growth during this period of time and among these areas Ardabil, Alborz, Ilam, Bushehr, Tehran, Kurdestan, Qazvin, Fars, Luristan and Hamadan provinces had experienced a negative growth and we can mention to other economic activities reinforcement as the reason of this negative growth such as services in Mines  section rather than activities in this section, spatial location and the influence of border line or ignorance of planning system. On the whole we can conclude that in economic system of the country, there is a constant attention to Mines and expansion of their exploitation in the area.

     According to the findings of this study, we can conclude that in spite of the existence of Mines  which are extracting in all around the country and the expansion of exploitation of these resources in these regions, required attention and consideration is not paid to decrease or modify destructive effects on environment in the case of Mines  which are operating in the country, on the contrary indices such as investment and increasing the value of investment had decreased, and by considering the inflation in country, it can be said that economic attention to Mines  management in the country to reinforce the basis of environmental compatible Mines  is insignificant and declining. So it is not out of question that exploitation of these Mines in this country is an effective and intensifying factor to create and intensify other human-made and natural hazards.

     In regional point of view, management activities which modify negative and destructive effects of exploiting this country's Mines  (maybe in a small scale) are done by ignorance to regions that have predetermined hazards and it seems that other factors are used to conduct and strategize the environmental compatible management engineering in exploiting of the country's Mines  not the systematic management factors; for example, according to Iran's Environmental Protection Organization (EPO) statement, Isfahan, Fars Yazd, Khuzestan, Bushehr and Hormozgan provinces are dealing with the highest level of environmental hazards (IRNA, 2015), while these provinces have the most hazardous Mines  and they are located in the limited area of anthropogenic hazards of Mines  or they are close to regions that have maximum Mines ' hazards. In industrial provinces as Isfahan which are dealing with water scarcity and environmental pollution too, "anthropogenic hazards of exploiting Mines  which are the result of management" could create hazards like different kinds of water and air pollutions and they also enforce spatial environmental hazards.

    Finally, according to spatial-locational movements or changes of place, related to anthropogenic hazards of exploiting Mines in Iran, it can be said that the dominant approach on economic system of region which is related to Mines is proceeding fast to important population centers of the country and similar problematic ecosystems which may cause the appearance of hazardous crisis in some parts of the country.


Abdolhamid Nazari, Hossein Sadin, Ogholgol Khorrami,
Volume 2, Issue 3 (10-2015)
Abstract

Vulnerability to natural hazards is one of the most important issues of villages in Iran. Iran is listed in the first ten accident-prone countries in the world. It annually imposes many damages on villages through natural disasters such as earthquakes, floods, etc. To tackle the problem, an important attempt was applied during the recent decades is the policy of resettlement. The mentioned policy has been followed in forms of movement, integration and aggregation of villages. As spatial foundation and location of settlements are mostly based on natural environmental factors, then before any attempt, or before any dislocation of the villages, ecological potential of the new place needs to be evaluated. However, as dislocations resulted from unpredicted events such as flood are associated with emergency conditions and would be done very quickly; there is not enough time for evaluation before the action. In result, conducting such plans, unlike their positive impacts on service-delivery, cannot be quite welcomed due to ignoring the ecological and environmental factors which need to be considered before any actions. Therefore, such plans can create some negative consequences and be considered as non-successful plans.

       One of the projects that have been implemented in connection with this issue in Golestan province is dislocating and integrating flooded villages on Kalaleh County during 2001 to 2006. Based on the mentioned plan, twelve villages which were located at higher section of Gorgan Roud and were aggregated and located at a new site named “PishKamar”. These villages were flood-damaged. Such a site was urgently constructed based on a top-down approach, urban-based patterns and without considering the needs and ideas of stakeholders. So, such a plan needs to be evaluated and assessed against some normal and standard criteria. As such mistakes can be repeated elsewhere, recognizing the pros and cons of such plans would be a good guide and experience for the next projects. The present paper aims to evaluate the ecological potential, physical design of the site as well as measuring the levels of PishKamar site resident’s satisfaction.

      This study is a kind of the ex-post facto evaluation and its methodology is descriptive – analytical. To do that, we have considered a four-steps ecological potential of the site using Makhdom’s model. We also have used the 1:50000 topography maps, 1:250000 geological maps, 1:100000 land-use maps and 1:100000 soil fertility and capacity. All layers were transferred into ArcGIS environment, for more analysis. Data collection was based on surveying, interview and questionnaire. The statistical sample include 1350 households heads resided at the studied site, of them 200 persons were randomly selected for data collection purposes(According to Cochran AWT IMAGE  in the formula, standard deviation was 36%, test statistical was 1.96 and α was equal to 0.05). The results of the first stage of our study indicated that based on 330 primary integrated cells and overlaying the maps, there would exist 13 homogenous ecological units. In addition, a significant proportion of the Makhdom indicators used to assess indices was confirmed by chi-square test. Accordingly, 67% of cells in class I with good ecological potential and 8/28% of the cells in the appropriate ecological class II and only 2.4 percent were in class 3 to be inappropriate ecologically. Thus, of total 13 units, 11 units with an area equivalent to 127 hectares were classified as class I and II, and environmental units with an area of three hectares in third class were inappropriate. Therefore, the studied site was evaluated as a good site in terms of ecological conditions.

     In addition, evaluation of residents' satisfaction mapping site in terms of compliance with the ecological conditions and the physical texture design which was based on systemic approach of sustainable development indicators was revealed that the maximum satisfaction of residents was related to house orientation and strength of buildings, road network design and architecture patterns.But the dimensions of environmental issues including soil resistance as a result of landslides, climate harmony with the architecture and the wind direction has not completely been considered. Totally, of 11 evaluated criteria, people were satisfied with 6 of them and disappointed with another 5 criteria. It was confirmed by T-test.


Hassan Afrakhteh,
Volume 2, Issue 4 (1-2016)
Abstract

The City-region of Tehran is encountered with various environmental problems, including traffic, air pollution, lack of drinking water and green space, physical texture conflict, flood and earthquake. Capital accumulation has considerable role in shaping spaces which can create and intensify environmental disaster in special socio-economic situation. The second cycle is the conversion of capital to fixed and long-term assets with the aim of further benefits, which in fact produces two types of artificially environment during this process namely the built environment for production, and the built environment for consumption.

The third cycle is aiming to connect science to production and increase production capacity by investment in science and technology. When production of surplus value reduced in the first cycle, surplus value of second cycle increases through speculation and real estate transaction (real estate capital). Therefore, the owners of the lands and buildings are encouraged in production, trade and supply of these type assets.

In the courtiers that are legally and administratively encounter with tax receipt problems,  urban lands ownership is deposited to market system without any control, hosing transaction continues without any limitation, situation is moving forward to personal vested interests, asset value rises rather than production value, the price of land and construction increase severely. In the above mentioned condition, beneficiaries attempt convert the natural resources including park, mountain, river privacy and road privacy to marketable commodity and legally or quasi legally seize them. Therefore, unreasonable construction and population density increases and city-region will encounter with environmental disasters.  

The main objective of this research is to understand the underlying factors of capital accumulation through construction and its impacts on createion and intensification of environmental disasters in the Tehran city-region.

  Five different regions of Tehran were selected for data collection. "Q-methodology" was used for gathering and analyzing data. The society of communication or people whom the study sought to identify their mentality towards the research topic, were 25 experts selected through purposive sampling. To set the concourse of communication, a combination of primary (experts commented in an interview) and secondary (sources of credit) sources have been used and   34 statements have been developed. After sorting the data for analysis, SPSS software data matrix is ​​formed. Factor analysis, as main method of analyzing Q data matrix has been used based on Q logical methodology.

The results of Q analysis depicted four viewpoints with variance of 95.911 percent on the underlying cause of capital accumulation through construction and its contribution on increasing risk of natural hazards in Tehran city-region.

The first viewpoint has devoted 52.800 percent of total variances and can be titled as" Function of real estate transaction and Non-productive economic domination".

The second viewpoint which has received 18.914 percent of total variances is accordance with "commodification of land and housing". The third viewpoint is" management and monitoring of the city-region space" with 15.163 percent of total variances.  The fourth viewpoints under the title of" monitoring and control of natural resources" has assigned 9.034 percent of total variances.

As result of these processes, land and housing business have weakened society's productive capacity by extensive land use change in the urban peripheral area's due to its huge and quick profit. The above process accompany with selling excess density policy created a powerful political and economic stratum which harmed city sustainable development. The mountainous area of north, north east and west of Tehran, have annexed to metropolis as a result of above mentioned regulation and  may gardens have converted to construction by different gropes and institutions.

Q method analysis depicted that the Tehran City-Region has converted from use value to exchange value. It means that values of the city including work, security, education, leisure and welfare have been lost in favor of exchange value. In other words, the city has been converted to a commodity for exchange and selling in pursuit of profit, rising cost of urban land, building and housing. Consequently, the city-region construction site is extended to the river beds, steep slops and surrounding natural environment. This in turn is leading to rapid land use change and violation of environmental and spatial rules and regulations and intensification of environmental hazards.


Taher Parizadi, Lila Bigdeli,
Volume 3, Issue 1 (4-2016)
Abstract

In the present era, most cities have been faced with numerous problems. But the environmental dimension has been more challenging. Many urban professionals constantly seek to present effective solutions in order to prevent damage to the environment. Thus, theories, models and many views in this subject have taken, including livability approach derived by the school of sustainable development. So today, as one of the views livability approach is rooted in the theory of sustainable development has been focused on, and the above approach can cause problems in multiple cities. In this research, Region 17 of Tehran as the most problem area, was selected; and the overall goal of this study is assessing the livability of the Region 17’s neighborhoods, and the objective aims are including the assessing of livability dimensions, i.e. the environmental, the historical pattern, the urban management policies, the social, services, activities and facilities, the urban economy at the local level and identifying the livability homogeneous clusters and assessment the impact of livability’s variables, dimensions and indicators in that area. According to the study of the history and theoretical foundations of livability, the most important dimensions, indicators and items related to livability were extracted and the all selected dimensions and indicators, rooted in history and theoretical basis of their livability. In the present study include the following six dimensions of environmental, historical pattern, urban management policies, social, services, activities and facilities, urban economy with 20 indicators and 94 items were considered and the pattern of research in terms of goal, is cognitive; in terms of nature and method, is comparative – assessment; and about location of territory is Tehran’s Region 17, in respect of timing, is temporal and related to the 2015. Combined data collection method is combined0 (documents, survey) and it is the type of quantitative-qualitative data (questionnaire). The data used in the research is preliminary data that were obtained by questionnaire. The statistical society are the residents and citizens of Tehran’s Region 17 who are questioning. The necessary actions to operationalize the research was conducted in several stages: 1) Adjustment of questionnaire (using five Likert scale ranging from very low to very high range, verifying the validity by experts, verifying the performance reliability of the questionnaire by using the Cronbach's alpha in software of SPSS as a result 0.8), 2) Determining the sample size and sampling (400 samples determined by Cochran formula, using multi-stage sampling), 3) Entering data into SPSS software and doing the statistical tests (parametric statistical tests such as one sample T-test, ANOVA, Friedman) analyzing the data by SPSS and statistical tests of one sample T-test, ANOVA, Friedman, represents the undesirable od livability and its dimensions, the difference between neighborhood in terms of livability and more economic effectiveness on the livability of Region’s 17 and its neighborhoods, 4) The showing of spatial diagrams of research findings and preparing the livability’s maps by using ArcGis software and interpolation method. Ultimately, according to the findings and viewpoints of researchers and field observations, it can be concluded that the causes of problems in this area should be within the region and neighborhoods, it's time to overcome the situation that has been searched. In other words, the root of the problems in the above range is due to its geographical bed’s situation and other substrate characteristics. The meaning of geographical bed’s situation, climatic and tectonic characteristics of the area and the order of the micro-feature is the problems with the nature of the social, economic, administrative, infrastructure etc, so that were formed following the influx of population. Until two important problems raised in this region is not considered to be flows: 1) Geographic bed features, 2) the capacity of Region 17 for accommodation of population and services to them.


Meisam Moharrami, Ali Akbar Rasuly, Hashem Rostamzadeh,
Volume 3, Issue 3 (10-2016)
Abstract

Urmia Lake is one of the largest hyper saline lakes in the world and largest inland lake in Iran which located in the north west of Iran, between the provinces of East Azerbaijan and West Azerbaijan. The lake basin is one of the most influential and valuable aquatic ecosystems in the country and registered as UNESCO Biosphere Reserve. In addition, it is very important in terms of water resources, environmental and economic. Unfortunately, lake water level has dramatically decreased in recent years, due to various reasons. This issue has created some problems for Local people, especially people living in rural area in east of the Lake. The results of this research are of great importance for regional authorities and decision-makers in strategic planning for people of inhabits in east coast village.

The present paper is an attempt to integrate a semi-automated Object-Based Image Analysis (OBIA) classification framework and a CA-Markov model to show impacts of Urmia Lake Retrogression On eastern coastal villages. OBIA present novel methods for image processing by means of integration remote sensing and GIS. Process and outcome of this methodology can be divided in three step including: Segmentation, Classification and Accuracy assessment.in the process of segmentation aims to create of homogeneous objects by considering shape, texture and spectral information. A necessary prerequisite for object oriented image processing is successful image segmentation. In our research the segmentation step was performed by applying multi-resolution segmentation and considering 0.2 for shape and 0.4 for the compactness. The scale of segmentation is also an important option which leads to determine the relative size of each object. Having great values for scale leads to create large objects while smaller value would result small objects respectively. In this study the scale parameter of 100 has been selected based on the size of objects in Scale of study area as well as spatial resolution of the satellite images were used for segmentation. In doing so, we employed spectral and visual parameters contains: texture, shape, color tone and etc. for developing object based rule-sets.  To determine the characteristics of the spectral data and geometric features classes the fuzzy based classification was performed by employing fuzzy operators including: or (max) operator with the maximum value of the return of the fuzzy, the arithmetic mean value of fuzzy and the geometric mean value of fuzzy, and (min). After this step, the validation process was performed by using overall accuracy and Kappa coefficient. Then, using the CA-Markov Model The trend of changes was predicted in the future (For 2020). Another way to predict changes in land use and cover, used the CA-Markov model. Markov chain analysis is a useful tool for modeling land use changes. Markov chain model consists of three step: First step Calculating the probability conversion using Markov chain analysis, second step, Calculating the Cover and land use maps competently on the basis of multi-criteria evaluation, third step, assign locations cover and land use simulation based on the CA position operator.

Results of Satellite image processing indicate that the area of garden, Farmland, Zones of muddy-salty (Saline soils), moist salt and newly formed salt have increased while area of Urmia lake has rapidly dropped between 1984 and 2015. The area of Urmia lake declined from 4904.51 square kilometers in 1984 to 676.79 square kilometers in 2015. The farmland area increased from 177.72 square kilometers in 1984 to 542.37 square kilometers in 2015. The garden area increased from 83.71 square kilometers in 1984 to 227.28 square kilometers in 2015. The moist salt area increased from 111.89 square kilometers in 1984 to 945 square kilometers in 2015. Zones of muddy-salty (Saline soils) area increased from 859.01 square kilometers in 1984 to 2986.5 square kilometers in 2015. The newly formed salt increased from 171.27 square kilometers in 1984 to 921.99 square kilometers in 2015. Markov chain model results indicate in 2020 the garden area will be 638 square kilometers, the moist salt area will be 717 square kilometers, Zones of muddy-salty (Saline soils) area will be 4127 square kilometers, the farmland area will be 644 square kilometers, the newly formed salt area will be 363 square kilometers and the Urmia lake area will be 118 square kilometers.


Aliakbar Anabestani, Mahdi Javanshiri, Hamideh Mahmoudi, Mohammad-Reza Darban Astaneh,
Volume 5, Issue 1 (6-2018)
Abstract

Spatial Analysis of Villagers’ Resilience Against Environmental Hazards
(A Case Study of Central District of Faruj County)
Statement of the problem
The concept of resilience is the outcome of changes in risk managing in current decade. Today, the views and theories of disaster management and sustainable development seek to create societies resilient against natural disasters. Natural disasters such as earthquakes, droughts, floods, etc. are inevitable phenomenon which always pose a serious threat to development, especially in rural areas. This reflects the need to pay more attention to resilience in local level (rural areas). Resilience is the ability of a social or ecological system to absorb and deal with disorder or disturbance, so that the basic functional structure, can maintain the capacity of reorganization and adapting to changes and tensions. Carpenter defines resilience as the capacity of an environmental and social system to absorb a disruption, reorganize and thereby maintain essential functions. Thus, in order to reduce damage caused by natural disasters, the capacity of rural areas to deal with these events should be increased. Increased level of resilience against natural hazards is possible through accurately identifying the factors affecting resilience. Therefore, the aim of this study is the spatial analysis of factors affecting the promotion of rural environmental resilience in the face of natural hazards in rural areas of Faruj County.
In fact, the present study seeks to answer the following questions: what are the factors which may increase the level of resilience in the sample communities exposed to natural hazards, and how resilient are the sample villages of the study?
Research Methodology
This study is an applied research conducted in a descriptive-analytical method based on questionnaires. Data were collected through library research and field works which required completing questionnaires and conducting interviews with villagers living in the Central District of Faruj County.
Validity of the questionnaires was confirmed based on experts' views and its reliability was calculated using Cronbach alpha for different dimensions. The population consisted of 4591 households from the villages suitable for temporary accommodation. Based on the Cochran formula, 252 were obtained from these samples. They were selected by stratified random sampling.
Using statistical analysis methods in SPSS software, we analyzed the data to measure resilience in sample villages of the study area. We also used Excel and GIS in various parts of the study. To determine the best option, we used the VIKOR models, Gray relational analysis and Additive Ratio Assessment (ARAS).
Results and discussion
The results showed that infrastructure dimension with a mean of 2.92 and the economic dimension with a mean of 2.58 respectively had the highest and least impact on increased resilience which suggest that these villages compared to sample villages have relatively good infrastructure facilities. However, due
to the lack of proper institutional framework and poor performance of crisis management institutions, villagers are less satisfied with these organizations. Accordingly, based on t-test, the actual mean of the total respondents’ views was less than 3 and at the moderate level, and the economic index with the t statistics of -10.38 had the most negative impact on the resilience of the villagers.
It should be noted that according to the results of the resilience correlation with the individual characteristics of the respondents, it became clear that the gender and marital status has a direct and weak relationship with each dimension of resilience, which means men and the married people compared to the women and the singles believe their villages are more resilient. Besides, there is a weak and reverse relationship between the education of the individuals and their resilience, meaning that people with lower education compared to educated people, believe their villages are more resilient. There was no relationship between age and the dimensions of resilience.
In order to assess the impact of each index of the study on the level of resilience in the villages of the study, the confirmatory factor analysis test was used which revealed that among the indices of the study, "the villagers’ satisfaction with the performance of the Rural Council and administers (Dehyars)", "the role of institutions in educating people about various incidents" and "the use of new and durable materials to prevent the damaging effects of the incidents" had the greatest effect on the resilience of the samples villages.
Eventually, to determine the best village in terms of resilience for establishing a temporary settlement site in crisis management, we use three techniques: additive ratio assessment (ARSA),- VIKOR and Gray relational analysis. We prioritized the villages based on the mean rank method. -Considering the indices of resilience in the rural areas of the study, the villages of Mefrangah, Ostad and Pirali have the highest ranks, and the villages of Rizeh and Roshavanlou have the lowest ranks.
Key words: resilience, environmental hazards, organizational-institutional dimension, additive ratio assessment (ARSA), Faruj Central District
Abolfazl Ghanbari, Ehsan Pashanejhad Silab,
Volume 5, Issue 3 (12-2018)
Abstract

     Environment, development and sustainability are the three significant issues of worldwide concern. Environmental vulnerability and assessment of natural and anthropogenic activities impacts represent a comprehensive evaluation approach. The main purpose of this study is to present a comprehensive and novel framework in order to environmental vulnerability assessment using by spatial data and techniques. The method of this research is analytical-descriptive. The basic premise is that the finding of this study can be applied in the local planning system and policy making process of environmental conservation particularly to cope with rapid environmental change. The environmental vulnerability is defined and governed by four factors: hydro-meteorology signatures, environmental attributes, human activities and natural hazard. Based on data availability and vulnerability status of different areas, there is no general rule for selecting how many variables are required to assess the environmental vulnerability. In this study, 18 variables were taken into account and organized into four aforementioned groups.  The process of environmental vulnerability index is proposed to integrate AHP approach, remote sensing indices and GIS techniques. The environmental vulnerability showed distinct spatial distribution in the study area. Furthermore, the distribution of heavy and very heavy vulnerability patterns mainly occur in low and medium lands where the human activities have been developing rapidly and is the nearest region to Urmia lake in the west region.


Samira Jafariazar, Gholam Reza Sabzghabaei, Mortaza Tavakoly, Soolmaz Dashti,
Volume 5, Issue 4 (3-2019)
Abstract

Introduction: Wetland ecosystems, especially marine coastal wetlands of the most important and also the most vulnerable are the world's environmental resources. Which has always been sensitive to the fragility of coastal areas, high population density and intensive human activities are faced with the threat of destruction. Based on this, monitoring the trend of the changes in wetlands and their surrounding lands can be effective in the management of these valuable ecosystems. Investigating the environmental risk is a suitable instrument for evaluating and ensuring understanding of the relationships between stressor factors and environmental effects especially in wetland ecosystems. In general, application of methods of evaluating environmental risk is one of the important tools in studying environmental management along with identifying and mitigating potential environmental damaging factors in wetland regions in order to achieve sustainable development. Today, multi-criteria decision-making methods are employed in evaluating the risk in many studies.This study is based on multi-criteria decision-making methods to identify and analyze the risks threatening Tyab- Minab International wetland located in Hormozgan province was conducted.
Materials and methods: Based on the methodology to identify and prioritize risks Delphi, AHP and TOPSIS techniques were used to determine the risk priority number. In the first phase of this study, to identify and screen the main criteria of project selection, Delphi method was used. In this study, the panel of interest was determined based on a combination of experts with different expertise and out of a sample of 20 individuals, in which experts with various expertise gave a score from 1 to 5 (Likert scale) to each criterion. In this way, 32 criteria were identified as the most important and considerable risk for Minab Wetland and further proceeded to the second phase for prioritization and analysis. In this stage, multi-criteria decision-making methods were used, in which hierarchical analysis process was employed for prioritizing the criteria using Expert Choice 11 software. The indices of risk evaluation including the impact intensity, incidence probability, and the sensitivity of the receptive environment in environmental risk evaluation of wetlands do not have an equal value and significance. For this purpose, to weight the factors effective in estimating risk level and for prioritization of risk options, the technique for order of preference by similarly to ideal solution (TOPSIS) and Excel software were benefited from for calculations. The spectrum of scoring to each of the indices of incidence probability, impact intensity, and the sensitivity of the receiving environment was chosen from very low (1) to very high (9) based on hour spectrum. Following investigation of the types and frequency of indices along with the method of score determination of these indices, three indices of risk intensity (C1), risk incidence probability (C2), and the sensitivity of the receiving environment (C3) were chosen for risk ranking using TOPSIS model. Next, after determination of risk priority number using TOPSIS, the risk levels were calculated and evaluated using normal distribution method for each risk. To determine the degree of risk-taking, risks are organized in a descending order, where the elements of the number of the class and the length of the class are determined based on Relations 1 and 2 (n is the number of risks). Next, the risks are categorized based on these classes. Considering the concept of ALARP, the risks under investigation are divided into high risks, medium risks, and low risks. In this study, considering the number and length of classes, the studied risks were categorized in six levels (critical, intolerable, considerable, medium, tolerable, and trivial risks).
 

(2)
(1)

the number of classes=1+3.3 log (n)
the length of the classes= the greatest risk value - the smallest risk value/the number of classes
Results and discussion: In the first step, the final indices of the wetland's environmental risk were identified and the development of hierarchical tree and classification of the risks threatening wetlands along with their incidence probability in two groups of natural and environmental criteria was performed. Eventually, the final weight of criteria resulting from paired comparisons was obtained in Expert Choice 11 to achieve the score of incidence probability of each risk. Based on the results, among the natural, social, economic, physiochemical, biological, and cultural criteria, drought and climate change, increase urban and rural development, Smugling of fuel, oil pollution, reduce the density of vegetation, indiscriminate exploitation of groundwater were of high priority. The results obtained from ranking the the risks threatening Minab Wetland using TOPSIS suggest that oil pollution, dam construction upstream, persistent drought and climate change, and sometimes alcohol and fuel smuggling and illegal overfishing the priorities are first to fifth. Also Results showed that the respectively based on (Cj+) oil pollution (0/9109), dam construction (0/8121), the drought and climate changes (0/8063) and the smuggling of fuel (0/7520) are in Unbearable level.
Overall, the results indicated that same as this research, wetland ecosystems are subject to many threatening factors, resulting in ecological imbalance and abnormal appearance of the wetland, putting the wetland entity into danger of extinction in terms of fauna and flora.
Conclusion: Nowadays, for assessment of environmental risk, various methods are used, each of which has positive and negative points given the studied environment and the conditions governing it. Therefore, one cannot reject or approve one method with total confidence. By employing novel methods in risk evaluation, the intensity of risk incidences and, in turn, the damages and losses incurred to the environment can be prevented or at least mitigated. Further, it is also possible to move in line with proper and optimal management of environmental resources, especially wetlands and with sustainable development. Undoubtedly, understanding and recognition of the factors threatening wetlands, according to the importance and the impact of them, Prevent and cope with the threats and accurate project preparation and implementation of wetland conservation plans and environmental management.


عزیزی Azizi, افراخته Afrakhteh, عزیزپور Azizpour,
Volume 5, Issue 4 (3-2019)
Abstract

Land cover changes as a basic factor in environmental change act and has become a global threat. In this research, changes in land cover in rural tourism areas by neural networks, Markov chains in software ArcGIS, ENVI, Terrset using the TM and OLI satellite imagery, Landsat Satellite was surveyed for a period of 30 years for three periods of 1985, 2000, and 2015. The findings of the first stage show that land cover changes at the period 1985-2015, were classified in five class residential spaces, Commercial, Green, Empty and mountainous spaces and communication networks. In this study, the area of mountainous and empty spaces (13.25%) has decreased and in contrast, has decreased the amount of green spaces (6.221%), Residential (5.258%), commercial (1.264%) and communication networks (0.529%). Changing land cover as one of the most important environmental risks has been directly influenced by the Commodification phenomenon. Also, the findings of the prediction using the Markov-CA chain showed that with the continuation of the current and excessive loading on the ground, on the horizon of 2030, green cover (Agriculture, gardens and grassland, garden and residential)  and  wild land  and mountain cover have been reduced and to cover residential and commercial villas will be added. Based on research findings concluded that land cover changes in rural tourism areas in order to achieve more profits has become incompatible applications. This change in land cover, in addition to the economic, social impacts, has led to the formation of environmental hazards in the Bharang area. Developing tourism in the study area by removing agricultural land from the production cycle has led to an increase in urban activities and the formation of new activities (service, Residential Garden, residential villa) instead of traditional activities(agriculture and livestock) that are economical. And by loading too much ecological power tolerable land, while posing environmental hazards, causing incompatible activities next to each other, they do not match. Therefore, tourism, which gradually formed over the years and now it has become a part of rural texture, Spatial Conflict and heterogeneity two strains has created for them. Spatial Conflict created, due to changes in land cover and acceptance of incompatible activities that derive from human-nature relationships. This means that the rapid and unpredictable trend of tourism development, the rural landscape has encountered a problem and with changes in land cover, has led to inconsistencies between different activities and eventually has shaped the Spatial Conflict.
 
Mohammad Hajipour, Vahid Riahi, Golsar Hajipour,
Volume 6, Issue 1 (5-2019)
Abstract

Introduction

 There are two questions with all programs and efforts to industry development in Iran: I) How much is rate of environmental hazard of industries in each Iran regions? II) How much is rate of capital production of industrial sector to environmental damages in regions of Iran? 

 

Explanation and Interpretation of the Results

In recent years (2009-13), despite a reduction in the number of industrial workshops in the country as a whole, pollution and ecological damage to industries had more than doubled in the past; On the other hand, industries has been more conflict with the environment increasingly in Iran and has led to the growth of human environment hazards with increase of damage to natural environment. Also, from a regional point of view, wherever more industry is not more damage to environment by industry necessarily. Factors such as “obsolete instruments in industry”, “low level of technology”, “insufficient skills and expertise of the activists in industry” and “Inattention of managers and industrialists to environmental health” has been causes damage growing to environment. Space pattern suggests industrial sector risks accumulated within South West of Iran. As well as according to spatial changes trend, the risks are drawn towards central regions of the country. Among the provinces, Markazi province has been damage most to environment than any one million riyals added value of industry sector activities. As well as provinces such as Mazandaran, Bushehr, Fars, Isfahan, Ardebil and West Azarbaijan has been next ranks. Finally, it can be concluded that the environment health is not important for capital production from industrial sector of in the regions.


Abdol Hamid Nazari, Mostafa Taleshi, Mohammad Mirzaali,
Volume 6, Issue 1 (5-2019)
Abstract

Analysis and Measurement of Environmental Resilience of Villages in Gorganrud Watershed against Flood (Golestan province, Iran)
 
Abstract
Environmental hazards are inevitable phenomena that always place serious risks on the development of human societies, especially rural development. In the recent years, however, significant changes have been made in crisis management approaches, and the prevailing view has shifted from the "reduction of vulnerability" approach to "resilience improvement". Resilience is a new concept often used in the face of unknowns and uncertainties. Therefore, along with this change of attitude, it is important to examine and analyze natural hazards in terms of resilience. According to global statistics, floods, as one of the most devastating natural disasters, have caused the greatest losses and casualties to human settlements, which is true both in our country and in Golestan province. Investigations show that only in the statistical period of 1991-2014, 106 rainfall cases have led to the occurrence of floods in this province. These floods have damaged natural resources, the environment and the prevalence of environmental pollution; In addition, other natural and human factors have contributed to the heightened risk of flood damage. But if it was planned for the restoration of villages, then the damage could be reduced. Therefore, this research was conducted with the general purpose of determining the relationships between environmental factors and factors of rural communities of Gorganrud watershed on their resilience and numerical values. Finally, the residual spatial analysis of rural limited settlements was studied. Accordingly, the research questions are as follows: a) What is the relationship between environmental factors and factors in the villages of Gorganrud watershed in Golestan province with the resilience of the communities living in them in the face of flood? b) What are the resiliency values ​​of these communities in the environmental dimension and which zones? This is an applied research with descriptive-analytical method. A library of researcher-made questionnaires was used for collecting data using library resources. The statistical population consisted of 106 villages with 22,942 households. First, 31 villages were selected by cluster sampling. Then, using Cochran formula, 318 families were selected as sample size and selected by simple random sampling method. Also, for assessing the validity of the questionnaire, using Delphi collective wisdom methods, it was determined by using historical studies and opinions of experts in rural areas. The reliability of the questionnaires was also determined by using the Cronbach's alpha coefficient in the pre-test method. The value for the household questionnaire was ra1=0.841 and ra2=0.862, respectively. All steps for statistical analyzes have been performed by Excel and SPSS software. Additionally, the development of mapping, risk-taking, risk and resilience was also done with the help of ArcGIS software and the weight of each criterion was determined by the Super Decision tool; Then, using the weighted and linear overlapping methods, each of the sub-criteria of the main indexes was multiplied in its weights. The study area is divided into two distinct sections in terms of geological and geomorphological structure. The southern and eastern parts of it are the ripples of the eastern Alborz mountains, which are taller in the southern part and extend along the east-west direction. Also, the northern part of the studied basin is the Gorgan plain, in which the main branch of Gorganrud flows from east to west and all branches of the south and east are drained. Following the general slope of the main branch and its long-standing walls in the mid-east, it is usually not flooded; but as far as the west is concerned, its slope is very low and one of the flood plains is considered as the basin. The results of the research show that there is a significant relationship between the environmental factors of the studied basin villages and the resilience of the communities inhabited by them in the face of floods. Also, the average environmental resilience of the whole region was lower than the average (2.76 average), rural households in the sub-basins of TilAbad and ChehelChai with an average of 3.24 and 3 had relatively good environmental resilience, But most of the rural households in the sub-basins of Ghurechai and Lower of Gorganrud, Mohammad Abad-Zaringol, Madarsoo and Sarisoo, with an average of 2.89 to 1.85, had a poor environmental resilience. In addition, According to the flood risk resilience map, it can be said that of the total 31 sample villages studied, about 29 percent of sample villages have "medium upward" resilience in facing flood risks; conversely, most of these villages (71%) also have relatively low degree of resilience. Also, comparing the findings of this study with the results of most other researches, such as the studies of Olshansky and Kartes (1998) regarding the necessity of considering the environmental factors of settlements, observing the necessary environmental standards and the necessity of using proper land use management tools to reduce risk hazards and improve resilience, Center of Emergency Management Australia (2001) on the need to consider the state of the infrastructure, including the level of communications and accesses, biological conditions, including the status of pollution, as well as geographical characteristics, such as distances and proximity, climate, topography, as well as the general results of studies by Rafiean et al. (2012) in special selection of the most suitable model of resilience based on the combination of carter and socioeconomic model due to the simultaneous attention of this model to its geographical features and its comprehensiveness, as well as attention to the local communities' participation, Rezaei (2010), Shokri Firoozjah (2017) and Anabestani et al. (2017) Regarding the low value of the calculated population, the resiliency number of the society is consistent and consistent with the lack of attention to infrastructure issues, locations, etc., which is below the baseline (3). As a result, all of the aforementioned components of the resilience of inhabitants of sample societies have been affected by its environmental dimension, which is often due to insufficient attention and insufficient handling of them, which reduces resilience of rural residents to flood risks.
 
Keywords: Environmental hazards, Flood, Vulnerability, Resilience, Spatial analysis, Golestan Gorganrud basin.
 
Ali Jahani,
Volume 6, Issue 2 (9-2019)
Abstract

Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach
 
Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under canopy vegetation cover can be noted in attracting and preventing runoff in the forest floor and reducing subsequent environmental risks. The purpose of this article is forest under canopy vegetation density changes modeling considering forest ecosystem structure and forest management activities as an environmental risk. The main objectives of this study were to: (1) model forest under canopy vegetation density in forest ecosystem to elucidate the ecological and management factors affecting on under canopy vegetation density; (2) prioritize the impacts of model inputs (ecological and management factors) on under canopy vegetation density using model sensitivity analysis and (3) determining the trend model output changes in respond to model variables changes.
In this study, Land Management Units (LMUs) were formed in the region considering ecological characteristics of land. LMUs were mapped out based on Ian McHarg’s overlay technique by ARC GIS 9.3 software. Ecological factor classes of an LMU differ from ecological factor classes of adjacent LMUs (at least in one ecological factor class). The following types of data were solicited for each LMU:
(1) Ecological variables: Altitude or elevation (El), Slope (Sl), Aspect (As), soil depth (SD), Soil Drainage (SDr),Soil Erosion (SE), Precitipation (Pr), Temprature (Te), trees Diameter at Breast Height (DBH), Canopy Cover (CC), and forest Regeneration Cover (RC).
(2) Management variables: Cattle Density (CD), Animal husbandry Dsitance (AD), Road Dsitance (RD), Trail Dsitance (TD), logs Depot Dsitance (DD), Soil Compaction (SC), Torist impacts (To), Skidding impacts (Sk), Logging impacts (Lo), Harvested trees volume (Ha), artificial Regeneration (Re) and Seed Planting (SP).
(3) Forest under canopy vegetation density: The percentage of under canopy vegetation density in each LMU was estimated by systematic random sampling method. In each LMU, a one square meter sample was taken. The average percentage of under canopy vegetation density in sample units of each LMU was calculated and used in the modeling process.
ANN learns by examples and it can combine a large number of variables. In this study, an ANN is considered as a computer program capable of learning from samples, without requiring a prior knowledge of the relationships between parameters. To objectively evaluate the performance of the network, four different statistical indicators were used. These indicators are Mean-Squared Error (MSE), Root Mean-Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2).
Various MLFNs were designed and trained as one and two layers to find an optimal model prediction for the under canopy vegetation density and variables. Training procedure of the networks was as follows: different hidden layer neurons and arrangements were adapted to select the best production results. Altogether, many configurations with different number of hidden layers (varied between one and two), different number of neurons for each of the hidden layers, and different inter-unit connection mechanisms were designed and tested.
In this research, 129 LMUs were totally selected, then ecological and management variables were recorded in them. In the structure of artificial neural network, ecological and management variables were tagged as inputs of artificial neural network and the percentage of under canopy vegetation density was tagged as output layer. Considering trained networks (the structure of optimum artificial neural network has been summarized in Table1), Multilayer Perceptron network with one hidden layer and 4 neurons in each hidden layer created the best function of topology optimization with higher coefficient of determination of test data (which equals 0.857) and the lowest MSE and MAE (which are 0.866 and 0.736 respectively). Considering the results of sensitivity analysis, ecological and management variables like the forest canopy density, cattle density in forest, soil erosion and soil compaction respectively show the highest impact on forest under canopy vegetation density changes (Fig1).
 
Table1. The structure of optimum artificial neural network in forest under canopy vegetation density

Output Layer First Hidden Layer Network features
Linear Hyperbolic tangent Transmission Layer
Gradient descent Gradient descent Optimization Algorithm
0.7 0.7 Momentum
1 4 Number of Neurons
-0.9 up to 0.9 -0.9 up to 0.9 Normalization
 
Table2. The structure of optimum artificial neural network in test data
MSE MAE RMSE R2 Data The structure of network( the number of neurons)-epoch
0.716 0.678 0.846 0.931 Trainning Tanh(4)-160
0.793 0.703 0.891 0.894 Validation
0.866 0.736 0.931 0.857 Test

 

 
Fig1. The results of sensitivity analysis of artificial neural network model
 
Nowadays, artificial neural network modeling in natural environments has been applied successfully in many researches such as water resources management, forest sciences and environment assessment. The results of research declared that designed neural network shows high capability in forest under canopy vegetation density modeling which is applicable in forest management of studied area. Sensitivity analysis identified the most effective variables which are influencing under canopy vegetation density.
So, to identify hazardous LMUs in study area, we should pay attention to the canopy density of LMUs as the variable with high priority in determination of under canopy vegetation density. We believe that, in hazardous LMUs in forests, we should pay attention to some modifiable factors of LMU, which is cattle density in forest, by timely plan for livestock elimination. The forest under canopy vegetation density assessment model, in forest projects impact assessment, could be a solution in decision making about forest plan structure and implementation of similar projects in similar locations. 
 
Keywords: Forest plan, Environmental impact assessment, Multilayer perceptron, under canopy vegetation, artificial neural network
 


Dr. Sahar Nedae Tousi, Ms Roza Hosseini Nejad,
Volume 6, Issue 2 (9-2019)
Abstract

Resilience, as a concept to confront abnormalities, surprises and unexpected changes in recent years has been raised as the ability of places, societies, and systems to respond to the dangers of tensions and pressures; so that the system can quickly return to pre-stressed situation, threats It accepts the future and confronts them. Central region of Iran according to the zoning studies of the national physical plan of Iran, including three provinces of Isfahan, Chaharmahal and Bakhtiari and Yazd, in a desert climate with many crises in the permafrost environment that has disturbed the state of resilience of the region, and as a result the scheme and target application regional resilience on policy and planning to reduce vulnerability and to cope with various trans-regional crises. Despite the fact that the concept of resilience at the level beyond the city has become apparent, there is still no clear framework for measuring this situation at the regional level. Based on this research, it is believed by the trans-regional and multi-dimensional nature of the resilience that by modifying and applying the concept of resilience to the integrated and multi-dimensional at the regional level, an appropriate framework for status measurement regional resilience in the form of a composite index and thereby risk reduction planning and promoting the resilience of the presentation To give. In this regard, the major purpose of the research is to develop an optimal framework for assessing, measuring and ranking the resilience situation in the central region of Iran. The results show that Chaharmahal and Bakhtiari province have the highest resilience and then there are two provinces of Isfahan and Yazd, respectively. In the meantime, Yazd province has the lowest resilience among the provinces of the central region; therefore, it is necessary to focus on planning and allocating resources to promote and improve priority sectors. Responding to resilience agendas requires the adoption of transregional planning and decision-making approaches such as environmental regionalism.
Zahra Taghizade, Ahmad Mazidi,
Volume 6, Issue 3 (9-2019)
Abstract

Abstract

Urban heat island (UHI) is one of the environmental phenomenon which has made difficult environmental conditions for citizen. This study aims to evaluate the spatial and locational variability of Esfahan urban heat island according to the role of land use. Thus an area about 190.2 square kilometers (km2) in Esfahan, as the microclimate, was studied. In order to analyze the relationship between land use and land cover changes on Esfahan urban heat island, the images of Landsat 7 (TM and ETM +) and Landsat 8 (OLI / TIRS) on 20 July 1989, 17 August 2005, 18 August 2014 have been used. The results show that the urban areas has experienced 31% changes in positive direction; while the agricultural sector and green space havehad a reduction of 25% in their area. The analysis of the intensity of heat island show that heated cores are related topoor and barren lands with about 37/33 and 36/5. Although the most area of thermal classwere related to warm thermal class in 1989 and 2005, the average thermal classes were about 63/8%in 2014. Moreover, the locational variation distribution of Esfahan heat island shows that the locationof the heat island has gradually changed. For example in 2014 it included small parts in the south of the city, military zones and barren lands in the south, some parts in the north west and north east areas and small areas in the east of Esfahan. This means that urban development isn’t the main factor of the surface temperature increase and urban heat development, but rather the type of land use has influenced the decreasing or increasing of air temperature.

.


Masoumeh Gholami, Ezzatollah Ganavati, Ali Ahmadabadi,
Volume 6, Issue 4 (2-2020)
Abstract

Simulation of floodplain zones in Tehran's metropolitan watershed (case study: Kaan basin)
Ezaatollah Ghanavati, Associate prof. Geographical science faculty, Kharzmi University
Ali Ahmmadabadi. Assistance prof. Geographical science faculty, Kharzmi University
Negar Gholami, MA in Geomorphology, Geographical science faculty, Kharzmi University
Extended abstract
Floodplains and adjacent rivers are always at risk from flood events due to their specific circumstances. Flood prone area identification in the watersheds is one of the basic solutions for destructive flood control and mitigation. Flood mapping is one of the best methods for flood prone area planning and identifying. Considering the importance of flood hazard, it is important to understand the role of uncertainty and incorporate that information in flood hazard maps. The hydrodynamic modeling approach is suitable for accounting various uncertainties, and thus lends itself to creating probabilistic floodplain maps. For  this purpose,  flow  boundary  conditions,  peak  instantaneous  discharge with  different  return  periods,  cross  sections and their distance and roughness coefficients for each cross section were entered to HEC-RAS hydraulic model in Kaan watershed  located  in  the Tehran  province,  Iran,  and  this model was  then  run  and  flood water surface profile at different return periods were estimated. In the Kaan Basin, most residential and agricultural lands are located in a very small distance from the river bed. The rapid growth of construction, human activities and land use change in the downstream of the basin have caused a change in the hydrological cycle and runoff production. Floodplain mapping using hydrodynamic models is difficult in data scarce regions. Additionally, using hydrodynamic models to map floodplain over large stream network can be computationally challenging. Some of these limitations of floodplain mapping using hydrodynamic modeling can be overcome by developing computationally efficient statistical methods to identify floodplains in large and ungauged watersheds using publicly.
The aim of this study is to determine flood areas within 20 kilometers of the Kaan River by using the HEC-RAS model and Arc GIS software to identify flood lands in different return periods.
The Kaan basin is located in the central Alborz Mountains. This basin is limited to south, north, east and the west respectively to Tehran, Jajrood Basin, Darakeh Basin and Karaj River Basin. The most important River in the area is the Kaan River and originated from high mountains.
Most commonly, the hydrodynamic modeling approach is used to create flood hazard maps corresponding to a rare high flood magnitude of 100-year return period or higher. Although this approach can provide very accurate floodplain maps, it is computationally demanding. As a result, the modeling approach to flood hazard mapping works well for individual streams, but its efficiency drops significantly when used to map floodplains over a large stream network. In this research, floodplain areas in the Kaan basin in return periods of 2 to 20 years are determined using the HEC-RAS model and the HEC-geoRAS extension. For this purpose, digital maps 1: 25000, DEM (10m), discharge values of Sulaghan Station, morphological characteristics of the river bed and cross sections have been used. Digital Elevation Models (DEMs) play a critical role in flood inundation mapping by providing floodplain topography as input to hydrodynamic models, and then enabling the mapping of the floodplain by using the resulting water surface elevations. Finally, the data is entered into the HEC-RAS software and analyzed. After determining the flood ranges in the various return periods at each cross-section, enter the results to the Arc GIS software and the flood zoning maps were obtained.
In this research roughness coefficients (Maning,s coefficients) for each cross section were obtain be the
n= (nb+n1+n2+n3+n4) m                                                             (Eq.1)
Geological map and field observations have shown that the main difference between the widths of the valley in the study area is related to the type of rock. The results of the hydrodynamic model show that in the river upstream, the increase in discharge had led to the water level increase and expansion in the floodplain surfaces. But in the middle and low slopes in the downstream of the river, due to the reduced discharge, the river has a larger lateral extension and the flood areas are larger than the upstream of the river. Also, for a longer period of return, the discharge rate and the water level increase and the flood plain was more extensive. The results show that in the downstream of the basin due to instability the bed, existence of wide and eroded chanels, high ability in sedimentation, erosion of the channel bed, and low impact of vegetation, this section They can be restored and regenerated and constantly changing. Due to the location the Tehran-North high way from the Kaan basin, had the construction of roads and structures, the flood plain areas of the river should be fully observed or retrofitted.
 
Key words: Environmental hazards, Flood, Flood areas, Kaan River, HEC-RAS
 
 
 
.
Zahra Keikha, Javad Bazrafshan, Sirous Ghanbari, Aleme Keikha,
Volume 7, Issue 4 (2-2021)
Abstract

The occurred disasters in recent decades show that communities and people have getting incrementally vulnerable against the hazards. Therefore, social resiliency is the capacity of change, adaptation, and power of resisting against the social stresses and disasters. This research aims at the spatial analysis of the local community to have effective social indexes on resiliency against the environmental hazards in the Sistan region. The methodology of the research is applied due to its nature and descriptive-analytical with the quantitative-surveying approach based on structural equations modeling (SEM) due to its method. The statistical population of the research includes heads of households in 373 villages that 189 people were selected as a statistical sample in proportion to the population volume by Cochran formula using the stratified random sampling method. Inventory was used as a tool to collect data of research, and validity and reliability of tools were studied and confirmed by confirmatory factor analysis, and Cronbach’s alpha test and composite reliability, respectively. SEM method with partial least squares technical approach and SMART PLS3 software was used to analyze the research data in inferential statistics level. Findings of research showed that the path coefficients of social indexes relationship with social resiliency are significant based on t-value and p-value. In a way that t-value of this path is 11.28 and higher than its critical value, 2.58, and the p-value is lower than 0.05.  In addition, WASPAS model was used for the spatial analysis of the effective social factors on the resiliency of the studied villages. This showed that villages of Zahak city have the maximum Qi and villages of Hamoon city have the minimum Qi. Thus, it is concluded that there is a significant relationship between the social indexes and the resiliency of the villagers. Moreover, the volume of the social index effect is high. Since villagers have higher Qi, they have more social resiliency. Hence, it is claimed that the villages of Zahak region have higher social resiliency.

 

Esmaiel Najafi, Dr Sayyad Irani Heris, Farshad Jafari,
Volume 7, Issue 4 (2-2021)
Abstract



 

 
Abstract
Since the early 1990s, the idea of ​​sustainable urban development has been a fundamental and very important issue for decision makers and thinkers. Because it encompasses the historical concept of development and at the same time has become very important in determining the current international, national and regional policies (Pugh, 2004). In recent years, governance has become a hot topic in public sector management, and this is due to the important role that governance plays in determining public health. Therefore, according to environmental resources, good governance means the way in which decision makers promote sustainable development, which includes the protection of the living environment (Shuakrizadeh and Ashrafi, 2011). Governance is the institutional capacity of public organizations to provide goods demanded by the public and to help the citizens of the country or their representatives efficiently, transparently, fairly, and with accountability to limited resources. This definition of governance represents an international organization and development institution such as the World Bank that seeks to support reforms through good governance programs aimed at strengthening the strategic capacity of donor governments while intending to engage civil society. Strengthen sovereignty. (Krueger,2007).
Environmental hazards and ecological crises are the result of the interaction of environmental, economic, cultural, health and even political variables. The scope of these variables is local-spherical, so that no place in the earth is far from its consequences, with the difference that the scope and depth of the crisis is severe and weak (Kaviani rad, 2010). Investigating the effects of environmental hazards in relation to sustainable development with a good governance approach is very important and very important in terms of nature, so the present study with descriptive-analytical approach and based on library and field studies to study the effects of environmental hazards on sustainable indicators of Mazandaran province It has dealt with the characteristics of decent humility. Brief descriptions of the concepts of sustainable development and development, environmental hazards and proper governance are also given in the text of the article.
The most important natural and human hazards in Mazandaran province are earthquakes,  mass movements, floods, fires, droughts, frosts, pollution of water resources, soil erosion, pollution of agricultural products, urbanization and urban development, waste, etc. It brings a lot, attention to earth sciences and the environment can, in addition to preventing risks, accelerate the process of sustainable development.
The research method is descriptive-analytical and based on library and field studies. In order to gather information within the framework of theoretical foundations of research, by referring to library resources (Persian and Latin books, publications, dissertations and reputable foreign sites), the required materials have been collected. Statistics and information related to the development indicators of Mazandaran province have been extracted from the statistics of the Statistics Center of Iran and then examined with SPSS software, Table No. (3). The Cochran's formula was used to determine the sample size. The statistical population in this study is Mazandaran province and the population of the province in the general census of population and housing in 2016, 3,283,582 people, which by placing the total population of the region in the above formula with a probability level of 95% to calculate the sample size by estimating distributions. There were two sentences (Cochran). A total of 384 questionnaires were distributed among residents and officials in the study province, a simple random method.
Based on the appropriate governance indicators in relation to environmental hazards and sustainable development of Mazandaran province, it was evaluated as lower than average (2.78 with theoretical average 3). Based on the results of factor analysis after Warmax matrix period, the participation index shows the role of urban management in increasing people's participation in improving urban environment and reducing social anomalies in Mazandaran province and reducing environmental degradation (with a coefficient of 0.772). , In the index of accountability, accountability of urban managers to the demands and complaints of people about environmental degradation and employment status (with a coefficient of 0.645), in the index of effectiveness and efficiency, the effect of managers' programs on reducing pollution (air, water, etc.) and Increasing the quality of social and infrastructural indicators of sustainable development (0.772) and the variability of the effectiveness of the implemented projects On the part of environmental managers in the cities of Mazandaran province (with a coefficient of 0.720), in the transparency index, what is your level of knowledge about the approval of plans and programs to deal with the effects of environmental hazards on the development indicators of the province (with a coefficient of 0.660) ) And how much do you know about the budgets spent on environmental protection and development and development programs and job creation in the province (with a coefficient of 0.639), in the indicator of responsibility, willingness to accept responsibility in economic, social and environmental fields? What is the level of the neighborhood itself (with a coefficient of 0.592), in the index of the central law, the amount of legal treatment of officials with factors Local and regional pollutants are environmental degrading factors (with a coefficient of 0.8595), in the Justice and Equality Index, the government's attention to dealing with environmental degrading factors in the city and shortening the hand of land grabbers in Mazandaran province (with a coefficient of 0.739) They had a higher operating load.
In relation to the impact of human and natural hazards on sustainable development indicators, which clearly include environmental, economic and social indicators, justice and equality indicators and participation in Mazandaran province are better than other indicators. It shows that the indicators of transparency, accountability and rule of law are less than average in the eyes of the people and are not in a good position in this regard.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb