Search published articles

Showing 25 results for Flood

Mehdi Ramezanzadeh Lasboei, Ali Asgari, Seyed Ali Badri,
Volume 1, Issue 1 (4-2014)

Natural disasters are investigated of various dimensions and consequences of natural hazards. As well, they can become as a repeatable phenomenon in the absence of mitigation systems, and could be caused devastating consequences. Resiliency approach as a basis for reducing the negative effects is taken into account to reduce the impact of natural disasters. Today, the two tourist areas of Cheshmekile (Tonkabon County) and Sardabrud (Kelardasht County) as typical feature of regional tourism planning have important potentials for development of tourism. But in recent years they have repeatedly been invaded by floods so that in some cases the impact of economic, environmental, socio-cultural and physical environment is followed. In economic dimension, flash flood destroyed agricultural fields and rural houses and in socio-cultural dimension it has increased insecurity. And finally, in terms of the physical and environmental aspect, it has created the most damage such as adverse changes in the appearance of the landscape, loss of trees, and destruction of public infrastructure (roads and bridges network). It is an approved hypothesis that rural settlements cannot be moved to the riverbank, but have created a situation that endangered abiding rural settlement. Various aspects such as socio-cultural, economic and administrative highly effect on resiliency. Among them, the role of infrastructures such networks, the location of health care facilities, police stations, fire stations and disaster management offices, communication networks (telephone, Internet) are more important to improve resiliency. This paper seeks to answer the key question that is the infrastructure in promoting resiliency after flooding in the two areas satisfactory?  The methodology of the study is objective and analytical analysis is based on the nature and method. The main variables are infrastructures and resiliency. Resiliency as the dependent variable consists of two main components of individual and community resiliency. Required information on the objectives, data integrity and availability has been developed in both library and field methods. In previous studies, library and documentation center is studied. Questions are sorted in the distance range, rated and ranked based on the needs and nature of the research and the knowledge and the education level of the local community. Questions are tested initially and after a measurement of the level of reliability (0.812), which is obtained using Cronbach's alpha. First, to determine the total sample size of villages located in flood risk areas in the two basins 9 villages (50%) were selected. Cochran formula is used to determine sample size. According to Cochran formula for the total population 296 households that included 129 head of households for Sardabrud basin and 167 head of households for Cheshmekileh basin. After the initial survey the collected information is encoded using a statistical software SPSS and then has been processed according to the assumptions formulated. Based on the results of the questionnaire analysis, some indicators, same as access to aid agencies (Crescent) and disaster management center, there were no significant differences between rural settlements such as the two basins distance to the city center is short. The nearest major communication route roads - Branch is located at a distance of 5 km from the city of Kelardasht, but in Cheshmekileh basin there are less than 5 kilometers distance to the main road of the Caspian Sea. That is why the average satisfaction of the local authorities in these areas is much higher than Sardabrood basin. Check out the highlights of each area residents is showed more satisfaction on facilities and services infrastructure in Cheshmekile. Result. To understand the relationship between resiliency and infrastructure used is the correlation coefficient between these two measures 003/0 there is level. This relationship of mutual relations, the improvement of infrastructure in the area with 99% probability of increasing population resiliency against natural disasters (floods) within it. The average calculated for the physical aspects - infrastructure represents the position of the component. Ring roads in northern cities, near airports such as Ramsar Branch, and there are several large medical centers, access to police stations in both basins are made ​​from the perspective of the respondents favored the status of this criterion is to be evaluated. However, among the subset of infrastructure, the roads are better than others. The reason can be attributed to the investment and construction of new networks of communication. In the case of energy network, although the topography of the area is caused that part of the basin, some of villages such as Gavpol, Letak, Drazlat in Cheshmekile basin and Lush, Krdychal and Roudbarak in Sardabrood basin was still stay deprived of the gas network but have favorable drink water and electricity network. However, keeping the population in the rural area is largely dependent on the infrastructure. Resiliency in relation to rural and infrastructural facilities, access to places of temporary accommodation is very important but in this particular field in any of the villages still planning has been done.

Parviz Rezai, Khosrov Tajdari, Seyed Esmaeil Mirghasemi,
Volume 1, Issue 2 (7-2014)

Flood pron areas of rivers are generally hazardous. Regionalizing these hazardous areas in terms of the degree of hazard they produce is very important for regional flood management, insurance companies and land users. Therefore, this research has tried to regionalize the potential hazard of the flood prone areas of the Morghak River using HEC-GeoRAS model as an example for all flood plains of Gillan province.

    In order to develop the hydrolic model of the river, the following data were prepared.

  • The river profile, roughness index of the river channel and flood plain and river bank conditions were obtained from 1:2000 TIN maps.
  • The data were entered into the HEC-RAS model.
  • Then the data of the river banks and flood discharge amounts were entered and hydraulic computations were carried out.
  • The model results were entered into the GIS. After the requested processing in the extension of HEC-GeoRas431, the final maps of depth of river, water movement velocity, shear velocity and the flow intensity along the river channel were produced.
  • The maps were moved into the Google Earth and the flood area with different return periods were plotted.

    The results showed the areal expansion of the 25-year return period floods of the river basin. This plain is narrow in the upper areas of the river and widens in the lower areas of the area. In the areas that there are constructions, the basin gets wider and its higher discharges causes severe hazards in the settlements around the river. The widest part of the flood plain is over the lowlands around Anzali swamp. In these lowlands the flood spreads over the vast area and making problems for the farmers and dwellers.

    According to the results of this research some adaptation measures are needed in the areas where people have moved to the river channel and have built some structures. Some of these measures include vegetation planting, cement and rocky barriers and cleaning all extra wastes. The results of the study also indicate that in most of the branches the building of the channel has narrowed the channel and caused flood in the settled areas. The physiographic parameters of the river have seriously been changed and caused the severe floods in the river especially in the lower areas. The flow speed of the river changes from 4.1 m/s in the maximum discharge to .2 m/s in the very low discharge. The width of the channel has also changed from 281 meters in the maximum to 11 meters at the low discharge period. The discharge stress was between .3 to 357 newtons the overall results of the research indicate that the human interference in the river basin has caused all these hazards. And the only solution is that the humans should go out of the risky areas of the river basin. The continuation of this process in this river or in the other rivers will worsen the present hazards,

Manijeh Ghahroudi Tali, Khabat Derafshi,
Volume 2, Issue 2 (7-2015)

Flood as a natural disaster follows certain erratic patterns which was made confounding factor. Flood risk is variable and complex that depends on very phenomena such as rainfall, runoff concentration and high exposure of the flooding downstream areas.

    This are changes over time and from regions due to natural conditions, human activities, and damage culture of the community at risk. Occurrence of chaos at flood risk changes the trend of predictable processes. In the other words, although flood is a disaster, the occurred irregularities in its patterns can reveal its complicated nature. Flood pattern irregularities are the incident evidence of chaos in the system which can be studied by fractal geometry. The occurred events in spatial variability of floods in the last 50 years show they can be occur as unusual urban flood in Tehran.

    Tehran city may experiences the difference life and property damages because the high varieties in the socio-economic and the life quality level in regions, also structural varieties in the city fabric??. Ignoring the natural factors in spatial planning, overrun and destruction of natural morphology as a result of urban activities and subsequently disturbing urban drainage system lead to unpredictable and destructive floods in Tehran.

    The Tehran precipitation layer was prepared based on 27 weather stations data in the period of 10 years (1998-2009) and Kriging model with a Gaussian function. The runoff is calculated by Soil Conservation Service Curve Number (SCS-CN) and precipitation layer. The flood hazard potential map has been created by 8 variables and Analytic Hierarchy Process (AHP). This map as an index to define the said complexity was prepared in 5 categories of risk by combination of Tehran metropolis flood hazard and vulnerability maps. Then it was divided into hydrological basins and 12 basins were selected randomly. The Perimeter-Area Fractal and Number-Area Model were used to study the chaos and turbulence in the Tehran’s flood pattern.

     Explanation of locational changes of risk between the basins needs to calculate the weighted average risk and the independent variables in 12 basins that obtained by zonal statistics. Based on these average values the factor analysis used to determine the Varifactors or main components of the variability in flood risk between the basins. Finally, fractal geometry models (perimeter-area and cumulative number-area) were used to demonstrate the chaos of the flood risk value in 5 categories of risk.

    In this research the Tehran flood zoning map was calculated at 5 hazard categories. The fractal of sample basins had increased by increasing in the level of hazard map. Generally, the higher DAP values from 1 represented increasing in the chaos or irregularities of Tehran floodhazard. The obtained DAP from very low to very high risk levels are 1.206, 1.216, 1.23, 1.263 and 1.293 respectively. The increasing of DA indicated that turbulence hazard increases based on Perimeter-Area fractal model, thus, with the increase in hazard the DAP and DP values were greater. Also, the results of Number-Area Model showed turbulence floods in the five classes of hazard. The area cumulative number of risk levels are 0.74, 0.79, 0.85, 0.86 and 0.88 respectively; this trend showed the less size of flood risk polygons from very low to very high risk levels. In the other words, by increasing the risk level the polygons gets smaller and indicates the increase the flood risk chaos.

    The occurrence pattern of natural phenomena and even natural hazards have a regularity type in normally condition; if this regularity disrupts for any reason, irregularities or chaos happens. In present study, the results of fractal analysis in sample basins presented the chaos pattern in Tehran floods. Also the heavy rainfall can be predicted in Tehran but the prediction of the flooding distribution was not provided. According to the recorded floods in Tehran the flooding begins always in the northern valleys of Tehran, like Darband, Kan or Golabdareh basins,  are not similar to damage pattern. As a result, despite several studies and projects which have been implemented about flood phenomenon in Tehran, this is unpredictable and uncontrollable in the city.

Amir Karam, Amir Safari , Shila. Hajehforosh Nia,
Volume 2, Issue 2 (7-2015)

With the development of economy and social services, increased need to reduce risks, control risks and other important measures in order to provide program management and follow-up plans vulnerability, Having the right information and understanding the current situation in the field is essential for  prevention and planning measures, Therefore, research on risk reduction and knowledge of threats in the Arangeh region is essential, as one of the areas tourist attraction regions in Karaj's catchment area.

Geomorphology of River studies landforms and processes of river and predict changes using models and field studies and laboratory. And new analytical tools and techniques, growing and expanding with the help of river engineering.

    This eventually leads to gain new capabilities in the field of river management, landscape restoration, risks and geomorphological studies ancient river.

     In most cases geomorphological processes that are created by river systems, are causing environmental hazards of natural and human environments. In this paper, we have investigated the risks of geomorphic processes, especially risks of flooding and river flooding and is calculated for the maximum flood discharge for subarea also. In this article, it has been found that most of the flood will be calculated based on the map of the geomorphology of the area and the discharge sub basin. The purpose of this study, is  assessing damages caused by the flood risks in the area. It is obvious that the results of this study will enable the pre-crisis phase of the crisis management system and can help to tourism and physical planning in the area.

     Arangeh basin is an area of 10,090 hectares and a maximum height of 3665, at least 1637 m and average height of 2689 m. Arangeh area have an  annual precipitation about 785 mm. Arangeh watershed is located within the northern city of Karaj, 15 km Karaj Branch, Karaj Dam east side of the river and inferiors (Amir Kabir).

     In this study, to analyze the flood in the basin,  a variety of sources are used including surveys of library data and documents, topographic base map scale of 1: 25,000 geological map of 1: 100000 taken from the ground geological, climatic data obtained from meteorological Organization, hydrological data obtained from regional water Alborz Landsat satellite image.Also field visits, the use of GPS and GIS software Arc GIS Version 10 was main parts of the survey.

      The calculated concentration time by Krpych method to estimate the flood of data base, then estimate is based on a regional analysis of runoff and peak discharge of flood.

     According to Hydrogeomorphic properties basin unit (sub-21) has the maximum flood discharge which is mostly covered by alluvium and located on the ground impermeable siltstone, waterways due to morphological features steep, mountainous dominant morphology, concentration time low basin, poverty and lack of vegetation (about 15 and 50 cubic meters per second in the 50 and 100-year return period). Other sub-basin with high flood discharge of sub No. 3, 5,7,9,12,14 and 16 are in Central, East, North, East and South of the basin villages.

      Many parts of the Arangeh basin has slopes of more than 60%, which is an important factor in the effect of runoff, reducing the time of concentration, poor soil and vegetation and is an important factor aggravating flood risk and erosion. The presence of vegetation in these areas can have an important effect in obstructing runoff, reduce the rate of runoff, reducing flooding and consequently the reduction of soil erosion. We can largely control the flood basin watershed management practices and proper management range in the above units.

Abdolhamid Nazari, Hossein Sadin, Ogholgol Khorrami,
Volume 2, Issue 3 (10-2015)

Vulnerability to natural hazards is one of the most important issues of villages in Iran. Iran is listed in the first ten accident-prone countries in the world. It annually imposes many damages on villages through natural disasters such as earthquakes, floods, etc. To tackle the problem, an important attempt was applied during the recent decades is the policy of resettlement. The mentioned policy has been followed in forms of movement, integration and aggregation of villages. As spatial foundation and location of settlements are mostly based on natural environmental factors, then before any attempt, or before any dislocation of the villages, ecological potential of the new place needs to be evaluated. However, as dislocations resulted from unpredicted events such as flood are associated with emergency conditions and would be done very quickly; there is not enough time for evaluation before the action. In result, conducting such plans, unlike their positive impacts on service-delivery, cannot be quite welcomed due to ignoring the ecological and environmental factors which need to be considered before any actions. Therefore, such plans can create some negative consequences and be considered as non-successful plans.

       One of the projects that have been implemented in connection with this issue in Golestan province is dislocating and integrating flooded villages on Kalaleh County during 2001 to 2006. Based on the mentioned plan, twelve villages which were located at higher section of Gorgan Roud and were aggregated and located at a new site named “PishKamar”. These villages were flood-damaged. Such a site was urgently constructed based on a top-down approach, urban-based patterns and without considering the needs and ideas of stakeholders. So, such a plan needs to be evaluated and assessed against some normal and standard criteria. As such mistakes can be repeated elsewhere, recognizing the pros and cons of such plans would be a good guide and experience for the next projects. The present paper aims to evaluate the ecological potential, physical design of the site as well as measuring the levels of PishKamar site resident’s satisfaction.

      This study is a kind of the ex-post facto evaluation and its methodology is descriptive – analytical. To do that, we have considered a four-steps ecological potential of the site using Makhdom’s model. We also have used the 1:50000 topography maps, 1:250000 geological maps, 1:100000 land-use maps and 1:100000 soil fertility and capacity. All layers were transferred into ArcGIS environment, for more analysis. Data collection was based on surveying, interview and questionnaire. The statistical sample include 1350 households heads resided at the studied site, of them 200 persons were randomly selected for data collection purposes(According to Cochran AWT IMAGE  in the formula, standard deviation was 36%, test statistical was 1.96 and α was equal to 0.05). The results of the first stage of our study indicated that based on 330 primary integrated cells and overlaying the maps, there would exist 13 homogenous ecological units. In addition, a significant proportion of the Makhdom indicators used to assess indices was confirmed by chi-square test. Accordingly, 67% of cells in class I with good ecological potential and 8/28% of the cells in the appropriate ecological class II and only 2.4 percent were in class 3 to be inappropriate ecologically. Thus, of total 13 units, 11 units with an area equivalent to 127 hectares were classified as class I and II, and environmental units with an area of three hectares in third class were inappropriate. Therefore, the studied site was evaluated as a good site in terms of ecological conditions.

     In addition, evaluation of residents' satisfaction mapping site in terms of compliance with the ecological conditions and the physical texture design which was based on systemic approach of sustainable development indicators was revealed that the maximum satisfaction of residents was related to house orientation and strength of buildings, road network design and architecture patterns.But the dimensions of environmental issues including soil resistance as a result of landslides, climate harmony with the architecture and the wind direction has not completely been considered. Totally, of 11 evaluated criteria, people were satisfied with 6 of them and disappointed with another 5 criteria. It was confirmed by T-test.

Homa Dorostkar Gol Khili, Yadollah Yousefi, Mehdi Ramezanzadeh Lasboyee, Hematollah Roradeh ,
Volume 2, Issue 4 (1-2016)

Natural disasters is one of the main challenges for developing countries, which not only cause death and emotional pain and suffering of survivors, but greatly affecting development. Reduction programs and prevention of disasters, including policies that countries to increase community capacity in disaster, are followed to improve the effects of these disasters. One of the risks that affect Iran, is flooding. Iran has a very high risk of flooding, which in most years, about 70% of annual credit plan is paied to reduce the effects of natural disasters. Floods in recent years has left a lot of damage in many parts of Iran. Because the flood event and can not be prevented, but we can assess the resiliency and vulnerability of risks to reduce the effects of flooding greatly. Planning in disaster management process can reduce the risks of accidents and improve the resilience. Thus, how and by what means we can increase the capacity of society to accept a certain level of risk is very important. In recent years, many researches, focused over concept of resilience and disaster risk reduction policy. This research study area is the Nekarud basin in Mazandaran province. Population growth and unethical uses of Nekarud and natural resources, humans and their facilities, infrastructure and natural resources of the basin are vulnerable. The aim of this study was to evaluate the resiliency and identify strengths and weaknesses in the flood affected villages Nekarud margin is based on random sampling of villages (8 villages) have been affected by floods in recent years, were selected. The research method is descriptive and analytical study of its nature. The aforementioned villages to assess the resilience, the four dimensions of economic, social, and institutional infrastructure based on the location of the axis (DROP) provided by Cutter and his colleagues in 2008, was used. According to the surveys and the results obtained, it can be stated that the model DROP, because of the location-based (geographic), and the integrity of the elections aspects and indicators to measure and assess the resilience of settlements is a good model. The dimensions considered to measure resilience include: economic, social, institutional and infrastructure. After determining the dimensions required components and indicators research, scientific references were identified by the study, questionnaires were prepared. Secondly, the need of the rural sample in the form of a questionnaire, collected and analyzed after coding in SPSS. The findings of the study showed that the settlements are in a different situation in terms of resilience in different dimensions. The economic resilience for the total sample is 8.96. The amount of this variable for Zarandin-e Olya, Zarandin-e Sofla, Abelo and Kuhsarkadeh rural settlements is higher than the average whole.

Farhad Azizpour, Mohammed Saeed Hamidi, Jamshid Chabok,
Volume 2, Issue 4 (1-2016)

Among the various environmental hazards, flood is the greatest and most important climate crisis which takes every year the lives of thousands people and impose severe damages on human society and environment. Today, it is clear that controlling all hazards, including floods is not possible. Suitable management can only minimize the damages. The literature on natural disasters management indicated that in the process of natural disaster management and their vulnerability mitigation, there are two dominant paradigm: technic-based approach and community-based approach.

Community-based approach welcome the local cooperation and participation in disaster management process and calls for strengthening local capacity through the participation of all individuals and groups at the local level. This approach is not only appropriate to provide solutions for disaster reduction, but build disaster preparedness. Because disaster preparedness planning requires special attention to local participation. In the geographic area of Bashar River Basin, due to the lack of suitable agricultural land and greater quantity of water for rice crop, villages have been built at rivers edge. So that, most of the houses and farms in the villages are located very close to the river. However, these locations are extremely vulnerable to flooding. This study reviews the status of local participation and its impact on reducing flood risks. Also, this research focuses on factors influencing local community trends and choices in the participation rate.

This study is applied research in terms of purpose and uses descriptive-analytical method. According to the nature of the study, data were collected through fieldwork and library research methods using observation, interview, questionnaire and evaluation card techniques. To understand different characteristics of community, Likert scale and one-sample t-test were used and measurement scale for data was ordinal. Also. The method of selective experimental approach based on profit was taken to evaluate the level of different trends in Community's financial participation for reducing detrimental effects of flood. To recognize the community awareness and perception toward flood risk and the probability of its occurrence in the future, the willingness level to participation and to explore the effective factors on villager’s decisions and to utilize modern management techniques the selective experimental approach based on evaluation card and logit model were employed.

The results of statistical analysis showed that in the study area, 86.5% of the community have experienced the damages caused by flooding and forecasted the likelihood of heightened chance of flooding in the future. Finding showed that although the people use traditional methods for managing flood, but they tend to employ modern methods such as dam building for reducing flood risk. This help them to increase the safety factor for their locations and farm lands. In spite of the fact that the villagers expressed the higher safety factor for new management methods such as (dam building, river broadening and preventing the destruction of forest and environment), but it seems that improper functioning, adverse consequences (environmental and socio-economic) of projects implementation (dam building) as well as the inability of villager's financial participation (high cost of this kind of methods), are barriers to using them for lowering the flood risks and damages.

The review of the possible role of some intervening variables to predict local communities' participation in decision-making processes showed that low-income, old age of the samples with high average (47.61) and education with lower average (3.16) are the most important factors influencing community decision making. The results of binominal logit model showed that the proposed variables is significant at the 5% level. If the offer price increase, the chance of residents' acceptance of participation will decrease and vice versa.

Said Balyani, Yones Khosravi, Alireza Abbasi Semnani,
Volume 3, Issue 4 (1-2017)

Hazard is potential source of harm or a situation to create a damage. So identification of zones exposed to hazards is necessary for planning or land use planning. But this situation becomes more critical when they appear at the population centers. So applying the principle of passive defense based on environmental capabilities is unarmed action that caused the reduction of human resources vulnerability, buildings, equipment, documents and arteries of the country against the crisis by natural factors such as drought, flood, earthquake, etc. Considering the possible occurrence of such risks in population centers, ready to deal with what is known unpleasant and undesirable consequences is necessary. On this basis and given the importance of population centers in Helle and Mond basins, in this study, the authors tried to analyze the Rain hazards of drought and flood.

The study area,Helle and Mond basins, with about 21,274, 47653 km2 area, respectively are located in the south of Iran. The Helle basin approximately is between 28° 20'N and 30° 10'N latitudes and between 50° E and 52° 20'E longitudes and Mond basin is between 27° 20' and 29° 55' latitudes and between 51° 15' and 30° 27'E longitudes.These basins are located in sides of a massive sources of moisture, Persian Gulf.

In this study, data from 23meteorological and synoptic stationsstations, during aperiod of20 years (1992-2011)in northern region of the Persian Gulf (Mond and helle basins)were used to calculate Standardized Precipitation Index (SPI). The data were collected by the Iranian Meteorological data website ( The SPI is primarily a tool for defining and monitoring drought events. This index may be computed with different time steps (e.g. 1 month, 3months, 24 months). The SPI is defined for each of the above time scales as the difference between monthly precipitation (xi) and the mean value ( ), divided by the standard deviation. To assess flood risk zones, the flood, annual evapotranspiration, cities and populations centers layers were collected in Helle and Mond basins position. The annual precipitations and the SPI maps were drawn by Geostatistics, Kriging. It also the flood and annual evapotranspiration layers were weighted by Euclidian distance method, separately. Finally, all layers are weighted by AHP and fuzzy-linear methods (descending and ascending linear function) into vulnerable layers. The final map of vulnerable areas with flood and drought high risk was drawn based on the algorithm of linear-Fuzzy in a raster format.

According to the results, eastern, north eastern and south eastern part of Mond basin had high annual precipitation. Based on this result, it said that these parts of study area were known the least dangerous areas of vulnerability. The results also showed that with passing of the western regions and going to the center of the study area the annual rainfall have been added over the years. Kazeron, Chenar Shahijan, Firouz Abad, Borm plains and some parts of Khane Zenyan and Dash Arzhan are cities located in this regions. Low latitude, Proximity to the warm waters of the Persian Gulf, low annual precipitation and high temperature causing evaporation and inappropriate environmental conditions in Boushehr province and some coastal cities such as Genaveh, Deilam, Boushehr, Baghan, Lar and Khonj. Accordingly, west, north west, south and south west regions in Helle basin were located in extreme vulnerability zone with a loss of annual rainfall for drinking and agricultural production and poor nutrition underground aquifers.

Javad Sadidi , Mr. Ehsan Babai , Hani Rezayan,
Volume 3, Issue 4 (1-2017)

Accessibility to precise spatial and real time data plays a valuable role in the velocity and quality of flood relief operation and subsequently, scales the human and financial losses down. Flood real time data collection and processing, for instance, precise location and situation of flood victims may be a big challenge in Iran regarding the hardware facilities (such as high resolution aerial imagery devices) owned by the correspond organizations. To overcome the mentioned inabilities as well as reducing the financial costs for real time monitoring purpose of a flood, the current research intended to use the capacity of the flood victims and other volunteers to collect and upload real time data to rescue themselves. By means of this, flood real time spatial and non-spatial data collection is applicable via public and per-person participation based on the needs of each victims. The current Open Source workflow has been so designed that by using a browser like Mozilla, Explorer, Chrome and etc., and without the need for installing any software, the victim transmits his/her exact geographic location (captured automatically by the designed web service) and other multimedia data such as video-photo. Also, the flood-affected person announces the type of the damage and consequently, demanded rescue operation to the managers as a text information. After data processing on the server, the information is represented as a real time rescue map for decision making. The rescue plan may be mapped based on the singular aid as well as plural plan in the cluster form specialized for a particular group of victims in each bounding box. To design the web service, a client architecture for victims, other volunteers and managers has been developed, for implementing the service, Open Source technologies, server-side and client-side programming languages, Geoserver and WFS (Web Feature Service) standard adopted by OGC for spatially-enabled representation of victims demands, have been exploited. The research result is a browser-based service in which the client service offers automatic zooming to the current location of the clients and sends the rescue request including personal identifications and the type of injury using PHP (stands for Hypertext Preprocessor) and SQL (Structured Query Language). In the other side, on the client side designed for managers, the requested rescue submitted by the victims and other volunteers are mapped and displayed real time by OpenLayers and WFS. The result introduces an efficient applicable method for gathering real time and high accuracy geographic-multimedia-text data collection and consequently, extremely reduces the relief operation costs. Finally, the proposed methodology causes better performance and spatially clustering of victims to decrease the aftermath of the flood in a region like Iran suffers from the lack of expensive hardware technologies for precise data collection and transmission.

Ma Mahmoud Ahmadi, Fj Farzane Jafari,
Volume 5, Issue 3 (12-2018)

Problem statement
The occurrence of terrible floods due to climate change has caused much damages in different parts of the world in recent decades, and the effect of these changes is more pronounced in dry areas. Floods are the most common environmental damage. On average, 60 floods occur annually in Iran, with an average annual flood loss of 141 people, meaning more than 2 deaths per year per flood event.
Research Methodology
The study area consists of six stations located in Hormozgan, Kerman, Yazd, Kohgiluyeh, and Fars provinces. In this study, two types of ground and high data are used as follows:
A) - Using daily rainfall data of the 44 years (1967-2014) statistical stations of the region obtained from the country's Meteorological Organization
B) Use of high-level data. Includes revised data for geopotential heights, sea level pressure, wind direction, meridian wind, omega, and humidity, from the National Center for Environmental Excellence at Colorado. To conduct synoptic analysis, the circular environmental method was used; after observing the daily rainfall during the statistical period of all rainfall over 50 mm in selected stations of Yazd, Jiroft, Shiraz, Bandar Abbas, and Yasuj, 118 heavy rainfall events were investigated. After identifying and separating days, 105 observation systems were identified and analyzed.
After the evaluation and control of the pressure maps of the sea of the systems of landing, 4 patterns were selected and identified.
Explain and interpret the results
The results showed that heavy precipitation occurred in the months of December, December, February, February, and November, respectively. Since November, with the retreat of high-performance dynamic systems to the southern latitudes and the influx of western winds from high latitudes on the area, conditions for the occurrence of heavy rainfall are provided. Most centers with 9 heavy rainwater systems of Sudan's lowland, 6 the moderate Sudanese-Mediterranean component of the Middle East has been on Iraq, and the four satellite systems have been the Mediterranean-Sudan-Mediterranean integration. The most frequent Sudanese pattern in 2-day continuity with 17 cases was Sudan-Mediterranean integration pattern with 7 cases in 3-day continuation, Sudanese-Mediterranean integration pattern in the Eastern Mediterranean, 4-day continuity with 7 events, and equidistant Mediterranean pattern The continuity of 2 to 4 days has been due to the increased load of Mediterranean systems ranging from 70 to 90 mm.
Dr Noredin Rostami, 2. Younes Kazemi,
Volume 6, Issue 1 (5-2019)

Developing urbanization and changing hydrological conditions of natural streams increases the flooding risk. This study tries to do flood hazard zoning in the Ilam city and determine the critical area of the urban regions against flooding by using AHP method and GIS environment. For this purpose, the parameters of the curve number, height, distance from the river, geology, land use, population, slope, soil, building density, worn texture buildings and accumulated flow as effective parameters in flooding hazard in Ilam city selected and of these parameters weighted by using Expert Choice software. The result of the Expert Choice software is transferred to the environment of GIS software and flood hazard map of study area prepared. Results of the study and flood hazard map show that areas with very low-risk, low risk, intermediate-risk, high-risk and very high-risk form the 0.8%, 8.5%, 49.6%, 32.54% and 8.56% of the of Ilam city area, respectively. Also, the central area of the city has the highest risk and the probability of occurrence of the flood due to the high density of population and residential areas in this area and its proximity to the seasonal rivers and old part of the city. Therefore, by examining the results of Expert Choice software, it is possible to identify the most effective factors in the occurrence of flood risk and prioritize them to address management solutions to eliminate or mitigate the effects of these factors.

Abdol Hamid Nazari, Mostafa Taleshi, Mohammad Mirzaali,
Volume 6, Issue 1 (5-2019)

Analysis and Measurement of Environmental Resilience of Villages in Gorganrud Watershed against Flood (Golestan province, Iran)
Environmental hazards are inevitable phenomena that always place serious risks on the development of human societies, especially rural development. In the recent years, however, significant changes have been made in crisis management approaches, and the prevailing view has shifted from the "reduction of vulnerability" approach to "resilience improvement". Resilience is a new concept often used in the face of unknowns and uncertainties. Therefore, along with this change of attitude, it is important to examine and analyze natural hazards in terms of resilience. According to global statistics, floods, as one of the most devastating natural disasters, have caused the greatest losses and casualties to human settlements, which is true both in our country and in Golestan province. Investigations show that only in the statistical period of 1991-2014, 106 rainfall cases have led to the occurrence of floods in this province. These floods have damaged natural resources, the environment and the prevalence of environmental pollution; In addition, other natural and human factors have contributed to the heightened risk of flood damage. But if it was planned for the restoration of villages, then the damage could be reduced. Therefore, this research was conducted with the general purpose of determining the relationships between environmental factors and factors of rural communities of Gorganrud watershed on their resilience and numerical values. Finally, the residual spatial analysis of rural limited settlements was studied. Accordingly, the research questions are as follows: a) What is the relationship between environmental factors and factors in the villages of Gorganrud watershed in Golestan province with the resilience of the communities living in them in the face of flood? b) What are the resiliency values ​​of these communities in the environmental dimension and which zones? This is an applied research with descriptive-analytical method. A library of researcher-made questionnaires was used for collecting data using library resources. The statistical population consisted of 106 villages with 22,942 households. First, 31 villages were selected by cluster sampling. Then, using Cochran formula, 318 families were selected as sample size and selected by simple random sampling method. Also, for assessing the validity of the questionnaire, using Delphi collective wisdom methods, it was determined by using historical studies and opinions of experts in rural areas. The reliability of the questionnaires was also determined by using the Cronbach's alpha coefficient in the pre-test method. The value for the household questionnaire was ra1=0.841 and ra2=0.862, respectively. All steps for statistical analyzes have been performed by Excel and SPSS software. Additionally, the development of mapping, risk-taking, risk and resilience was also done with the help of ArcGIS software and the weight of each criterion was determined by the Super Decision tool; Then, using the weighted and linear overlapping methods, each of the sub-criteria of the main indexes was multiplied in its weights. The study area is divided into two distinct sections in terms of geological and geomorphological structure. The southern and eastern parts of it are the ripples of the eastern Alborz mountains, which are taller in the southern part and extend along the east-west direction. Also, the northern part of the studied basin is the Gorgan plain, in which the main branch of Gorganrud flows from east to west and all branches of the south and east are drained. Following the general slope of the main branch and its long-standing walls in the mid-east, it is usually not flooded; but as far as the west is concerned, its slope is very low and one of the flood plains is considered as the basin. The results of the research show that there is a significant relationship between the environmental factors of the studied basin villages and the resilience of the communities inhabited by them in the face of floods. Also, the average environmental resilience of the whole region was lower than the average (2.76 average), rural households in the sub-basins of TilAbad and ChehelChai with an average of 3.24 and 3 had relatively good environmental resilience, But most of the rural households in the sub-basins of Ghurechai and Lower of Gorganrud, Mohammad Abad-Zaringol, Madarsoo and Sarisoo, with an average of 2.89 to 1.85, had a poor environmental resilience. In addition, According to the flood risk resilience map, it can be said that of the total 31 sample villages studied, about 29 percent of sample villages have "medium upward" resilience in facing flood risks; conversely, most of these villages (71%) also have relatively low degree of resilience. Also, comparing the findings of this study with the results of most other researches, such as the studies of Olshansky and Kartes (1998) regarding the necessity of considering the environmental factors of settlements, observing the necessary environmental standards and the necessity of using proper land use management tools to reduce risk hazards and improve resilience, Center of Emergency Management Australia (2001) on the need to consider the state of the infrastructure, including the level of communications and accesses, biological conditions, including the status of pollution, as well as geographical characteristics, such as distances and proximity, climate, topography, as well as the general results of studies by Rafiean et al. (2012) in special selection of the most suitable model of resilience based on the combination of carter and socioeconomic model due to the simultaneous attention of this model to its geographical features and its comprehensiveness, as well as attention to the local communities' participation, Rezaei (2010), Shokri Firoozjah (2017) and Anabestani et al. (2017) Regarding the low value of the calculated population, the resiliency number of the society is consistent and consistent with the lack of attention to infrastructure issues, locations, etc., which is below the baseline (3). As a result, all of the aforementioned components of the resilience of inhabitants of sample societies have been affected by its environmental dimension, which is often due to insufficient attention and insufficient handling of them, which reduces resilience of rural residents to flood risks.
Keywords: Environmental hazards, Flood, Vulnerability, Resilience, Spatial analysis, Golestan Gorganrud basin.
Masoumeh Gholami, Ezzatollah Ganavati, Ali Ahmadabadi,
Volume 6, Issue 4 (2-2020)

Simulation of floodplain zones in Tehran's metropolitan watershed (case study: Kaan basin)
Ezaatollah Ghanavati, Associate prof. Geographical science faculty, Kharzmi University
Ali Ahmmadabadi. Assistance prof. Geographical science faculty, Kharzmi University
Negar Gholami, MA in Geomorphology, Geographical science faculty, Kharzmi University
Extended abstract
Floodplains and adjacent rivers are always at risk from flood events due to their specific circumstances. Flood prone area identification in the watersheds is one of the basic solutions for destructive flood control and mitigation. Flood mapping is one of the best methods for flood prone area planning and identifying. Considering the importance of flood hazard, it is important to understand the role of uncertainty and incorporate that information in flood hazard maps. The hydrodynamic modeling approach is suitable for accounting various uncertainties, and thus lends itself to creating probabilistic floodplain maps. For  this purpose,  flow  boundary  conditions,  peak  instantaneous  discharge with  different  return  periods,  cross  sections and their distance and roughness coefficients for each cross section were entered to HEC-RAS hydraulic model in Kaan watershed  located  in  the Tehran  province,  Iran,  and  this model was  then  run  and  flood water surface profile at different return periods were estimated. In the Kaan Basin, most residential and agricultural lands are located in a very small distance from the river bed. The rapid growth of construction, human activities and land use change in the downstream of the basin have caused a change in the hydrological cycle and runoff production. Floodplain mapping using hydrodynamic models is difficult in data scarce regions. Additionally, using hydrodynamic models to map floodplain over large stream network can be computationally challenging. Some of these limitations of floodplain mapping using hydrodynamic modeling can be overcome by developing computationally efficient statistical methods to identify floodplains in large and ungauged watersheds using publicly.
The aim of this study is to determine flood areas within 20 kilometers of the Kaan River by using the HEC-RAS model and Arc GIS software to identify flood lands in different return periods.
The Kaan basin is located in the central Alborz Mountains. This basin is limited to south, north, east and the west respectively to Tehran, Jajrood Basin, Darakeh Basin and Karaj River Basin. The most important River in the area is the Kaan River and originated from high mountains.
Most commonly, the hydrodynamic modeling approach is used to create flood hazard maps corresponding to a rare high flood magnitude of 100-year return period or higher. Although this approach can provide very accurate floodplain maps, it is computationally demanding. As a result, the modeling approach to flood hazard mapping works well for individual streams, but its efficiency drops significantly when used to map floodplains over a large stream network. In this research, floodplain areas in the Kaan basin in return periods of 2 to 20 years are determined using the HEC-RAS model and the HEC-geoRAS extension. For this purpose, digital maps 1: 25000, DEM (10m), discharge values of Sulaghan Station, morphological characteristics of the river bed and cross sections have been used. Digital Elevation Models (DEMs) play a critical role in flood inundation mapping by providing floodplain topography as input to hydrodynamic models, and then enabling the mapping of the floodplain by using the resulting water surface elevations. Finally, the data is entered into the HEC-RAS software and analyzed. After determining the flood ranges in the various return periods at each cross-section, enter the results to the Arc GIS software and the flood zoning maps were obtained.
In this research roughness coefficients (Maning,s coefficients) for each cross section were obtain be the
n= (nb+n1+n2+n3+n4) m                                                             (Eq.1)
Geological map and field observations have shown that the main difference between the widths of the valley in the study area is related to the type of rock. The results of the hydrodynamic model show that in the river upstream, the increase in discharge had led to the water level increase and expansion in the floodplain surfaces. But in the middle and low slopes in the downstream of the river, due to the reduced discharge, the river has a larger lateral extension and the flood areas are larger than the upstream of the river. Also, for a longer period of return, the discharge rate and the water level increase and the flood plain was more extensive. The results show that in the downstream of the basin due to instability the bed, existence of wide and eroded chanels, high ability in sedimentation, erosion of the channel bed, and low impact of vegetation, this section They can be restored and regenerated and constantly changing. Due to the location the Tehran-North high way from the Kaan basin, had the construction of roads and structures, the flood plain areas of the river should be fully observed or retrofitted.
Key words: Environmental hazards, Flood, Flood areas, Kaan River, HEC-RAS
- Ali Najafinejad, - Hesam Heravi, - Abdolreza Bahremand, - Hossein Zeinivand,
Volume 7, Issue 1 (5-2020)

Simulation of Climate Change on river hydrograph Using WetSpa Model, Case Study: Taleghan Watershed Alborz Province
Introduction: One of the major issues in hydrology engineering is the prediction of the flood routing or rising and falling limb river hydrograph, in which the importance of the climate is very evident due to the high volatility and is therefore one of the most important factors to be carefully studied. Climate has been changing ever since. Changes refer to the variability of the long term trends in the state of the climate or average changes in temperature and rainfall that persist for extended period. Important regional water resource vulnerabilities to changes in both temperature and precipitation patterns are documented. Recent analysis from the inter-governmental panel for climate change indicates that the earth as a whole has warmed by about 0.6°C ± 0.2°C over the past century with locally and seasonally varying amounts. The changes in pattern and intensity of precipitation, melting of ice, increasing atmospheric water vapor and others has a significant natural variability on inter annual to decadal that masking the long term trend. Increased evaporation, combined with changes in precipitation characteristics, has the potential to affect runoff, frequency and intensity of floods and droughts, soil moisture, and water supply. Warming of climate system and change in its state variables are highly related to the atmosphere-land-ocean system. The climate modeling science integrates these complex systems with the Global Circulation Models (GCMs) to simulate future climate changes and forecast it for decades and centuries. Climate change scenarios developed from General Circulation Models (GCMs) are the initial source of information for estimating plausible future climate changes. In regional and local climate studies usually coarse-resolution outputs of global climate models are downscaled to produce necessary fine scale data. Statistical downscaling methods are widely used for prediction of climatic variables e.g. precipitation because of importance of these factors in environmental planning and management. The main purpose of the research is to investigate the past and future potential of climate change and its impacts on the hydrologic response of the basin.
Data and method of work: In this study, the Taleghan Watershed of the Sefidrood basin was selected as a case study due to its socio-economic significance. Elevation range from 1774 to 4362 m and a mean slope is 40.5%. The mean annual precipitation in the catchment is 591 mm. At first using weather data and meteorological data with a daily step in a 21-year period and three base maps information, including precipitation data from eight stations, temperature and evaporation data from two stations were used as input to the model. Three base maps information i.e. DEM, land use and soil types are prepared in GIS and flow hydrograph was simulated using WetSpa model in Taleghan watershed. For runoff verification, the only river station at the outlet of the catchment was used. Then, for the reference period, daily modeled runoff was compared with observed values at available in the region. In the following Future climate change (precipitation, temperature and evaporation) based on CanESM2 model from the fifth report the Intergovernmental Panel on Climate Change (IPCC) on emission scenario RCP8.5 was used for simulating the flow hydrograph during the next period (2016-2029) and its comparison with the base period (1995-2015). In this study, the performance of Statistical Downscaling Model (SDSM) was investigated to predict precipitation, temperature and evaporation. Modeled precipitation was compared with observations of 8 available stations in the region, Observed temperatures from two stations were also used for modeled temperature and evaporation verification.  
Interpretation of results: Regarding to the outputs and spatially distributed hydrological factors in daily time step the model is capable to analyze topography, soil type, and land use effects on the hydrological behavior of the watershed. Model evaluation results showed that The Nash-Sutcliffe criteria, 76% and accuracy of the simulation show the high performance of the model in this watershed. The results of the research showed that the SDSM model is well advanced to simulate Climate variables. Statistical measures of model performance such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean squared error (MSE) and the analysis of output results from SDSM model shown that this model is able to predict precipitation, temperature and evaporation indexes. According to the results of the CanESM2 model, in the considered scenario (RCP8.5), temperature will increase from 0.5 to 0.6 and Average precipitation in the future 8% will increase. Finally the results showed that in the considered scenario, the average runoff watershed will increase Up to 45% by the climate in the future. Also, the average of runoff will increase in all months of the year (except in October) compared to the base period. This increase is more pronounced for April.            
Keywords: Emission Scenario, Flood, Hydrologic Model, River Hydrograph, Simulation

* Corresponding author:

Kamal Omidvar, Mehdi Mahmodabadi, Parisa Shams, Mahbobeh Amiri Esfandegheh,
Volume 7, Issue 3 (11-2020)

Due to the fact that the mechanism of anticyclone Movements is the desire to descend and suppress the air, so the effect of these movements and their location in the occurrence of flood falls is significant. For this purpose, in this paper, flood precipitation in the last two decades of Kerman province was studied and two of the most severe ones were selected. Due to the emphasis of this paper on the province of Kerman, the heavy rainfall was calculated for each station in the province using the Gumble Type 1 Distribution Statistical Index. Then, the thermodynamic properties of the precipitation were analyzed using radial data and Kerman station's sketch diagram. For analysis of these floods, daily rainfall data of the synoptic station 10 of the province and sea surface pressure maps and850,500,300 hectopascal levels were used. Then, the arrangement of the simulated pattern and its trend in the air maps, were studied during a selective period daily3. The results of the study indicate that the main cause of flood precipitation in the study area is to strengthen the eastern Mediterranean landfall in the middle troposphere, so when moved downward to the bottom of the polar system, it is transmitted to lower latitudes As a result, Western systems, with their movements on the southern warm waters, have a high moisture content and cause heavy rainfall in the region. Also noteworthy in the occurrence of precipitation is the presence of intense swinging movements on the southern waters, especially the Oman Sea, which causes more humidity to be injected into the interior areas of the country and provides the conditions necessary for the occurrence of such rainfall.

Dr Fariba Esfandiary Darabad, Sedigheh Layeghi, Dr Raoof Mostafazadeh, Khadijeh Haji,
Volume 8, Issue 2 (9-2021)

The zoning of flood risk potential in the Ghotorchay watershed with ANP and WLC multi-criteria decision making methods
Extended Abstract
Flood is one of the most complex and natural destructive phenomena that have many damage every year. The northwestern region of the country, due to its semi-arid and mountainous climate and thus of high rainfall variability, is one of the areas exposed to destructive floods. Flood risk zoning is an essential tool for flood risk management. Therefore, the purpose of this research was to determine the flood risk zones in the Ghotorchay watershed by using the analytical network process (ANP).
In this research,, with geographic information system (GIS), satellite images, synoptic station data, analytical network process and the combination of layers, the flood potential of has been modeled in the Ghotorchay watershed. The final map of flood risk based on a combination of factors and climatic and physical elements including land use, geology, vegetation, topography, slope and land capability was prepared. The weight of each criterion was determined by ANP method and used by weighted linear composition (WLC) method for spatial modeling and incorporation of layers.
The results of flood risk zoning showed that the Qal layers from geology, slopes of less than 3 precent, land capacity of units 5, 6 and 7, and as well as poor vegetation cover were identified as flood zones. The results obtained from the analytical network process model indicate the fact that part of the watershed is affected by the risk of flooding with the very high potential, which is mainly located in the downstream of watershed. For this reason, the streams of rank 3 and 4 are considered as flood zones and flood guide areas to the downstream areas. Also, river networks of 5 and higher ranks are in the range of floodplains or river coastal and usually have surface and extensive floods.
The flood prone areas and providing effective solutions for flood management is one of the main steps in reducing flood damage. Therefore more precise management and control of basins with multiple dams, embedding flood alert systems in flood plain areas and performing basic measures is one of the most urgent measures to prevent, improve and control this natural disaster.
Key words: Analytical network process, Biological protection, Floodplain, Flood risk assessment, Ghotorchay
Changiz Seravani, Gholamhossein Abdollahzadeh, Mohammad Sharif Sharifzadeh, Khalil Ghorbani,
Volume 8, Issue 2 (9-2021)

Zoning map Vulnerability of Flood Spreading areas
(Case study: Musian Flood spreading station in Ilam province)
One of the flood plain hazards is a change in the pattern of surface flows due to natural factors or human activities. Changes in the stream pattern are the changes that occur due to the surface stream patterns in terms of the shape of the drains, drainage form and quantitative morphological indices of the basin. These changes ,by formation of flood, submersibility, erosion, longitudinal and transverse displacements of rivers and streams, environmental degradation, etc., have a great deal of risk and harm to residents of the land adjacent to the watersheds, including the demolition of residential buildings,  valuable agriculture lands, facilities, river structures, buildings and relation routes, etc. There are several watersheds in the Musian Plain Basin that regularly change the direction of surface streams and, while displacing large volumes of sediments of erosion-sensitive structures, degrades crops, rural dwellings, connection paths, facilities, Irrigation canals obstruction, water supply and a lot of financial and physical damage to the residents of the region. Therefore, in order to solve these problems, in 1997, the Dehloran flood spreading plan was carried out at a level of 5000 hectares from the Basin of Musian Plain. Although some of the changes in the dynamics of the region, such as stream pattern, flood control, supllying groundwater aquifers, etc., have been caused by the implementation of this plan, but the problem of the concentration of watersheds behind the embankments composed of sensitive formations ,and the release of these areas will have many financial and even physical losses. Therefore, with the implementation of this research, it is attempted to identify the domain and risks that threaten the lowlands and to identify the appropriate measures to prevent them from happening with the zoning and inspection of the vulnerable areas of the Musain Plain.
This study was conducted in five stages to prepare a vulnerability map of the flood spreading area of ​​Mosian plain. First, the implementation phases of the flood distribution plan were separated. In the second stage, information layers of effective factors in changing the flow pattern and concentration of surface currents behind the flood spreading structures were prepared. These layers included elevation, slope, and direction classes, which were prepared based on the Digital Elevation Model (DEM) extracted from the 1: 50,000 topographic maps of the Armed Forces Geographical Organization, as well as the layers of geological formations and land use changes. The lands were prepared based on the maps of the Geological Survey of Iran and the processing of Landsat satellite images of eight OLI sensors in 2013, respectively, by the method of determining educational samples. In the third stage, each class of effective factors in changing the flow pattern (mentioned layers) was given a score based on the range of zero to 10. The basis of the scores of the classes of each factor was according to the number of classes and the average of the total classes of that factor. The fourth stage in the GIS environment was created by combining the weight layers created, the vulnerability layer of the study area (quantitative map of vulnerability areas) of the basin. Then, by analyzing the vulnerability layer (filtering), the pixels and small units were removed or merged into larger units. The last (fifth) step was to classify the quantitative layer and then extract the qualitative map of the vulnerability zoning according to the range of scores based on the five very low, low, medium, severe and very severe classes. A summary of the research steps is shown in the form of a diagram.
Results and Discussion
The results showed that the most important threat and danger factor is the concentration of waterways behind erosion-sensitive embankments. Also, the study area in terms of vulnerability includes three classes with medium risk, high and very high and covers 16, 62 and 22% of the area, respectively. Flood and upland Spreading areas, risk areas and lowland lands are the most vulnerable parts of the basin in terms of floods and sedimentary deposits.
Based on the results obtained by combining the information layersof the factors influencing the stream pattern change, the zoning map of vulnerable areas of the region was created in 5 classes. Except for very few and very small classes that are not present in the region, there are other cases at the basin level:
Medium class:Includes about 16% of the basin. The existing watersheds in this part are ranked 1th class, and some of them are entering the rivers of Dojraj and Chiqab in the eastern and western parts. The formations of this part are often Bakhtyari and limitedly Aghajari. The floors have a height of 100 to 400 meters and the gradient is from 0-2 percent to 20 percent.
Medium class: About 62% of the basin level. The watersheds that flow in this section are in 1to 5 class. The formations of this part are often alluvial and bakhtiari of lahbori sections. It has a height of less than 100 meters to 300 meters and a gradient of 2-0 percent to 20 percent.
very intense: it covers about 22% of the basin's surface. The existing watersheds are of of class 2 and 3. The formations of this part are often alluvial and bakhtiari of lahbori sections. They have height classes of 100 to 300 meters and the gradient is 5-2 percent and is limited to 5 to 10 percent in the slopes.
Keywords: Vulnerability, Aquifer, zoning, Satellite imagery, Environmental hazards, Musian
Rasool Nooriara, Seysd Jamalaldin Daryabari, Bohlol Alijani, Reza Borna,
Volume 9, Issue 3 (12-2022)

Synoptic analysis of the torrential on Day 21, 1398 (Case study: Zahedan and Qeshm)

Rainfall is the most important phenomenon or feature of the environment and so far many studies have been done about its causes. In any place, rainfall occurs when humid air and climbing cause are provided. Both of these conditions are provided by the circulation pattern. The study area is affected by some severe and sudden weather phenomena such as low annual rainfall, short rainfall period and rainfall in the form of heavy showers. Thus, it is possible that the limited and pervasive precipitation of the area is due to a different synoptic pattern. Because the relationship between circulation patterns and precipitation is significant, achieving acceptable results in the field of the relationship between these patterns with the limit and total rainfall of the studying area requires the analysis of synoptic maps. Therefore, the most important purpose of the present study is the synoptic analysis of heavy cloud rainfall of the studying area on Day 1398.
Two sets of data were required for this study: A: Daily precipitation data of study stations on the day of heavy cloud rainfall on 21 Day (January 11, 2020) along with daily precipitation data in the days before the flood (96 hours before the flood) which was received from the main Meteorological Organization of the country.
B: atmosphere data levels including: sea level (SLP), 850 and 500 hPa levels, vertical atmospheric velocity and wind flow levels of 1000, 850 and 500 hPa, specific humidity of 1000 and 700 hPa levels and 250 hPa surface flow winds for study days from the US National Center for Environmental Forecasting / National Atmospheric Research Center (NCEP/NCAR) were provided in the range of 0 to 60 degrees at north latitude and 0 to 80 degrees at east longitude, and finally, maps were drawn and prepared in Gardes software to provide the ability to interpret.
The synoptic analysis of sea level showed that: on the day of the heavy cloud, a low-height closed center with a central core of 1,010 hPa in the northeast-southwest direction covered the entire study area. Then, the high-height with a central core equal to 1030 hPa is located at northwest of Iran, northwest of Europe and on Tibet. According to the location of high-pressure dams around Iran and the location of low-pressure centers on the study area and water resources in the south, a strong pressure has been created. Subsequently, with height increasing, low-height with central core equal to 1440 geopotential meters is located at northeast-southwest direction of entire study area. And the low height of northern Russia extends to the Persian Gulf and provides the conditions for severe ascent and instability in a very large area. The rear dams of Nave transferred the cold air of the high latitudes into the bottom of the Nave located on the study area and have intensified the instability. Also, the geopotential height of 500 hPa level of deep descent is located at the northeast-southwest direction of Iran and core of the Nave covers the Persian Gulf completely, that is the study area in the best condition and in front of the Nave, which is diverged by hot and humid weather. This deepening of the rotation and the penetration of the Nave to the lower latitudes caused the cold air to fall. 
The analysis of the 250-hectopascal-level flow-wind shows that the flow-wind with a core speed of 65 meters per second has covered the entire study area by crossing above the Persian Gulf, and compared to the previous days, the flow-wind is completely meridional.
Synoptic analysis of the vertical velocity at the level of 1000 hPa shows that the maximum negative omega -0.2 to -0.15 Pascal per second in the northwest-southeast direction has covered the study area. The presence of negative omega index values ​​indicates the role of convection in intensifying precipitation in mentioned area and the dynamic ascent of air. The study map shows that compared to other countries in the study map, the maximum of negative omega is located on Iran, which is reduced along to the west of Iran. With increasing altitude, the maximum negative omega has increased to -0.3 Pascal per second and the core of the maximum negative omega is completely located on the study stations (Zahedan and Qeshm). Then, at the level of 500 hPa, the maximum negative omega has reached -0.6 Pascal per second and its value has doubled compared to the level of 850 hPa, which covers the northeast-southwest direction from Zahedan to the Strait of Hormuz. Cold air fall has increased with increasing of omega levels in the middle levels of the atmosphere.In other words, in the middle levels of the atmosphere, with increasing temperature difference between the earth's surface and the level of 500 hPa, the amount of precipitation has increased.
Synoptic analysis of specific moisture level of 1000 hPa shows that the most moisture deposition was from south water sources to the study area, and the amount of moisture equal to 14 grams per kilogram has entered the study area from the Oman Sea and then its amount has been reduced crossing to other regions of Iran. Furthermore, at the level of 700 hPa, the maximum advection of hot and humid air is in front of the upper atmosphere of Nave from the Red Sea over the study area. There is a moisture strip from the southeast to the whole area under analysis. These suitable humidity conditions with the depth of the western wave have been able to cause heavy cloud rainfall. The maximum amount of moisture in the study area is equal to 7 grams per kilogram, which is a large amount compared to heavy rainfalls.

Keywords: heavy rainfall, flood, synoptic, Zahedan, Qeshm

Kaveh Ghahraman, Mohammadali Zanganeh Asadi,
Volume 9, Issue 3 (12-2022)

Determination of flood-prone areas using Sentinel-1 Radar images
(Case study: Flood on March 2019, Kashkan River, Lorestan Province)

Although natural hazards occur in all parts of the world, their incidence is higher in Asia than in any other part of the world. Natural phenomena are considered as natural hazards when they cause damage or financial losses to human beings. Iran is also one of the high-risk countries in terms of floods. Until 2002, about 467 floods have been recorded by the country's hydrometric stations. In addition to natural factors such as rainfall, researchers consider human impacts such as destruction of vegetation cover, soil destruction, inefficient management, destruction of pastures and forests, and encroachment on the river are the most important factors for the occurrence and damage of floods in the country. One of the most efficient and emerging tools in flood surveys is the use of radar images. SAR images and flood maps produced by radar images provide researchers valuable and reliable information. Moreover, maps obtained from SAR images help officials to manage the crisis and take preventive measures against floods. The Sentinel-1 satellite is part of the Copernicus program, launched by the European Space Agency, and is widely used in mapping flood-prone areas. The contribution of Sentinel-1 to the application of flood mapping arises from the sensitivity of the backscatter signal to open water. This study aims to determine high-risk and flood-prone areas along the Kashkan River using Sentinel-1 radar images.
Data and Methods
 The study area includes a part of the Kashkan river from Mamolan city to the connection point of this river to Seymareh river, after Pol-dokhtar city. The average annual discharge of the Kashkan river is 33.2 cubic meters per second based on the data of the Pole-Kashkan Station. The length of the river in the study area is about 100 km. To investigate flood-prone areas, we applied pre-processing and image-processing steps to each flood event including SAR images belonging to March 25th, 2019, March 31st 2019, and April 2nd, 2019. SAR images were acquired from ESA Copernicus Open Access Hub. climatic data was downloaded from To create meander cross-sections, the Digital Elevation Model of the studied area was utilized. Cross-sections were created using QGIS software. Pre-processing steps include: applying orbit data, removing SAR thermal noise, calibration of SAR images, de-speckling and topographic correction. In image processing, we applied the Otsu thresholding method to distinguish water pixels from land pixels. In thresholding methods, the histogram of each image is divided into two parts according to the amount of gray composition. The higher the amount of gray (i.e., the pixel tends to be darker), the more pixels represent water, and conversely, the lighter-toned pixels (i.e., pixels that tend to whiten) represent land. The Otsu thresholding method is a commonly used method for water detection in SAR images. It uses an image histogram to determine the correct threshold. The most important feature of the Otsu method is that it is capable of determining the threshold automatically. The Otsu algorithm was applied to all images using MATLAB.
According to the flood maps, on March 25th, 6.51 percent of the study area was flooded, while on March 31th, only 3.96 percent was flooded. This is mainly due to less precipitation on the 31st. On March 25th the average daily precipitation was 47.46 mm while on 31st of March the average daily precipitation was 31.64 mm. On April 2nd, however, there was no rainfall, on the day before more than 63 mm of precipitation has occurred. This massive amount of precipitation on the previous day has led to more than 25km2 being flooded in the studied area.
Results showed that meanders and their surrounding areas are the most dangerous sections in terms of flooding. The meander's dynamic and the river's hydrologic processes are essential factors affecting flooding in those sections. Generally, various factors affect flooding and the damage caused by it. This study aimed to determine flooded and flood-prone areas (according to flooded areas in previous events) using new methods in a short time and with high accuracy to use this tool for more accurate zoning and efficient planning in the future. The results showed that radar images are practical, robust, and reliable tools for determining flooded areas, especially for rapid and near-real-time studies of flood events.
Keywords: Floods, Radar images, Sentinel-1Satelitte, Kashkan river

Alireza Khosravi, Mehdi Azhdary Moghaddam, Seyed Arman Hashemi Monfared, Hamid Nazaripour,
Volume 9, Issue 4 (3-2023)

Comparison of Results of GIS-Based Multicriteria Decision Analysis and Remote Sensing Indicators in Kahir River Basin, Iran.

Alireza Khosravi1, Mehdi Azhdary Moghaddam2*, Seyed Arman Hashemi Monfared3,
 Hamid Nazaripour4

1. M.Sc. Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
2. Professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
3. Associate professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
4.Assistant professor, Department of Physical Geography, University of Sistan and Baluchestan, Zahedan, Iran.

Flood risk maps and Flood zoning techniques are useful tools to manage this hazard in the catchment and mitigation of flood impacts. In South Baluchestan and Kahir Basin, due to the existence of winter and summer precipitation regimes, the occurrence of flash floods is inevitable due to the establishment of rural communities and settlements in flood-prone areas, the flooding has caused many damages to the region's vulnerable population. In order to zone flood risk and prepare flood risk maps, climatic data, hydrological, land cover, and topography of the basin were prepared from reliable sources and according to scientific studies, 12 variables affecting flood risk in the form of five main components (Hydrology, vegetation, land cover, climate, and topography) were prepared. According to the regional conditions of the basin, using the opinions of experts based on scientific methods, the weight of each variable and component was determined by Analytical Hierarchy Process(AHP). Using two methods of fuzzy overlay, Weighted Overlay, and the Geographical Information System facilities, a map of variables and components was prepared after reclassification and fuzzy membership function with appropriate operators. The results showed that the fuzzy overlay method concerning its dominant logic has a better distinction of flood-prone areas and can help determine flood hazard micro-zonation in the drainage basins like the Kahir basin. By comparing the results from the real data of the January 2020 flood obtained from satellite images. Due to poor infrastructure and high economic, the risk of flooding may be more harmful and widespread in the future.

Keywords: Flood, Fuzzy logic, Weighted overlay, Southern Baluchestan, GIS.

Page 1 from 2    

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb