Search published articles


Showing 2 results for Land Cover Changes

عزیزی Azizi, افراخته Afrakhteh, عزیزپور Azizpour,
Volume 5, Issue 4 (3-2019)
Abstract

Land cover changes as a basic factor in environmental change act and has become a global threat. In this research, changes in land cover in rural tourism areas by neural networks, Markov chains in software ArcGIS, ENVI, Terrset using the TM and OLI satellite imagery, Landsat Satellite was surveyed for a period of 30 years for three periods of 1985, 2000, and 2015. The findings of the first stage show that land cover changes at the period 1985-2015, were classified in five class residential spaces, Commercial, Green, Empty and mountainous spaces and communication networks. In this study, the area of mountainous and empty spaces (13.25%) has decreased and in contrast, has decreased the amount of green spaces (6.221%), Residential (5.258%), commercial (1.264%) and communication networks (0.529%). Changing land cover as one of the most important environmental risks has been directly influenced by the Commodification phenomenon. Also, the findings of the prediction using the Markov-CA chain showed that with the continuation of the current and excessive loading on the ground, on the horizon of 2030, green cover (Agriculture, gardens and grassland, garden and residential)  and  wild land  and mountain cover have been reduced and to cover residential and commercial villas will be added. Based on research findings concluded that land cover changes in rural tourism areas in order to achieve more profits has become incompatible applications. This change in land cover, in addition to the economic, social impacts, has led to the formation of environmental hazards in the Bharang area. Developing tourism in the study area by removing agricultural land from the production cycle has led to an increase in urban activities and the formation of new activities (service, Residential Garden, residential villa) instead of traditional activities(agriculture and livestock) that are economical. And by loading too much ecological power tolerable land, while posing environmental hazards, causing incompatible activities next to each other, they do not match. Therefore, tourism, which gradually formed over the years and now it has become a part of rural texture, Spatial Conflict and heterogeneity two strains has created for them. Spatial Conflict created, due to changes in land cover and acceptance of incompatible activities that derive from human-nature relationships. This means that the rapid and unpredictable trend of tourism development, the rural landscape has encountered a problem and with changes in land cover, has led to inconsistencies between different activities and eventually has shaped the Spatial Conflict.
 
Hamed Heidari, Darush Yarahmadi, Hamid Mirhashemi,
Volume 9, Issue 2 (9-2022)
Abstract

Revealing surface reflection forcings of land cover in Lorestan province using MODIS sensor products

Introduction
Human interventions in natural areas as a change in land use have led to a domino effect of anomalies and then environmental hazards. These extensive and cumulative changes in land cover and land use have manifested themselves in the form of anomalies such as the formation of severe runoff, soil erosion, the spread of desertification, and salinization of the soil. The main purpose of this study is to reveal the temperature inductions of the land cover structure of Lorestan province and to analyze the effect of land use changes on the temperature structure of the province. In this regard, the data of land cover classes of MCD12Q2 composite product and ground temperature of MOD11A2 product of MODIS sensor were used. Also, in order to detect the temperature inductions of each land cover during the hot and cold seasons, cross-analysis matrix (CTM) technique was used. The results showed that in general in Lorestan province 5 cover classes including: forest lands, pastures, agricultural lands, constructed lands and barren lands could be detected. The results of cross-matrix analysis showed that in hot and cold seasons, forest cover (IGBP code 5) with a temperature of 48 ° C and urban and residential land cover (IGBP code 13) with a temperature of 16 ° C as the hottest land use, respectively. They count. In addition, it was observed that the thermal inductions of land cover in the warm season are minimized and there is no significant difference between the temperature structure of land cover classes; But in the cold season, the thermal impulses of land cover are more pronounced. The results of analysis of variance test showed that in the cold period of the year, unlike the warm period of the year, different land cover classes; Significantly (Sig = 0.026) has created different thermal impressions in the province. Scheffe's post hoc analysis indicated that this was the difference between rangeland cover classes and billet up cover.   
                                                                                                                  
materials and Method                                                                                                                
 In this study, to reveal the relationship between land cover levels and different land use classes, cross-information matrix analysis was used in the ARC-GIS software platform. Since one of the main objectives of the study was to investigate and reveal the albedo inductions of land cover classes in Lorestan province, so the relationship between these two factors was investigated by cross-matrix analysis technique. In this regard, two sets of data were used. The first set of data was related to land cover classes of MODIS sensor composite product with a spatial resolution of 1 km and hierarchical data format (MCD      
   12(Q2 (MCD product) which was obtained from the database of this sensor

Conclusion
 Land cover classes or perhaps it can be said that land use is one of the most important shapers and determinants of climate near the earth. In this study, it was observed that in general, 5 major land cover classes in the province are separable, among which rangeland and forest lands account for 85% of the total land cover of the province. On the other hand, it was seen in this study that the average spatial albedo of the province in spring, autumn and winter is about 0.2, which is very close to the global value of this component, but in winter the average value of this index in the province reaches 0.3, which can be increased Shows attention. The five land cover classes in the province had their own unique albido induction in winter, which was separable and distinct from each other, but in spring, summer and autumn, no significant distinction of albido induction of these land cover was revealed.                                                                                                                                       

Keywords: Land cover changes, Land surface temperature, Cross-information analysis matrix, Lorestan province












 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb