Search published articles

Showing 10 results for River

Amir Karam, Amir Safari , Shila. Hajehforosh Nia,
Volume 2, Issue 2 (7-2015)

With the development of economy and social services, increased need to reduce risks, control risks and other important measures in order to provide program management and follow-up plans vulnerability, Having the right information and understanding the current situation in the field is essential for  prevention and planning measures, Therefore, research on risk reduction and knowledge of threats in the Arangeh region is essential, as one of the areas tourist attraction regions in Karaj's catchment area.

Geomorphology of River studies landforms and processes of river and predict changes using models and field studies and laboratory. And new analytical tools and techniques, growing and expanding with the help of river engineering.

    This eventually leads to gain new capabilities in the field of river management, landscape restoration, risks and geomorphological studies ancient river.

     In most cases geomorphological processes that are created by river systems, are causing environmental hazards of natural and human environments. In this paper, we have investigated the risks of geomorphic processes, especially risks of flooding and river flooding and is calculated for the maximum flood discharge for subarea also. In this article, it has been found that most of the flood will be calculated based on the map of the geomorphology of the area and the discharge sub basin. The purpose of this study, is  assessing damages caused by the flood risks in the area. It is obvious that the results of this study will enable the pre-crisis phase of the crisis management system and can help to tourism and physical planning in the area.

     Arangeh basin is an area of 10,090 hectares and a maximum height of 3665, at least 1637 m and average height of 2689 m. Arangeh area have an  annual precipitation about 785 mm. Arangeh watershed is located within the northern city of Karaj, 15 km Karaj Branch, Karaj Dam east side of the river and inferiors (Amir Kabir).

     In this study, to analyze the flood in the basin,  a variety of sources are used including surveys of library data and documents, topographic base map scale of 1: 25,000 geological map of 1: 100000 taken from the ground geological, climatic data obtained from meteorological Organization, hydrological data obtained from regional water Alborz Landsat satellite image.Also field visits, the use of GPS and GIS software Arc GIS Version 10 was main parts of the survey.

      The calculated concentration time by Krpych method to estimate the flood of data base, then estimate is based on a regional analysis of runoff and peak discharge of flood.

     According to Hydrogeomorphic properties basin unit (sub-21) has the maximum flood discharge which is mostly covered by alluvium and located on the ground impermeable siltstone, waterways due to morphological features steep, mountainous dominant morphology, concentration time low basin, poverty and lack of vegetation (about 15 and 50 cubic meters per second in the 50 and 100-year return period). Other sub-basin with high flood discharge of sub No. 3, 5,7,9,12,14 and 16 are in Central, East, North, East and South of the basin villages.

      Many parts of the Arangeh basin has slopes of more than 60%, which is an important factor in the effect of runoff, reducing the time of concentration, poor soil and vegetation and is an important factor aggravating flood risk and erosion. The presence of vegetation in these areas can have an important effect in obstructing runoff, reduce the rate of runoff, reducing flooding and consequently the reduction of soil erosion. We can largely control the flood basin watershed management practices and proper management range in the above units.

Farhad Azizpour, Mohammed Saeed Hamidi, Jamshid Chabok,
Volume 2, Issue 4 (1-2016)

Among the various environmental hazards, flood is the greatest and most important climate crisis which takes every year the lives of thousands people and impose severe damages on human society and environment. Today, it is clear that controlling all hazards, including floods is not possible. Suitable management can only minimize the damages. The literature on natural disasters management indicated that in the process of natural disaster management and their vulnerability mitigation, there are two dominant paradigm: technic-based approach and community-based approach.

Community-based approach welcome the local cooperation and participation in disaster management process and calls for strengthening local capacity through the participation of all individuals and groups at the local level. This approach is not only appropriate to provide solutions for disaster reduction, but build disaster preparedness. Because disaster preparedness planning requires special attention to local participation. In the geographic area of Bashar River Basin, due to the lack of suitable agricultural land and greater quantity of water for rice crop, villages have been built at rivers edge. So that, most of the houses and farms in the villages are located very close to the river. However, these locations are extremely vulnerable to flooding. This study reviews the status of local participation and its impact on reducing flood risks. Also, this research focuses on factors influencing local community trends and choices in the participation rate.

This study is applied research in terms of purpose and uses descriptive-analytical method. According to the nature of the study, data were collected through fieldwork and library research methods using observation, interview, questionnaire and evaluation card techniques. To understand different characteristics of community, Likert scale and one-sample t-test were used and measurement scale for data was ordinal. Also. The method of selective experimental approach based on profit was taken to evaluate the level of different trends in Community's financial participation for reducing detrimental effects of flood. To recognize the community awareness and perception toward flood risk and the probability of its occurrence in the future, the willingness level to participation and to explore the effective factors on villager’s decisions and to utilize modern management techniques the selective experimental approach based on evaluation card and logit model were employed.

The results of statistical analysis showed that in the study area, 86.5% of the community have experienced the damages caused by flooding and forecasted the likelihood of heightened chance of flooding in the future. Finding showed that although the people use traditional methods for managing flood, but they tend to employ modern methods such as dam building for reducing flood risk. This help them to increase the safety factor for their locations and farm lands. In spite of the fact that the villagers expressed the higher safety factor for new management methods such as (dam building, river broadening and preventing the destruction of forest and environment), but it seems that improper functioning, adverse consequences (environmental and socio-economic) of projects implementation (dam building) as well as the inability of villager's financial participation (high cost of this kind of methods), are barriers to using them for lowering the flood risks and damages.

The review of the possible role of some intervening variables to predict local communities' participation in decision-making processes showed that low-income, old age of the samples with high average (47.61) and education with lower average (3.16) are the most important factors influencing community decision making. The results of binominal logit model showed that the proposed variables is significant at the 5% level. If the offer price increase, the chance of residents' acceptance of participation will decrease and vice versa.

Dr Seyedmusa Hosseini, Miss Samaneh Riahi, Mr Abdolkarim Veysi,
Volume 6, Issue 1 (5-2019)

The effect of Urban Development on Watershed Hydrological Properties (case study: Tajrish Watershed)
Throughout the human history, societies and rivers have been closely linked, so that the human civilization began from the riverside (Stevaux et al. 2009 (. The quantitative and qualitative characteristic of river is vulnerable to land-use changes (Kang et al. 2010). Natural and urban watersheds are influenced by the rapid land use change due to urban development (Furusho et al. 2013). Hence the importance of land use as an environmental variable have made its changes as a major issue in environmental changes and sustainable development) Verburg et al. 2009).
The development of urbanization and industrialization of cities and communities have undesirable effects on the hydrological response of watersheds. It increases the magnitude of runoff and contamination, reduces the base flow and the groundwater recharge. Hence, urban authorities are urged to pay more attention to the environmental damaging effects of the urbanization process and the increase of construction. In this regard, attention should be paid to the effect of type of land cover and land use on urban runoff and hydrological changes in surface flow. Tehran as the largest metropolis in Iran has ascending trend of land cover and land use changes due to the growing population.
In this research, the effect of urban development on the hydrological characteristics of the Tajrish sub-watershed (in Darband watershed) located north of Tehran has been investigated. Results of this study indicated that the river Darband is exposed to hydrological hazard due to human need for space and land use and land cover changes. The studied area is affected by decreasing pervious area, increase of runoff coefficient, and change in water quality parameters.
Darband River watershed consists of two streams of Darband and Golabdareh which are considered as the major rivers of the Tehran-Karaj Basin. This river originates from the mountains of the Tochal located in northern Tehran. The catchment area of Darband River in the studied area is 39.88 square kilometers.
In this study, aerial photos of years 1345, 1358 and also   and IkONOS images in year 2011 were used to detect the changes in land cover and land use in the Tajrish watershed. Pas-Ghale sub-watershed in upstream of Tajrish was selected as benchmark since its land use doesn't affected by human interventions. SCS-CN method developed by the United States Department of Agriculture (USDA) was used to estimate the quantitative changes in surface storage and runoff volume. Man-Kendall test was used for temporal trend detection of discharge and chemical parameters of surface water and also. The change of water type was identified annually using the Piper diagram in the aqQA software. Frequency analysis was carried out for peak discharge data using the weibull’s empirical method.
During three considered periods, the curve numbers (CN) and runoff coefficient (C) in Tajrish watershed significantly increased. Significant trend was also observed for the chemical parameters of surface flow in Tajrish. While the surface storage and initial abstraction ratio (λ) indicate decreasing trend.  Relationships of CN and λ with rainfall depth (P) were also computed for both studied watersheds. According to the Piper diagram, the distribution of ions in the cation diagrams at both Maghsudbeik and Pasghaleh stations is generally more directed toward sodium. In the triangles of anions, both of the stations studied tend to show more calcium biocarbon content. Presence of sodium ion in the surface water is due to igneous formations in the watershed. The surface water in Pasghale station, indicate a neutral type of water. Whereas, saline water type is detected in the Maghsudbeik station. The increase of urban utilization over the past three decades could be the main cause of changes in the hydro chemical characteristics and water type along the Darband River.
Investigation of land use changes in the Darband watershed indicate that the impervious surface has increased during years of 1996 to 2011. Results also indicate that the CN and λ values in Pas-ghale watershed are more correlated to Pin compared with ones observed in Tajrish. The results also reveal that hydrological modeling in watersheds undergoes land use changes and urbanization will result in imprecision results.
 Many chemical parameters of the water quality of Darband River have been increasing at the Maghsudbeik station such as Chlorine, sulfate, sodium, electric conductivity and TDS and in the coming years, it can be considered inappropriate in terms of agriculture in the water class.
Keywords: Darband River, land cover and land use, Piper diagram, SCS-CN.
Masoumeh Gholami, Ezzatollah Ganavati, Ali Ahmadabadi,
Volume 6, Issue 4 (2-2020)

Simulation of floodplain zones in Tehran's metropolitan watershed (case study: Kaan basin)
Ezaatollah Ghanavati, Associate prof. Geographical science faculty, Kharzmi University
Ali Ahmmadabadi. Assistance prof. Geographical science faculty, Kharzmi University
Negar Gholami, MA in Geomorphology, Geographical science faculty, Kharzmi University
Extended abstract
Floodplains and adjacent rivers are always at risk from flood events due to their specific circumstances. Flood prone area identification in the watersheds is one of the basic solutions for destructive flood control and mitigation. Flood mapping is one of the best methods for flood prone area planning and identifying. Considering the importance of flood hazard, it is important to understand the role of uncertainty and incorporate that information in flood hazard maps. The hydrodynamic modeling approach is suitable for accounting various uncertainties, and thus lends itself to creating probabilistic floodplain maps. For  this purpose,  flow  boundary  conditions,  peak  instantaneous  discharge with  different  return  periods,  cross  sections and their distance and roughness coefficients for each cross section were entered to HEC-RAS hydraulic model in Kaan watershed  located  in  the Tehran  province,  Iran,  and  this model was  then  run  and  flood water surface profile at different return periods were estimated. In the Kaan Basin, most residential and agricultural lands are located in a very small distance from the river bed. The rapid growth of construction, human activities and land use change in the downstream of the basin have caused a change in the hydrological cycle and runoff production. Floodplain mapping using hydrodynamic models is difficult in data scarce regions. Additionally, using hydrodynamic models to map floodplain over large stream network can be computationally challenging. Some of these limitations of floodplain mapping using hydrodynamic modeling can be overcome by developing computationally efficient statistical methods to identify floodplains in large and ungauged watersheds using publicly.
The aim of this study is to determine flood areas within 20 kilometers of the Kaan River by using the HEC-RAS model and Arc GIS software to identify flood lands in different return periods.
The Kaan basin is located in the central Alborz Mountains. This basin is limited to south, north, east and the west respectively to Tehran, Jajrood Basin, Darakeh Basin and Karaj River Basin. The most important River in the area is the Kaan River and originated from high mountains.
Most commonly, the hydrodynamic modeling approach is used to create flood hazard maps corresponding to a rare high flood magnitude of 100-year return period or higher. Although this approach can provide very accurate floodplain maps, it is computationally demanding. As a result, the modeling approach to flood hazard mapping works well for individual streams, but its efficiency drops significantly when used to map floodplains over a large stream network. In this research, floodplain areas in the Kaan basin in return periods of 2 to 20 years are determined using the HEC-RAS model and the HEC-geoRAS extension. For this purpose, digital maps 1: 25000, DEM (10m), discharge values of Sulaghan Station, morphological characteristics of the river bed and cross sections have been used. Digital Elevation Models (DEMs) play a critical role in flood inundation mapping by providing floodplain topography as input to hydrodynamic models, and then enabling the mapping of the floodplain by using the resulting water surface elevations. Finally, the data is entered into the HEC-RAS software and analyzed. After determining the flood ranges in the various return periods at each cross-section, enter the results to the Arc GIS software and the flood zoning maps were obtained.
In this research roughness coefficients (Maning,s coefficients) for each cross section were obtain be the
n= (nb+n1+n2+n3+n4) m                                                             (Eq.1)
Geological map and field observations have shown that the main difference between the widths of the valley in the study area is related to the type of rock. The results of the hydrodynamic model show that in the river upstream, the increase in discharge had led to the water level increase and expansion in the floodplain surfaces. But in the middle and low slopes in the downstream of the river, due to the reduced discharge, the river has a larger lateral extension and the flood areas are larger than the upstream of the river. Also, for a longer period of return, the discharge rate and the water level increase and the flood plain was more extensive. The results show that in the downstream of the basin due to instability the bed, existence of wide and eroded chanels, high ability in sedimentation, erosion of the channel bed, and low impact of vegetation, this section They can be restored and regenerated and constantly changing. Due to the location the Tehran-North high way from the Kaan basin, had the construction of roads and structures, the flood plain areas of the river should be fully observed or retrofitted.
Key words: Environmental hazards, Flood, Flood areas, Kaan River, HEC-RAS
- Ali Najafinejad, - Hesam Heravi, - Abdolreza Bahremand, - Hossein Zeinivand,
Volume 7, Issue 1 (5-2020)

Simulation of Climate Change on river hydrograph Using WetSpa Model, Case Study: Taleghan Watershed Alborz Province
Introduction: One of the major issues in hydrology engineering is the prediction of the flood routing or rising and falling limb river hydrograph, in which the importance of the climate is very evident due to the high volatility and is therefore one of the most important factors to be carefully studied. Climate has been changing ever since. Changes refer to the variability of the long term trends in the state of the climate or average changes in temperature and rainfall that persist for extended period. Important regional water resource vulnerabilities to changes in both temperature and precipitation patterns are documented. Recent analysis from the inter-governmental panel for climate change indicates that the earth as a whole has warmed by about 0.6°C ± 0.2°C over the past century with locally and seasonally varying amounts. The changes in pattern and intensity of precipitation, melting of ice, increasing atmospheric water vapor and others has a significant natural variability on inter annual to decadal that masking the long term trend. Increased evaporation, combined with changes in precipitation characteristics, has the potential to affect runoff, frequency and intensity of floods and droughts, soil moisture, and water supply. Warming of climate system and change in its state variables are highly related to the atmosphere-land-ocean system. The climate modeling science integrates these complex systems with the Global Circulation Models (GCMs) to simulate future climate changes and forecast it for decades and centuries. Climate change scenarios developed from General Circulation Models (GCMs) are the initial source of information for estimating plausible future climate changes. In regional and local climate studies usually coarse-resolution outputs of global climate models are downscaled to produce necessary fine scale data. Statistical downscaling methods are widely used for prediction of climatic variables e.g. precipitation because of importance of these factors in environmental planning and management. The main purpose of the research is to investigate the past and future potential of climate change and its impacts on the hydrologic response of the basin.
Data and method of work: In this study, the Taleghan Watershed of the Sefidrood basin was selected as a case study due to its socio-economic significance. Elevation range from 1774 to 4362 m and a mean slope is 40.5%. The mean annual precipitation in the catchment is 591 mm. At first using weather data and meteorological data with a daily step in a 21-year period and three base maps information, including precipitation data from eight stations, temperature and evaporation data from two stations were used as input to the model. Three base maps information i.e. DEM, land use and soil types are prepared in GIS and flow hydrograph was simulated using WetSpa model in Taleghan watershed. For runoff verification, the only river station at the outlet of the catchment was used. Then, for the reference period, daily modeled runoff was compared with observed values at available in the region. In the following Future climate change (precipitation, temperature and evaporation) based on CanESM2 model from the fifth report the Intergovernmental Panel on Climate Change (IPCC) on emission scenario RCP8.5 was used for simulating the flow hydrograph during the next period (2016-2029) and its comparison with the base period (1995-2015). In this study, the performance of Statistical Downscaling Model (SDSM) was investigated to predict precipitation, temperature and evaporation. Modeled precipitation was compared with observations of 8 available stations in the region, Observed temperatures from two stations were also used for modeled temperature and evaporation verification.  
Interpretation of results: Regarding to the outputs and spatially distributed hydrological factors in daily time step the model is capable to analyze topography, soil type, and land use effects on the hydrological behavior of the watershed. Model evaluation results showed that The Nash-Sutcliffe criteria, 76% and accuracy of the simulation show the high performance of the model in this watershed. The results of the research showed that the SDSM model is well advanced to simulate Climate variables. Statistical measures of model performance such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean squared error (MSE) and the analysis of output results from SDSM model shown that this model is able to predict precipitation, temperature and evaporation indexes. According to the results of the CanESM2 model, in the considered scenario (RCP8.5), temperature will increase from 0.5 to 0.6 and Average precipitation in the future 8% will increase. Finally the results showed that in the considered scenario, the average runoff watershed will increase Up to 45% by the climate in the future. Also, the average of runoff will increase in all months of the year (except in October) compared to the base period. This increase is more pronounced for April.            
Keywords: Emission Scenario, Flood, Hydrologic Model, River Hydrograph, Simulation

* Corresponding author:

Mousa Kamanroudi Kojuri, Amir Saffari, Mohammad Solimani, Maryam Nemati Sani,
Volume 7, Issue 2 (8-2020)

Ecologically-based Management Factors and criteria of River-Valleys in Tehran metropolis-Case Study: River-Valleys of Kan
Iran has seasonal rivers because of dry climate, low rainfall and different topography. These river- valleys have main role in forming, genesis, and sustainability of human settlements and provide different ecological services. The main services include beauty, store of green spaces, water supply, reduce and create temperature differences, local air flow and natural ventilation which are part of the functions. Tehran is roughly the same area as 730 square kilometers and its population is 8.7 million people. It is located in51° and 17´ to 51° and 33´ east longitude and 35° and 36´ to 35° and 44´ north latitude. The height of this city is 900 to 1800 meters. The north and north east of this city are located in peculiarity range of the southern part of the middle Alborz. This city includes 7 river valleys to the names Darabad, Golabdareh, Darband, Velenjak, Darakeh, Farahzad and Kan. The ecological role of these river valleys is reduced because of non- ecological axis developmental interventions by urban management and citizens. These interventions have changed river valleys to high risk space of skirt movements and flood. Kan is the most important river valley because of the breadth of the basin and permanent water discharge rate. The part of this river valley has changed to park (Javanmardan) by municipality. The purpose of this research is that to provide factors and criteria of ecosystem based management to organize this river valley.
ANP has been used in this research. To use this method for analyzing   factors and criteria of ecosystem based management to organize this river valley, firstly, these factors have been identified by library studies and scrolling. These factors include 4 criteria (natural: 15 sub criteria, social: 3, management:  6, economic: 2). the books, journals, reports, maps, aerial photos, satellite images and internet sites have been studied in library studies. In site studies, some information from library studies have been edited. After that, the findings of these two methods in form of questionnaire called factors and criteria of ecosystem based management to organize Kan River valley, was in charge academics and professionals. They were elected among pundits of urban management science, urban planning, geography and environment in Tehran. At first the number of them was 30 people came to agreement in two process about 4 factors and 18 criteria and determined importance and priority by Delphy method. Findings in Delphy method were analyzed through ANP and SUPER DECISIONS. In this process, firstly, a conceptual model and relation inter and intra clusters and nodes determined. These relations in this process are very important because paired comparison depends on this process. Assumption of equality of effects and similar relations in these factors is illogical because there are the grading of effects and relations in this research. Second, the factors have been compared to each other to create a super matrix based on paired comparison. Generally, in this process decision makers compare two different factors to each other and paired comparisons have grading of between1to9. In double- sided valuation, each factor is used to show initial inverse comparison. Inconsistent rate in paired comparison must be less than 0.1 like AHP. Third initial super matrix is created. It is the weights created from paired comparison and identified the importance of each factor in each cluster. Forth, the weighted super matrix was created. The weights of clusters was calculated in this process to identify the weight of final super matrix. Fifth, limited super matrix was created. The weighted super matrix reached for infinity band each row convergenced to a number and that number was the weight of factor. By this way limited super matrix was reached.
Based on ANP and table 1, management: 46%, natural – ecological: 26% and economic and social factors: 14% are important respectively in ecosystem based management to organize Kan River valley. Based on reached results, inconsistent rate is 0.003 and it shows that the weight is valid and review is not necessary. Among sub criteria in management factor, organizational pattern: 32%, method of management: 23% and policies: 21% are the most important respectively in ecosystem based management to organize Kan River valley. Among sub criteria in natural- ecological factor, flood, domain movements and building and texture of soil are the most important respectively 23%, 18% and 11.5% also in social factor, participation, security and public trust have the importance respectively equal to 49% 31% 19%. In economic factor, environmental assets and stakeholder’s economic participation have the same importance.
Based on this research, management factor (organizational pattern and the method of management) is the most important in ecosystem based management. But this approach, the management pattern and intervention to organize this river valley, need comprehensiveness and integrity of the subject (nature, society, management and economic), purpose (protection, resuscitation and use), factors (government, city council, municipality, private sector and people), duties (policy making, planning, designing and perform), method (collaborative), tools (knowledge, skill, rule, program, budget, machinery and materials) and management domain. Use of these factors and criteria need some infrastructure and reforms. The most important reform is reform of management structure, production of subject matter and topical program special to organize river valleys by ecological approach to release Kan of loading and contradictory this management can follow protection, resuscitation, sustainable use and continuity of ecological services.
Key words: ecosystem, ecosystem based management, analytic network process, river valley of Kan

Nima Sohrabnia, Dr Bohlol Alijani, Dr Mehry Akbari,
Volume 7, Issue 2 (8-2020)

Modeling the discharge of rivers in selected watersheds of Guilan province during climate change
   In this essay, we investigated the effects of climate change on the rivers of selected basins of Guilan province, one of the northern provinces of Iran for the period 2020 to 2050 under three climate scenarios: RCP2.6, RCP4.5, RCP8.5. For this purpose, rainfall and temperature data from 45 climate data stations and 20 hydrometric stations from 1983 to 2013 were used. The average precipitation and temperature at basin level were calculated by drawing both Isohyet and Isothermal lines by usage Kriging method. Mann-Kendall and Sen’s slope estimator tests were used to determine the significance of the data trends and their slope, respectively. The results showed that temperature has increased in all catchments during the study period and this trend was significant in most of them but no significant trend was observed for precipitation. Discharge has also decreased in most basins and this trend was significant in Shafarood, Navrood and Chafrood basins. However, for future periods, precipitation is not significant in any of the climate scenarios, but the temperature is increasing in all scenarios except for the RCP2.6 scenario. Rivers discharge in the RCP2.6 scenario is not significant in any of the basins, but in the RCP4.5 scenario the Shafarood and Ghasht-Roodkan catchments have a significant reduction in the 95% confidence level. In the RCP8.5 scenario, the Chafrood and Shafarood basins have a 99% confidence reduction trend.
Population and technology growth, increased water consumption and climate change have led many researchers to study and model water resources in the present and future periods. Especially in areas like Iran that are facing a lot of water stresses. The purpose of the present study, which was carried out in the Guilan province, is to provide information on the present and future status of surface water resources, and to prepare them for facing the problems of potential water resources exploitation.
In this study 45 synoptic, evaporative and rain gauge stations and 20 hydrometric stations data with sufficient statistics were used. The period of study is also between 1983 and 2013. In this regard, after calculating the average precipitation and temperature values of each basin using Kriging model, first, the annual average of precipitation and temperature values ​​of each basin were calculated. Then, multivariate regression was used to obtain the regression equations between precipitation, temperature and discharge data, then by using SDSM model and climate scenarios (RCP2.6, RCP4.5, RCP8.5) future temperature and precipitation data were generated. By placing these generated data in the Created regression equations, the discharge of the rivers was calculated for the period 2020 to 2050. The trend of time series and their slope were analyzed respectively by Mann-Kendall and Sense tests.
   The study of the annual average precipitation trend of the selected catchments during the study period showed that all the basins had no significant trend at any of the confidence levels (95% and 99%). However, for the temperature there is an increasing trend. In Chafrood, Zilaki, Chalvand, Lavandevil, Tutkabon, Chubar, Lamir, Hawigh, Dissam, Shirabad, Ponel, Samoosh, and Polrood basins there is significant trend at 95% confidence level. For the Hawigh River basin there is significant trend at 99% confidence level. Also in most of the basins there is a downward trend of rivers discharge. In addition, in the three basins of Chafrood, Navrood and Shafarood, there is a significant decreasing trend at 95% confidence level, which is also significant at 99% confidence level for Navrood and Shafarood rivers.
Analysis of future data showed that precipitation is not significant in any of the climate scenarios, but the temperature is increasing in all scenarios except for the RCP2.6 scenario in RCP2.6 scenario. For rivers discharge there was no significant trend in any of the basins, but in RCP4.5 scenario there is a significant decrease in 95% confidence level in Shafarood and Ghasht-Roodkan. Also in the RCP8.5 scenario, a significant decreasing trend of flow discharge at 99% confidence level is observed for Chafrood and Shafarood basins. Finally, the catchments were grouped according to the level of risk involved with decreasing discharge. The results of grouping showed that most of the basins in the three scenarios were in the medium risk group but Shafarood, Chafrood and Ghasht-roodkhan watersheds have higher risk than the other watersheds, respectively.
Investigation of river discharge trends for the period 2020 to 2050 in different scenarios showed that the basins of Ghasht-roodkhan, Chafrood and Shafarood are more sensitive to climate change than other basins. Overall, escalating temperature trends in future and precipitation irregularities can create very difficult conditions in future to use these resources. Especially, this study's concordance with other studies in Iran and the study area confirms that such crises are more likely to occur..
Keywords: Climate Change Scenarios, Rivers Discharge, Man-Kendall, Sen’s Slope estimator, Guilan Province

Somaiyeh Khaleghi, Mohammad Mahdi Hosseinzadeh, Payam Fatolah Atikandi,
Volume 8, Issue 2 (9-2021)

River channel changes, bank erosion and sedimentation are the natural processes of the alluvial rivers that destroy the agricultural land and damage to human installations around the river. In the present study, the CAESAR model was used to assess the changes of the Kaleibar Chai River in order to measure the variation of 3 km of its main channel.CAESAR is a cellular automata model for river system evolution. CAESAR  is a cellular model  that uses a regular mesh of grid cells to represent the river catchment studied. Every cell has properties of elevation, water discharge and depth, vegetation cover, depth to bedrock and grain  size.  It  is  based  upon  the  cellular  automaton  concept,  whereby  the repeated  iteration of a series of  rules on each of  these cells determines  the behaviour of the whole system. CAESAR has a set of rules for a hydrological model, hydraulic model (flow routing), fluvial erosion and deposition and slope erosion  and  deposition.  For  every  model  iteration,  cell  properties  (e.g. elevation) are updated according to the rules, and the interaction between an individual cell and its neighbours. For example, the amount of fluvial erosion in a cell may depend upon the depth of water in the cell and the slope between that cell and its neighbours.
For modeling, the input data such as topography (DEM), daily discharge (year 2012) and sediment grain size were prepared and then channel modifications were simulated. Channel changes were identified before and after the simulation by plotting profiles of each cross-sections and were analyzed sensitive to erosion and sedimentation.Six cross-sections were selected before and after simulation. Results showed that the channel geometry has changed. The width and depth and form of the channel have changed. And only the mean depth of the channels was changed in sections 1, 2, 6 and 4. The erosion was dominated in the cross- sections 1, 2, and 3 (the initial part of the main channel). Then the sedimentation was dominated in the cross- sections 4, 5 and 6.

Reza Esmaili, Fatemeh Abedini Zadeh,
Volume 8, Issue 4 (3-2022)

Streambank erosion hazard analysis by BEHI method, case study: Sajadroud stream, Mazandaran province
Extended Abstract
River bank erosion is a complex natural process and plays an important role in the dynamic equilibrium of the river. The amount of river bank erosion affects the river plan, cross section and dimensions of the river and is the main factor controlling channel migration and the evolution of the river planform. This research was conducted with two main objectives, which are: 1. River bank erosion susceptibility analysis in incised rivers in mountainous areas, 2. Comparison of river bank erodibility with two methods original BEHI and modified BEHI.
In this study, Bank Erosion Hazard Index (BEHI) and the modified BEHI method along a part of Sajadrood Stream in Mazandaran province have been investigated. The original BEHI (Rosgen, 1996, 2001) evaluates the river bank erosion field measurements. In this method, several parameters are measured, including bank height, Bankfull height, bank angle, root depth, root density, surface protection, bank material structure and stratification. From this parameters, the bank angle and height, root depth can be measured, but indicators such as plant root density and surface protection are visually estimated as a percentage. The score of each index varies from 1 to 10. The total scores of all indicators are classified into 6 groups: very low, low, medium, high, very high and extreme.
Newton and Drenten (2015) Based on the modified BEHI proposed a protocol for estimating the river bank erosion. In this protocol, the lengths of similar riverbanks are first defined as a uniform section of bank. These uniform sections can be identified due to differences in bank slope, differences in bank material and a break in vegetation. The characteristics of uniform sections are then evaluated in a pre-screening questionnaire consisting of six questions. If the answer to two or more questions is "yes", there is a high probability of erosion and the BEHI evaluation will be performed. Otherwise, the measurement will not be taken because the erosion is low or very low.
Result and discussion
The study area was divided into four reaches and 36 sites were surveyed. These river reaches have a deep bed (incised), high slope, low sinuosity, low width to depth ratio and predominant cobble sediments in the bed. They are in type A3 according to the Rosgen River classification. The height of the banks of the stream is high and its average is 2.6 meters with a minimum and a maximum of 0.4 to 9.7 meters. The average height of bankfull was 0.44 meters and varied from 0.15 to 0.85 meters. Hence, the ratio of bank height to bankfull height has been high. The root depth of plants was low and their average was 0.34 meters. Root density of plants was also low and averaged 5.7% The stream bank angle is measured from 31 to 90 degrees and an average of 51degree. The percentage of surface protection varied between 25 and 65% and averaged 42%. From a total of 36 sites, 8% are in the medium group, 39% in the high erosion category, 45% in the very high erosion group and 8% in the extreme erosion category.
Among the various variables, the β coefficients of the surface protection index and the ratio of bank height to bankfull height were -0.62 and 0.51, respectively. To evaluate the modified BEHI method, all reaches were first examined according to the pre-screening table and more than two "yes" answers were confirmed for each reach. In the modified BEHI method, 26 out of 36 sites were in the erosion group. But in the original BEHI method, 16 sites are in a very high class. The total score of the studied sites was evaluated by two BEHI methods with Pearson correlation coefficients, which obtained a coefficient of 0.21 and shows a relatively low correlation.
Sajadrood stream has high and steep banks due to the incision created in the channel bed. The deposition of large boulders at the toe of the streambank has caused its protection and the flood currents of bankfull are not able to carry this piece of rock. Under these conditions, calculating the ratio of bank height to bankfull height cannot indicate the erodibility of the streambank in the bankfull stage. Nevertheless, the erodible potential of the bank for larger flood currents is confirmed. Comparison of the original BEHI with the modified BEHI showed that the modified method has an overestimate than the original BEHI.

Key word: river bank erosion, BEHI, Sajadroud, Mazandaran
Kaveh Ghahraman, Mohammadali Zanganeh Asadi,
Volume 9, Issue 3 (12-2022)

Determination of flood-prone areas using Sentinel-1 Radar images
(Case study: Flood on March 2019, Kashkan River, Lorestan Province)

Although natural hazards occur in all parts of the world, their incidence is higher in Asia than in any other part of the world. Natural phenomena are considered as natural hazards when they cause damage or financial losses to human beings. Iran is also one of the high-risk countries in terms of floods. Until 2002, about 467 floods have been recorded by the country's hydrometric stations. In addition to natural factors such as rainfall, researchers consider human impacts such as destruction of vegetation cover, soil destruction, inefficient management, destruction of pastures and forests, and encroachment on the river are the most important factors for the occurrence and damage of floods in the country. One of the most efficient and emerging tools in flood surveys is the use of radar images. SAR images and flood maps produced by radar images provide researchers valuable and reliable information. Moreover, maps obtained from SAR images help officials to manage the crisis and take preventive measures against floods. The Sentinel-1 satellite is part of the Copernicus program, launched by the European Space Agency, and is widely used in mapping flood-prone areas. The contribution of Sentinel-1 to the application of flood mapping arises from the sensitivity of the backscatter signal to open water. This study aims to determine high-risk and flood-prone areas along the Kashkan River using Sentinel-1 radar images.
Data and Methods
 The study area includes a part of the Kashkan river from Mamolan city to the connection point of this river to Seymareh river, after Pol-dokhtar city. The average annual discharge of the Kashkan river is 33.2 cubic meters per second based on the data of the Pole-Kashkan Station. The length of the river in the study area is about 100 km. To investigate flood-prone areas, we applied pre-processing and image-processing steps to each flood event including SAR images belonging to March 25th, 2019, March 31st 2019, and April 2nd, 2019. SAR images were acquired from ESA Copernicus Open Access Hub. climatic data was downloaded from To create meander cross-sections, the Digital Elevation Model of the studied area was utilized. Cross-sections were created using QGIS software. Pre-processing steps include: applying orbit data, removing SAR thermal noise, calibration of SAR images, de-speckling and topographic correction. In image processing, we applied the Otsu thresholding method to distinguish water pixels from land pixels. In thresholding methods, the histogram of each image is divided into two parts according to the amount of gray composition. The higher the amount of gray (i.e., the pixel tends to be darker), the more pixels represent water, and conversely, the lighter-toned pixels (i.e., pixels that tend to whiten) represent land. The Otsu thresholding method is a commonly used method for water detection in SAR images. It uses an image histogram to determine the correct threshold. The most important feature of the Otsu method is that it is capable of determining the threshold automatically. The Otsu algorithm was applied to all images using MATLAB.
According to the flood maps, on March 25th, 6.51 percent of the study area was flooded, while on March 31th, only 3.96 percent was flooded. This is mainly due to less precipitation on the 31st. On March 25th the average daily precipitation was 47.46 mm while on 31st of March the average daily precipitation was 31.64 mm. On April 2nd, however, there was no rainfall, on the day before more than 63 mm of precipitation has occurred. This massive amount of precipitation on the previous day has led to more than 25km2 being flooded in the studied area.
Results showed that meanders and their surrounding areas are the most dangerous sections in terms of flooding. The meander's dynamic and the river's hydrologic processes are essential factors affecting flooding in those sections. Generally, various factors affect flooding and the damage caused by it. This study aimed to determine flooded and flood-prone areas (according to flooded areas in previous events) using new methods in a short time and with high accuracy to use this tool for more accurate zoning and efficient planning in the future. The results showed that radar images are practical, robust, and reliable tools for determining flooded areas, especially for rapid and near-real-time studies of flood events.
Keywords: Floods, Radar images, Sentinel-1Satelitte, Kashkan river


Page 1 from 1     

© 2023 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb