Mr. Hamidreza Parastesh, Dr. Khosro Ashrafi, Dr. Mohammad Ali Zahed,
Volume 9, Issue 3 (12-2022)
Abstract
Energy Information Administration (EIA). 2022. Natural gas explained. https://www.eia.gov/energyexplained/natural-gas/use-of-natural-gas.php#:~:text=The%20United%20States%20used%20about,of%20U.S.%20total%20energy%20consumption
Energy Information Administration (EIA). 2022. Natural Gas Consumption by End Use. https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_nus_a.html
IEA. 2020. Gas 2020. https://www.iea.org/reports/gas-2020/2021-2025-rebound-and-beyond
Cinq-Mars, TJ.; T. Kropotova, M. Morgunova, A. Tallipova, and S. Yunusov. 2020. Leak Detection and Repair in the Russian Federation and the United States: Possibilities for Convergence. Stanford US-Russia Forum Journal.
Weller, ZD.; DK. Yang, and JC. von Fischer. 2019. An open source algorithm to detect natural gas leaks from mobile methane survey data. PLoS One,14(2):e0212287.
SHAHEDI, AS.; MJ. ASSARIAN, O. KALATPOUR, E. ZAREI, and I. MOHAMMADFAM. 2016. Evaluation of consequence modeling of fire on methane storage tanks in a gas refinery.
Costello, KW. 2014. Lost and unaccounted-for gas: Challenges for public utility regulators. Util Policy,29:17–24.
Arpino, F.; M. Dell’Isola, G. Ficco, and P. Vigo. 2014. Unaccounted for gas in natural gas transmission networks: Prediction model and analysis of the solutions. Journal of Natural Gas Science and Engineering,17:58–70.
Weller, Z.D.; SP. Hamburg, and JC. von Fischer. 2020. A national estimate of methane leakage from pipeline mains in natural gas local distribution systems. Environmental science & technology, 54(14):8958-8967.
Meland, E.; NF. Thornhill, E. Lunde, and M. Rasmussen. 2012. Quantification of valve leakage rates. AIChE journal, 58(4):1181-1193.
Wagner, H. 2004. Innovative techniques to deal with leaking valves. Technical Papers of ISA, 454:105-117.
Kaewwaewnoi, W.; A. Prateepasen, and P. Kaewtrakulpong. 2010. Investigation of the relationship between internal fluid leakage through a valve and the acoustic emission generated from the leakage. Measurement, 43(2):274-282.
Zhu, SB.; ZL. Li, SM. Zhang, and HF. Zhang. 2019. Deep belief network-based internal valve leakage rate prediction approach. Measurement, 133:182-192.
Panahi, S.; A. Karimi, and R. Pourbabaki. 2020. Consequence modeling and analysis of explosion and fire hazards caused by methane emissions in a refinery in cold and hot seasons. Journal of Health in the Field.
Plant, G.; EA. Kort, C. Floerchinger, A. Gvakharia, I. Vimont, and C. Sweeney. 2019. Large fugitive methane emissions from urban centers along the US East Coast. Geophysical research letters, 46(14):8500–8507.
Akhondian, M.; S. MirHasanNia. 2017. Biodiversity of microalgae, a potential capacity in biological and environmental technologies. Journal of Human Environment and Health Promotion,41:39–70.
Defratyka, SM.; JD. Paris, C. Yver-Kwok, JM. Fernandez, P. Korben, and P. Bousquet. 2021. Mapping urban methane sources in Paris, France. Environmental Science & Technology,55(13):8583-8591.
Mohammadi Ashnani, M.; T. Miremadi, A. Danekar, M. Makhdoom Farkhonde, and V. Majed. 2020. The Policies of Learning Economy to Achieve Sustainable Development. Journal of Environmental Science and Technology,22(2):253–274.
Gioli, B.; P. Toscano, E. Lugato, A. Matese, F. Miglietta, A. Zaldei, and FP. Vaccari. 2012. Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environmental Pollution,164:125-131.
Moriizumi, J.; K. Nagamine, T. Iida, and Y. Ikebe. 1998. Carbon isotopic analysis of atmospheric methane in urban and suburban areas: fossil and non-fossil methane from local sources. Atmospheric Environment, 32(17):2947-2955.
Zazzeri, G.; D. Lowry, RE. Fisher, JL. France, M. Lanoisellé, CSB. Grimmond, and EG. Nisbet. 2017. Evaluating methane inventories by isotopic analysis in the London region. Scientific reports, 7(1):1-13.
Wever, JL.; GJL. Van Orizande, WB. Rademaker, and GJ. Van Schagen. 2002. Applicability of the Hi-Flow sampler in reducing methane emissions from a technical/economical point of view. Feasibility study; Toepasbaarheid Hi-Flow sampler bij reductie methaanemissie op technisch/economische gronden. Haalbaarheidsstudie.
Bacharach INC. 2015. Hi flowR sampler for natural gas leak rate measurement.
Connolly, JI.; RA. Robinson, and TD. Gardiner. 2019. Assessment of the Bacharach Hi Flow® Sampler characteristics and potential failure modes when measuring methane emissions. Measurement, 145:226–233.
Khorasan Razavi Gas Company. 2019. Determining the statistical population and sample size of field measurements to estimate normal emission inventory Greenhouse gases in the gas network of Khorasan Razavi province.
Estimation of methane gas leakage from Mashhad urban landfills and evaluation of economic and environmental effects
Abstract
This study, which was conducted in 8 urban gas areas of Mashhad; At first, descriptive statistics of the state of Mashhad urban gas regulators and different leakage modes were presented; In order to analyze the collected data and investigate the causes of leakage, the relationship between 5 variables and the amount of leakage from gas regulators was tested with the Statistical Package for the Social Sciences (SPSS) V.26 software; These 5 variables are: regulator equipment/connections, regulator operation age, regulator service type (domestic, industrial and commercial), urban area and different seasons of the year.
The results of the analysis showed that there was a significant difference between the type of equipment/connections and leakage. (P-Value = 0.0001). Also, a significant difference was observed among other variables of the research (the operation age of the regulator, the type of regulator service (domestic, industrial and commercial), the urban area and different seasons of the year) with the leakage rate (P-Value=0.0001); The pressure drop due to the greater demand of gas consumption in the winter season has reduced the amount of leakage compared to other seasons; The influence of the age of distribution network equipment/connections due to wear and tear and longer life will aggravate the amount of methane gas leakage; Also, the amount of leakage in commercial places had a significant difference with other types of uses; Being in an urban area has also increased the amount of methane gas leakage compared to other areas; The type and quality of equipment and connections as the main and influential factor in methane gas leakage should be considered by managers and officials in this field of work.
Keyword: Methane, Riser, Urban area, Environmental effects, Economy Effects, Gas, Emission
Dr Ghasem Azizi, Dr Samaneh Negah, Dr Nima Farid Mojtahedi, Mr Yossef Shojaie,
Volume 10, Issue 1 (5-2023)
Abstract
Abstract
The continuous and expanding process of global warming, especially in the Asian region, has provided the conditions for increasing drought and the spread of desertification. Many deserts had ecologically balanced soil conservation conditions that until recently have become new sources of dust generation now. Numerous examples have occurred in Iran due to its special geographical location among some of the most important deserts in the world. Temperature anomaly (about 8º C) last winter in the Caspian Sea basin has created new dust sources for the southern coastal of the Caspian Sea. On 30-31 May 1400, dust emission was recorded in meteorological stations of Gilan province in terms of area and concentration. The implementation of HYSPLIT chemical backward models shows the emission of dust from the northwestern region of the Caspian Sea to the southern coastal of the Caspian Sea (Guilan province) for the first time with such intensity. The source and origin of this dust was identified in the Rhine desert in the northwest of the Caspian Sea. Continuous and unprecedented warming in the region and accompanied by strong north-south currents provided the conditions for the emission of this dust. Due to the origin of the emitted dust as well as the geographical and topographical conditions of the Caspian Sea basin, the level of this dust was assessed from the ground level to an altitude of less than 1500 meters. Analysis of synoptic conditions using NCEP / NCAR analysis data with 1 degree horizontal resolution indicates the establishment of high pressure air mass with a center of 1018 hPa on the northwestern parts of the Caspian Sea and the penetration of high pressure to the southern coastal areas of the Caspian Sea. Due to the appropriate pressure gradient and increasing wind speed, dust-producing springs are formed on the desert areas of the Rhine and with the dominance of the northern currents (south-south), the dust mass is sent to Gilan province.
Keywords: Global Warming, Dust emission, Russian Rhine Desert, Gilan.