Shamsallah Asgari, Ezatollah Ghanavati, Samad Shadfar,
Volume 5, Issue 1 (6-2018)
Abstract
Quantitative assessment of landslide sedimentation in the ILAM dam Basin
Information on the accurate volume of landslides and sedimentation in landslides is a research necessity, with the assumption that the bulk of sediment accumulated in the ILAM Dam (located between , E and , N) is related to the surface landslides of the basin. Although the role of landslides in erosion, sediment transport and sedimentation of slippery basins is confirmed and different experts understand and determine the relationship between the fluctuation of slopes and the fluctuation system in many respects more important than other areas. Because according to the results they can assess the widespread environmental changes, but comprehensive research on the scale of catchment basins has done very little (Harvey 2002). So far, the study of wet landscapes in Iran has been more sensitive to the factors, their sensitivity and their hazards, and there has been no study on the sedimentation of landslides.
Data and Method
First, using a geomorphologic system methodology with topographic maps of 1: 50000, geological map of 1: 100000, aerial photography1: 20000, Landsat TM1988 ETM2002,2013 satellite imagery, and Google Earth in the GIS environment in the following sub-basins and landslide events at the following levels The basin was drawn. The discharge data of the water and sediment flow of three hydrometric stations GOLGOL,CHAVIZ and MALEKSHAHI Station were provided from the waters of the ILAM province. Two models of estimated MPSIAC and EPM models have been used to estimate soil erosion and subsoil sedimentation. The Moran spatial correlation model was used to introduce the spatial pattern of landslides, and the fuzzy logic model was used to determine the relationship between the dependent landslide to the independent variables and the potential risk of landslide hazard in the basin. In order to elucidate the quantitative results of landslide sedimentation, empirical models of estimation of sediment erosion, hydrological model of discharge curve and sediment, observational statistics of sediment during statistical period, landfall time occurrence in compliance with the hydrometric station sediment peak during the statistical period of computation Estimated a small amount of sedimentation of the landslides of the ILAM dam basin.
Result and Discussion
The spatial correlation model of Moran showed that the data have spatial correlation and cluster pattern. The average total sediment production in the MPSIAC model in the GOLGOL basin was estimated to be 13.3 tons per hectare per year under the CHAVIZ basin of 10.3 tons per hectare for one year and 4.00 tons per hectare in the sub-basin MALEKSHAHI. Using hydrological model of discharge-sediment curve, the mean sediment was calculated during the statistical period at the hydrometric station of the sub-basin of GOLGOL 18.8 ton per hectare, the station CHAVIZ 10.4 tons and the station MALEKSHAHI 0.9 tons of sediment per hectare per year was calculated. According to the results of the research methodology, the observation of the sediment in the two stations of GOLGOL and CHAVIZ compared to estimated sediment is related to the events occurring in these two sub-basins.
The data of 16 active landslides were recorded. Under the GOLGOL basin, 9 landslide events occurred, and in the CHAVIZ basin, 7 landslide events, the time of landfall occurrence recorded with sedimentary peaks, the length of the statistical period, the precipitate in the sub-basins was almost synchronized. Average relationship between suspended period of the statistical period - average of the peak delayed flight time of the statistical period coinciding with the occurrence of landslide = the amount of suspended load of landfall occurrence in the basin.
The amount of suspended land slip under the GOLGOL 75088.19 - 315.85=74772.34
Landing slope under the Chavez Basin 19907.30 - 20.24=19887
The area of the sub-basin is about 29,000 hectares and the active landslide area is about 100 hectares. According to the calculations, 77772.34 tons of suspended sediment is a sedimentary passage passing at the GOLGOL hydrometric station, which shows with a coefficient of 1.4 times the suspended sediment load of approximately 104681 tons of landslide sedimentation in this sub-basin, which shows the amount of sediment yield 100 hectares of landslide, so each landslide hectare had an average of 1046. 81 tons of sediment deposited at the GOLGOL hydrometric station. The area under the Chavez Basin is about 14000 hectares and the active landslide area of this sub-basin is about 65 hectares. According to the data of the discharge data, the sedimentation of the Chavez hydrometric station is 19887 tons of suspended sediment load, which shows a 1.4 equivalent of 27842 tons of landslide sedimentation in this sub-basin, equivalent to a slope of 428.33 tons per hectare.
Conclusion
According to the calculations, it is concluded that in the sub-basin of flowering GOLGOL, 37.35% is equivalent to 4.9 tons per hectare per year, the increase of sediment is related to landslide events. As a result, 28.2 tons of sediment per hectare were introduced in one year Dam reaches ILAM. The results showed that in the CHAVIZ sub basin, 38.2 percent is equivalent to 4.6 tons per hectare per year for the increase of sediment related to landslide events. As a result, an amount of 14.5 tons of sediment per hectare has entered ILAM dam in one year. In the sub-basin MALEKSHAHI, there was no increase in sediment during the period without active landslide occurrence. A total of 1237314 tons of landslide deposition have entered the ILAM Dam. To control this threat, the appropriate action by the executive office for sustainable development should be applied.
Reza Doostan,
Volume 6, Issue 4 (2-2020)
Abstract
An Analysis of Drought Researches in Iran
Extended Abstract:
Iran is located the spatial geographical position in the south of the temperate region and north of the tropical region between the northern latitudes 40 to 25 degrees north and 65-44 degrees eastern along the seas, oceans and warm and great desert, on the other hand, with complex topography in the Alpine- Himalayas mountain belt (the world's largest mountain belt). These conditions have caused the climate of Iran to experience a variety of the prevailing natural hazards (33 of 43 world-wide risks). One of the natural hazards is the drought that happens over the Iranian plateau since the distant past, with the name of Dave of Drought, and so far. The Iranian plateau has undergone various drought periods over the past decades and various civilizations have faced this risk, and some of the Iranian ingenuity and management have emerged about this risk of the Iran. These include qanats, reservoirs built on commuter routes and cities, historical gardens, and so on. Today, this risk is dominant over the Plateau of Iran every year, and with increasing population and growth in different sectors and, in some cases to mismanagement, followed by a larger crisis called the water crisis and the crisis Economic-social, immigration, and so on. So, given the importance of the subject, different researchers have studied different aspects of this hazard. The fact is that in the past few decades, with the advent of computers and software and data, research has become easier and more scientific, naturally, in Iran, with these tools and data, researchers has been done on different parts of the crisis. What was the achievement of these studies, and most importantly, did the researchers contemplate a practical solution to the crisis on the Iranian plateau? This study provides an overview of past studies of drought and their achievements over the last few years.
In this study, used Four hundred and three of scientific articles were published in various journals to termed "drought" in the article titled of scientific information database (SID), one of the most important sources of internal research in Iran. The distribution of the time of research and distribution of various scientific fields that investigated the drought was identified. By studying the articles and the results from them, we found that 384 scientific articles with a specific output. Based on these findings, the frequency of articles in different fields of study was determined and analyzed.
researches of drought in the past years (1379 to 1391) had increasing trend and since 1394 has been decreas in Iran. The most drought research has been done in agricultural sciences with 166 papers from 403 papers (41.2%), geographic sciences with 118 papers (29.3%) and Medical and basic sciences and engineering sciences have the least research, 0.2, 2 and 5% respectively. 78% of the studies have examined the drought in different parts of Iran And 11 percent of the articles evaluated the consequences of this phenomenon. 7% of drought studies have predicted this phenomenon with different statistical models and 2.5% and 2% are dedicated to drought management and zoning in different regions of Iran respectively. Most drought studies hase been in Iran, Khorasan, Fars, Sistan and Baluchestan, Tehran, Isfahan and Kermanshah, but in other parts of Iran, studies have also been conducted in different regions. Therefore, the drought phenomenon has been studied in all regions of Iran and drought assessments have been carried out.
The reduction of drought researches in recent years suggests that quantitative and qualitative research has been carried out in this basin before 1395, and drought has been studied and evaluated with different indicators in different regions of Iran. The reality of Iran's climate and research shows that every part of Iran experiences a drought phenomenon, which is an Inherent characteristic of the climate of Iran, that given the geographical location and atmospheric patterns affecting these latitudes on the planet. The consequences of drought have also been reflected in different parts of the environment, social, economic, and so on. As part of the newspapers has indicative of the damage to this climatic phenomenon in recent years. It seems that the dominant section of the phenomenon is associated with the unconscious and real perception of managers and people of this phenomenon (which has a cultural root). At present, the consequence of severe and droughts in recent decades is the lack of proper planning and environmental degradation and crisis in various parts of Iran's environment. On the other hand, the negative consequences of global warming for the climate of Iran and similar climates are more and more worrying. Therefore, it is essential to take practical and practical solutions instead of evaluations and mere studies. The practical solutions and the production of technology and operational program in relation to these environmental crises require group research in the sub-sectors with together. While, for example, engineers play the most role in controlling superficial fluid (water and dam), But the smallest drought- research related in this area. Therefore, the separate study of each part of these hazards is merely an evaluation and is not a practical way of solving the risk for managers and planners; For example, a water crisis requires a team of researchers such as hydrology, climateology, meteorology, agriculture, urban management, rural, etc. Of course, it should be noted that our researchers have not been trained and not accustomed to group work, and the idea of teamwork is poor in our culture; But there is no way and should start from one point. Perhaps we should start with kindergartens and elementary schools in order to find suitable solutions for at least the next 20 years, researcher’s teams. Finally, it is necessary to address the sustainable development and drought, localization of indicators, operational and management plans based on the environmental capabilities and knowledge of the native area of each region.
Keywords: Drought Research, Evaluation, Achievement, Iran.
Mr. Aliakbar Mirshafie, , ,
Volume 11, Issue 2 (8-2024)
Abstract
Assessment of the measurement statistics of model accuracy and the appropriate
use of them (Case study: Interpolation of Precipitation in Fars province)
Abstract
In many scientific researches, error measurement statistics are often used without taking notices into account
when selecting a model or method for the spatial analysis of environmental hazards. In order to assess the
accuracy of precipitation interpolation methods in Fars province, the performance of widely used error
measurement statistics and some comments were implemented. Spatial interpolation of precipitation was
accomplished using inverse distance weighting, kriging, co-kriging, and radial basis functions methods with 161
weather stations (22 synoptic and 139 rain gauge stations) for 2018 as a rainy year. The results of MBE statistic
evaluation indicated that the researcher may have chosen the incorrect interpolation method in certain cases
where the sum of the positive and negative values became zero. In addition, this statistic is limited to indicating
overestimation or underestimation and should not be used for assessing accuracy or selecting interpolation
techniques. Regarding the coefficient of determination (r 2 ), the results revealed that due to the lack of
compatibility in the magnitude of the range of this coefficient (0 to 1) with error values (100 to 400 mm for the
interpolation of precipitation in Fars province), its use in evaluation of the accuracy of a method is not
recommended. In terms of NRMSE, the results showed that samples with a small number of observations (n=3),
its value increased excessively (NRMSE=0.35) when compared to samples with a bigger number of data (n=20,
NRMSE=0.097). Therefore, it is not advised to use this statistic. In conclusion, since MAE and RMSE statistics
provide a more realistic error value, it is advised to use them for assessing the accuracy of interpolation
methods.
Keywords: Precipitation, Error evaluation statistics, Interpolation methods, Fars province