Search published articles


Showing 3 results for Gas

Mr Loghman Khodakarami, Dr Saeid Pourmanafi, Dr Alireza Soffianian, Dr Ali Lotfi,
Volume 9, Issue 2 (9-2022)
Abstract

Space-based quantification of anthropogenic CO2 emissions in an urban area using “bottom-up” method
(Case study: Isfahan Metropolitan)
Abstract
Increasing consumption of fossil fuels in urban areas emits enormous amounts of greenhouse gases into the atmosphere. Therefore, the study of carbon dioxide (CO2) emissions from urban areas has become an important research topic. The main purpose of this study is space-based quantification of carbon dioxide emissions driving from fossil fuel combustion in different source sectors in Isfahan. To achieve it, in the present study, the "bottom-up" method was used to quantify the carbon dioxide gas emission based on its production sources sectors. In this method, the amount of emission was measured distinctly for different sources of energy consumption and consequently the spatial distribution map the CO2 emission was generated. The results of this study revealed that the total amount of carbon dioxide emissions driving from fossil fuels is 13855525 tons per year in Isfahan. Separately stationary sectors of power plant, housing and commercial and mobile sources including road and railroad and existing agricultural machinery were responsible for emitting 50.61, 21.78, 17.18, 4.92, 4.37, and 1.14% of CO2, respectively. In conclusion, through applying the bottom-up method and CO2 emission distribution mapping based on different source sectors, mitigation measures can be applied more efficiently in urban planning.
Key words: Greenhouse gas (GHG), Fossil fuel combustion, Mobile and stationary source of energy consumption, climate change, Mitigation strategies
Mohammad Sharifikia, Ali Mosivand, Maral Poorhamzah,
Volume 9, Issue 3 (12-2022)
Abstract

Risk assessment of Maroun gas and oil pipelines due to land sliding hazard

based on D-InSAR technique

Mohammad Sharifikia, @ Associate professor, Tarbiat Modares University, Department of Remote Sensing-

Iran

Meral Poorhamzah, postgraduate in Remote Sensing, Tarbiat Modares University

Abstract
It is importance to note that Iranian oil company have to transfer this valuable enrage from one side to other side of
country passing form several ridge and valley prone with several natural hazard. This is because the natural sources
of oil and gas generally lied in south west part of Iran locally calling Manathegh Nafte Khize Jonoub (south oil field
area). This area is closed to one of most active geological zone of Iran (Zakrose) covering thousands of kilometer
from south east to north west. Supplying natural enrages to central port of country need to crossing from this zone
which is suffering with several difficulties as well as neutral hazard. Out of neutral hazards can found to excite in
this area, the landslide hazard is a main restriction for pipeline crossing over.
The present research is dale with radar interferometry techniques applying for risk assessment and mapping over the
oil and gas pipelines suffering to landslides hazard in the part of Central Zagros (Maroun-Esfahan). For this purpose,
two individual radar dataset in C (ASAR) and L (PALSAR) band with deferent time were collected. Furthermore,
the D-InSAR technique was applied for land surface movement and land displacement detection. The outcome map
was showed the maximum rate of land displacement in this region is about 7.4 cm uplifted and 3.9 cm subsidence
with duration of almost one year. this is due to shape of landslide over the area’s slop. Overlying the landslide map
with the pipeline crossing route shown at lies three active landslides over the Maroun-Esfahan gas and oil pipelines.
For investigation about this three landslide and damage estimation over the pipeline the field study has been done
for accuracy assessment and land movement rat measuring and evaluation. Which, successfully identified and
mapped 3 landslides were located across the pipeline and damage it. Furthermore, map surveying by DGPS in RTK
method over the one of landslide shown that sliding transfer 20 m with falling 10 m over the length of 45 m of gas
pipeline. moreover, the press of landslide made curvatures on straight pip hogging pipe 43 cm. continued this
landslide activation and more pressing in close further can make a fracture and pessimistic pipe expulsion. With can
a kind of disaster if the event be close to settlements are.
The outcome landslide map shown the active landslide points (small area) very well, but the main think need to
suffusion information about interred area. For this exigency have to convert points data map to area as prediction
hazard. For this proses and to understanding the amplitude of landslide hazard in area the information value model
was applied for hazard zonation and mapping. The landslide hazard map resulting from D-InSAR technique as
inventory map along with 8 data set maps namely, lito-logy, soil, land cover, lineaments, faults, roads, derange
pattern and slop, has been interred to model for zonation and hazard estimation over the area. Furthermore, this map
was reclass in 5 individual hazard and risk class from low to high risk. The hazard map analyses and calculation was
show about 20 percent of area study was marked as high and very high risk zone. This is mainly because of
morphological and lito-logical exclusivity of area resulting by active tectonics. Crooning and overlaying the
landslide hazard map with pipeline track has been shown 28.5 percent of line length crossing over the high and very
high risk zone, where the 52 percent was prone with low and very low risk zone. This mine that near 1/3 of mention
pipeline length suffering from hazardous area which can classified as high risk part of pipeline.
Interpreting the hazardous classes on the prediction map is an important concern in landslide prediction models. For
this purpose, the prediction-rate curve was generated using validation group of landslide locations to validate the
prediction map obtained. This rate curve explains how well the model and factors predict the landslide. Results from
the success-rate curve are very promising, since the 3% area predicted as the most hazardous, includes 42.35% of
the total area affected by landslides, and this value grows to 90%, when about 25% area of highest susceptibility is
considered. The prediction accuracy can be assessed qualitatively by calculation the area under cover. The total area

equal to one means perfect prediction accuracy. In this model ratio area was 0.633 that means the prediction
accuracy was 63.3%.
Keywords: Differential SAR Interferometry, PALSAR, ASAR, Landslide, Oil and Gas Pipeline risk
Mr. Hamidreza Parastesh, Dr. Khosro Ashrafi, Dr. Mohammad Ali Zahed,
Volume 9, Issue 3 (12-2022)
Abstract



Energy Information Administration (EIA). 2022.  Natural gas explained. https://www.eia.gov/energyexplained/natural-gas/use-of-natural-gas.php#:~:text=The%20United%20States%20used%20about,of%20U.S.%20total%20energy%20consumption
Energy Information Administration (EIA). 2022. Natural Gas Consumption by End Use. https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_nus_a.html
IEA. 2020. Gas 2020. https://www.iea.org/reports/gas-2020/2021-2025-rebound-and-beyond
Cinq-Mars, TJ.; T. Kropotova, M. Morgunova, A. Tallipova, and S. Yunusov. 2020. Leak Detection and Repair in the Russian Federation and the United States: Possibilities for Convergence. Stanford US-Russia Forum Journal.
Weller, ZD.; DK. Yang, and JC. von Fischer. 2019. An open source algorithm to detect natural gas leaks from mobile methane survey data. PLoS One,14(2):e0212287.
SHAHEDI, AS.; MJ. ASSARIAN, O. KALATPOUR, E. ZAREI, and I. MOHAMMADFAM. 2016. Evaluation of consequence modeling of fire on methane storage tanks in a gas refinery.
Costello, KW. 2014. Lost and unaccounted-for gas: Challenges for public utility regulators. Util Policy,29:17–24.
Arpino, F.; M. Dell’Isola, G. Ficco, and P. Vigo. 2014. Unaccounted for gas in natural gas transmission networks: Prediction model and analysis of the solutions. Journal of Natural Gas Science and Engineering,17:58–70.
Weller, Z.D.; SP. Hamburg, and JC. von Fischer. 2020. A national estimate of methane leakage from pipeline mains in natural gas local distribution systems. Environmental science & technology, 54(14):8958-8967.
Meland, E.; NF. Thornhill, E. Lunde, and M. Rasmussen. 2012. Quantification of valve leakage rates. AIChE journal58(4):1181-1193.
Wagner, H. 2004. Innovative techniques to deal with leaking valves. Technical Papers of ISA454:105-117.
Kaewwaewnoi, W.; A. Prateepasen, and P. Kaewtrakulpong. 2010. Investigation of the relationship between internal fluid leakage through a valve and the acoustic emission generated from the leakage. Measurement43(2):274-282.
Zhu, SB.; ZL. Li, SM. Zhang, and HF. Zhang. 2019. Deep belief network-based internal valve leakage rate prediction approach. Measurement133:182-192.
Panahi, S.; A. Karimi, and R. Pourbabaki. 2020. Consequence modeling and analysis of explosion and fire hazards caused by methane emissions in a refinery in cold and hot seasons. Journal of Health in the Field.
Plant, G.; EA. Kort, C. Floerchinger, A. Gvakharia, I. Vimont, and C. Sweeney. 2019. Large fugitive methane emissions from urban centers along the US East Coast. Geophysical research letters, 46(14):8500–8507.
Akhondian, M.; S. MirHasanNia. 2017. Biodiversity of microalgae, a potential capacity in biological and environmental technologies. Journal of Human Environment and Health Promotion,41:39–70.
Defratyka, SM.; JD. Paris, C. Yver-Kwok, JM. Fernandez, P. Korben, and P. Bousquet. 2021. Mapping urban methane sources in Paris, France. Environmental Science & Technology,55(13):8583-8591.
Mohammadi Ashnani, M.; T. Miremadi, A. Danekar, M. Makhdoom Farkhonde, and V. Majed. 2020. The Policies of Learning Economy to Achieve Sustainable Development. Journal of Environmental Science and Technology,22(2):253–274.
Gioli, B.; P. Toscano, E. Lugato, A. Matese, F. Miglietta, A. Zaldei, and FP. Vaccari. 2012. Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environmental Pollution,164:125-131.
Moriizumi, J.; K. Nagamine, T. Iida, and Y. Ikebe. 1998. Carbon isotopic analysis of atmospheric methane in urban and suburban areas: fossil and non-fossil methane from local sources. Atmospheric Environment32(17):2947-2955.
Zazzeri, G.; D. Lowry, RE. Fisher, JL. France, M. Lanoisellé, CSB. Grimmond, and EG. Nisbet. 2017. Evaluating methane inventories by isotopic analysis in the London region. Scientific reports7(1):1-13.
Wever, JL.; GJL. Van Orizande, WB. Rademaker, and GJ. Van Schagen. 2002. Applicability of the Hi-Flow sampler in reducing methane emissions from a technical/economical point of view. Feasibility study; Toepasbaarheid Hi-Flow sampler bij reductie methaanemissie op technisch/economische gronden. Haalbaarheidsstudie.
Bacharach INC. 2015. Hi flowR sampler for natural gas leak rate measurement.
Connolly, JI.; RA. Robinson, and TD. Gardiner. 2019. Assessment of the Bacharach Hi Flow® Sampler characteristics and potential failure modes when measuring methane emissions. Measurement, 145:226–233.
Khorasan Razavi Gas Company. 2019. Determining the statistical population and sample size of field measurements to estimate normal emission inventory Greenhouse gases in the gas network of Khorasan Razavi province.



























Estimation of methane gas leakage from Mashhad urban landfills and evaluation of economic and environmental effects
Abstract
This study, which was conducted in 8 urban gas areas of Mashhad; At first, descriptive statistics of the state of Mashhad urban gas regulators and different leakage modes were presented; In order to analyze the collected data and investigate the causes of leakage, the relationship between 5 variables and the amount of leakage from gas regulators was tested with the Statistical Package for the Social Sciences (SPSS) V.26 software; These 5 variables are: regulator equipment/connections, regulator operation age, regulator service type (domestic, industrial and commercial), urban area and different seasons of the year.
The results of the analysis showed that there was a significant difference between the type of equipment/connections and leakage. (P-Value = 0.0001). Also, a significant difference was observed among other variables of the research (the operation age of the regulator, the type of regulator service (domestic, industrial and commercial), the urban area and different seasons of the year) with the leakage rate (P-Value=0.0001); The pressure drop due to the greater demand of gas consumption in the winter season has reduced the amount of leakage compared to other seasons; The influence of the age of distribution network equipment/connections due to wear and tear and longer life will aggravate the amount of methane gas leakage; Also, the amount of leakage in commercial places had a significant difference with other types of uses; Being in an urban area has also increased the amount of methane gas leakage compared to other areas; The type and quality of equipment and connections as the main and influential factor in methane gas leakage should be considered by managers and officials in this field of work.
Keyword: Methane, Riser, Urban area, Environmental effects, Economy Effects, Gas, Emission


 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb