Search published articles


Showing 3 results for Global Warming

Mrs Elham Fahiminezhad, Dr M Ohammag Baaghide, Dr Iman Babaeian, Dr Alireza Entezari,
Volume 6, Issue 3 (9-2019)
Abstract

Changes in the mean and the extreme values of hydroclimatic variables are two
prominent features of the future climate. Therefore, simulating the climatic
behavior of Shandiz catchment area, an important tourist area in the northeast of
the country, will play an important role in identifying the climate condition and
potential vulnerability of these areas in the coming decades of climate change.
In this study, we will
evaluate the effects of climate change on extreme values of the basin micro scaling
precipitation and temperature in CanESM2 model using SDSM model and
simulating runoff with SWAT model in future decades.
To achieve this goal, the daily temperature and precipitation statistics of the 30
statistical years (1961-1990) of Mashhad synoptic station have been
used. The data of the CanESM2 general circulation model under RCP2.6, RCP4.5
and RCP8.5 scenarios are also used to predict precipitation, the minimum and
maximum temperature for 2041 to 2100.
According to the results, the annual precipitation rises 37 to 54 percent from 2041
to2070 compared to the observation period, and the increase in rainfall of the
2071-2100 rises 52 to 66 percent. Precipitation extreme values, the mean of
maximum and minimum temperatures in future periods in all seasons of Mashhad
station will increase compared to the observation period (1961-1990).In future decades, the average maximum temperature in Mashhad will increase from 4.6 to 0.65 degrees Celsius
and the average minimum temperature will increase 53/1 to 22/4.
By introducing micro scaled time series of the maximum temperature, temperature,
and micro scaled precipitation by SDSM model to SWAT model, the monthly time
series of Shandiz watershed runoff at Sarasiab Station was simulated for the two
periods of 2041-2070 and 2071-2100 under three distribution scenarios of RCP2.6,
RCP4.5 and RCP8.5. For this purpose, first, the model was calibrated and validated
using Shandiz hydrometric station runoff for 2003-2012, and the values of R2 were
65 and 52, respectively. Subsequently, with the introduction of micro scaled time
series of maximum and minimum temperatures, and micro scaled precipitation by
SDSM model to SWAT model, the average annual trend shows that runoff
increases in the coming decades. The lowest average annual increase for runoff is
in 2041-2070 and RCP4.5 scenario, with an increase of 56.1% over the observation
period. The highest increase of average annual monthly runoff is from 2071 to2100
under RCP 2.6 scenario with 53% to 104% runoff compared to the observation period.


 
Dr Ghasem Azizi, Dr Samaneh Negah, Dr Nima Farid Mojtahedi, Mr Yossef Shojaie,
Volume 10, Issue 1 (5-2023)
Abstract

Abstract
The continuous and expanding process of global warming, especially in the Asian region, has provided the conditions for increasing drought and the spread of desertification. Many deserts had ecologically balanced soil conservation conditions that until recently have become new sources of dust generation now. Numerous examples have occurred in Iran due to its special geographical location among some of the most important deserts in the world. Temperature anomaly (about 8º C) last winter in the Caspian Sea basin has created new dust sources for the southern coastal of the Caspian Sea. On 30-31 May 1400, dust emission was recorded in meteorological stations of Gilan province in terms of area and concentration. The implementation of HYSPLIT chemical backward models shows the emission of dust from the northwestern region of the Caspian Sea to the southern coastal of the Caspian Sea (Guilan province) for the first time with such intensity. The source and origin of this dust was identified in the Rhine desert in the northwest of the Caspian Sea. Continuous and unprecedented warming in the region and accompanied by strong north-south currents provided the conditions for the emission of this dust. Due to the origin of the emitted dust as well as the geographical and topographical conditions of the Caspian Sea basin, the level of this dust was assessed from the ground level to an altitude of less than 1500 meters. Analysis of synoptic conditions using NCEP / NCAR analysis data with 1 degree horizontal resolution indicates the establishment of high pressure air mass with a center of 1018 hPa on the northwestern parts of the Caspian Sea and the penetration of high pressure to the southern coastal areas of the Caspian Sea. Due to the appropriate pressure gradient and increasing wind speed, dust-producing springs are formed on the desert areas of the Rhine and with the dominance of the northern currents (south-south), the dust mass is sent to Gilan province.

Keywords: Global Warming, Dust emission, Russian Rhine Desert, Gilan.



 
Mrs Halimeh Shahzaei, Dr Mohsen Hamidianpour, Dr Mahsa Farzaneh,
Volume 10, Issue 2 (9-2023)
Abstract

Spatial analysis of Iran's climate change from the point of view of sensible heat flux and latent heat flux by Bowen method

Halimeh Shahzaei; Ms.c student of Climatology, Departement of Physical Geography, University of Sistan and Baluchistan, Zahedan, Iran.
Mohsen Hamidianpour[1]; Associate Professor, Departement of Physical Geography, University of Sistan and Baluchistan, Zahedan, Iran.
 Mahsa Farzaneh; Ph.D Graduated. Climatology.



Abstract
Sensible heat flux and latent heat flux are among the variables that are closely related to temperature and humidity and show heat transfer on a surface. So, their changes can be considered related to changes in temperature and humidity. In this regard, the current research aims to analyze and reveal the climatic changes of Iran by examining the course of changes in sensible heat flux and latent heat and the ratio between the two. For this purpose, NCEP/NCAR reanalysis data including sensible and latent heat flux during the period 1948-2020 was used in Iran. Bowen coefficient was calculated from the ratio of these two heat fluxes. Interpolation methods were used for their spatio-temporal analysis. In addition, by using the non-parametric methods of Mann-Kendall and Shibsen, spatial and temporal changes were also investigated.  The first part of the results showed that, spatially, the Bowen coefficient is a function of latitude and roughness. And in terms of time, the lowest value corresponds to the month of January and the highest value corresponds to the month of July. The results of the second part show that the Bowen coefficient has a positive trend over time. Its upward trend indicates an increase in the dryness coefficient of the country. So that this situation can be seen in the positive trend and increase in temperature.
Keywords: climate change, Bowen coefficient, global warming, spatio-temporal analysis.
 
[1]. Autehr corespound:Email: mhamidianpour@gep.usb.ac.ir
 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb