Search published articles


Showing 2 results for Logistic Regression Model

Sahar Darabi Shahmari, Amir Saffari,
Volume 6, Issue 2 (9-2019)
Abstract

Landslide susceptibility mapping is  essential for  land use  planning and decision-making especially in  the mountainous areas. The main objective of this  study is to produce landslide susceptibility maps (LSM) at Dalahoo basin, Iran  using two statistical models such as an  index of entropy and Logistic Regression and to compare the  obtained results. At the  first stage, landslide locations identified by Natural Resources Department of Kermanshah Province is used to prepare of LSM map. Of the 29 lanslides identified, 21 (≈ 70%) locations were used for the landslide susceptibility maps, while the remaining 8 (≈ 30%) cases were used for the model validation. The landslide conditioning factors such as slope degree, slope aspect, altitude, lithology, distance to faults, distance to rivers, distance to roads, land use, and  lithology  were extracted from the spatial database. Using these factors,  landslide susceptibility and weights of each factor were analyzed by index of entropy and Logistic Regression models. Finally, the ROC (receiver operating characteristic) curves for landslide susceptibility maps were drawn and  the areas under the curve (AUC) were calculated. The verification results showed that the index of entropy model (AUC = 86.08%) performed slightly better than conditional probability (AUC = 80. 13%) model. The produced susceptibility maps can be useful for general land use  planning in the Dalahoo basin, Iran.


Fahimeh Pourfarrashzadeh, Fariba Beyghipour Motlagh, Mortaza Gharachorlu,
Volume 11, Issue 1 (5-2024)
Abstract

This study aimed to systematically explain the potential of the landslide occurrence to provide a prediction model of the possibility of this phenomenon in the Yamchi catchment in Ardebil province. In this regard, both approaches of discrete and continuous variables were used by means of overlay and logistic regression, respectively. Independent variables included elevation, slope, aspect, lithology, annual rainfall, roughness, general curvature, topographic wetness index, vegetation index, distance to fault, distance to stream and distance to road. The results, firstly, revealed the areas with high landslide potential by the matching layers of independent variables with the landslide layer in the geographical information system (GIS). These areas were in the middle elevation, high slopes, northern slope, high roughness, erodible formations, high rainfall, medium vegetation, surroundings of faults and rivers. Secondly, the results of the logistics regression model by providing a prediction equation of probability of landslide occurrence showed that the resulting model with pseudo r2 and ROC 0.22 and 0.86, respectively, had good power and efficiency to predict landslide through the catchment. In addition, the resulting beta coefficients for independent variables indicated that the importance of the variables was as follows: vegetation index distance to road, rain, lithology, distance to fault, elevation, topographic wetness index, roughness index, aspect, slope, and distance to river. In the end, the need to pay serious attention to the supporting and protection of vegetation cover of the mid -range and upstream of the catchment was determined because of unstable geomorphic conditions of these areas.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb