Hamed Abbasi, Siamak Sharafi, Zohreh Maryakji,
Volume 4, Issue 2 (7-2017)
Abstract
Natural hazards are basically the changes that occur in environmental conditions, causing a disruption of the natural life of the people and their exposure to hazardous and degradable elements and elements. Establishing cities and residential areas on landforms has created new perspectives. The development of these areas has altered the geostationary balance of many landforms, and the response of geosystems is an expression of geomorphological hazards such as land subsidence, fault activity, flood, and the like that threatens residents of urban areas. The trend of population growth in the urban areas of Lorestan province in western Iran has also caused the physical expansion of the provincial cities in the periphery. This development has resulted in landslides and areas that, in many cases, have not been studied in environmental and environmental sustainability. The consequence of this is to increase the risk factor of these areas against a variety of hazards. In this regard, the aim of this study is to analyze the geomorphic hazards of earthquake, flood, landslide and liquefaction in the 9 major cities of the province and zonation of areas based on the degree of risk, in order to identify the high risk areas, urban management, necessary measures to increase environmental capabilities. And reduce vulnerabilities
In this research, effective factors were first identified in the occurrence of each of the flood geomorphic hazards, landslide, earthquake and fluidization. Then, maps were prepared for each of the factors, topographic maps, geology, geological data, seismicity, etc. from different organizations and maps were prepared. After preparing the maps, the fuzzy standardization method (decreasing and incremental functions) was used to determine the effective impact of each of the effective information layers in the occurrence of each of the hazards. In the final stage, considering the factors affecting the occurrence of any geomorphic hazards, weighing to layers based on their degree of importance was carried out using (AHP) method. At this stage, the final weight of each layer was multiplied in the corresponding layer, and then together and the final map of each of the geomorphic hazards was prepared. After mapping each of the geomorphic hazards of the studied cities, weighing and combining earthquake, flood, landslide and fluidization layers, maps of geomorphic maps of the cities were prepared.
The study of the geomorphic hazards of the city of Poldokhtar in the south of the province suggests that flood occurrence is considered as the most important threat to the geomorphic city of Poldokhtar. There is also a possibility of liquefaction due to the high groundwater level, especially in the north of the city. In the city of Kohdasht, in the west of the province, the risk of flood events is higher than the other hazards due to the river passing as a drainage of the catchment from the city. Geomorphic hazards in the northern city of northern Lorestan indicate that the central part of the city is at risk of landslide and liquefaction and parts of the north, west and south are exposed to flood. The probability of occurrence of geomorphic hazards in the area of Alshatr in the north of Lorestan province is low. So that the northwest and eastern parts of the city are risk free and in other parts, the risk of geomorphic hazards is moderate and low. Surveying the risks of Boroujerd city indicates that parts of the West of the city that are in high risk of flood, landslide and liquefaction are known as high risk areas and southern regions as low risk areas. Also, among the threats of Borujerd city, the probability of an earthquake due to the crossing of the young Zagros fault from the Silakhor plain is more than the other geomorphic hazards. In the city of Azna, the risk of flooding is considered to be the most significant danger to the city, although there is a likelihood of landslide and fluidization. The study of geomorphic hazards in the city of Aligudarz shows that rivers in the west of the city are exposed to geomorphic hazards, especially flood. In the city of Dorood, the flood event seems more likely than other hazards. The flood event in the central part of the city, which crosses the main rivers, has the highest potential. But in general, the risk of an earthquake is the most important geopolitical risk in the city of Dorood. In the city of Khorramabad as the capital of Lorestan province, the southern parts of the city have the highest geomorphic risk due to the high potential of flood and liquefaction. Also, the flood risk is considered to be the most important geomorphic risk in the city.
The study of geomorphic hazards in the major cities of Lorestan province suggests that there is a probability of occurrence of hazards in urban areas, but the types of hazards are different in cities located in the west and east of the province. Studies show that there is a potential for flood events in many cities, especially in southern cities and Khorramabad, in the capital of the province. Cities located in the east of the province (Doroud, Azna and Boroujerd) have a high density of earthquake occurrence due to the fact that they are located in the zone of the young Zagros fault and the Seychelles seismic quake. Nevertheless, according to geological formations, there is a possibility of landslide occurrence in the cities of Khorramabad and Aligudarz. The likelihood of occurrence of liquefaction occurrence in the studied cities is higher, especially in the eastern province of the province, because the urban areas are mainly located in plains with high groundwater and alluvial soils. The final results show that the risk of flood in the western regions of Lorestan province and the earthquake in the eastern provinces of the province are the most important threats to geomorphic cities.
Dr Amir Saffari, Dr Ramin Hatamifard, Dr Mansor Parvin,
Volume 8, Issue 1 (5-2021)
Abstract
Karst Geomorphology effects on the environmental hazard intrinsic vulnerability of groundwater resources (Case study: the Aleshtar and Nourabad basins)
Introduction
Karst is the result of the dissolution (physical and chemical) in carbonate (limestone and dolomite) and evaporate rocks. Karst developing is affected by climatological and geological factors. In the other words Karst landscapes and karst aquifers are formed by the dissolution of carbonate rocks by water rich in carbon dioxide waters. Karst aquifers include valuable freshwater resources, but are sometimes difficult to exploit and are almost always vulnerable to contamination, due to their specific hydrogeologic properties, therefore, karst aquifers require increased protection and application of specific hydrogeologic methods for their investigation. The groundwater protection in karst aquifer has a special importance, because the transit time for unsaturated and saturated zone is so quickly that the attenuation of the pollutant. Karst groundwater vulnerability mapping should form the basis for protection zoning and land use planning. A conceptual framework was devised for vulnerability mapping based on this European approach.
Social and economic life of cities such as Nourabad, Alashtar, and numerous rural societies is connected to the Gareen anticline springs. In this paper we used PaPRIKa method for vulnerability assessment in the Aleshtar and Nourabad basins.
Material and Methods
The Gareen anticline in the Zagros Mountain range is located in the active deforming Zagros fold-thrust belt and Sanandaj-Sirjan zon. Alashtar and Nourabad karst aquifers are located in the north of Lorestan province. There are several thrust faults with northwest–southeast strike such as Gareen-Gamasiab and Gareen-Kahman Faults. Nourabad unit is composed mainly by gray limestone rocks, embedded marl limestone, recrystallized limestone and pyroclastic rocks. One of the most important features of the structural geology of the Alashtar unit, is abundance of the sedimentary rocks and scarcity of igneous rocks in this area. In other words In the Study basins the main geological formations incloud: Bakhtiarian conglomerate, carbonates of Sormeh, Taleh Zang, Pabdeh and Kashkan Formations.
The groundwater vulnerability assessment methods (PaPRIKa) applied at the test sites were designed specifically for karst aquifers. They are based on various types of information concerning the physical characteristics of the unsaturated and saturated zones, the aquifer structure and its hydrological behavior.
The PaPRIKa method takes into consideration criteria for both structure and functioning of the aquifer. Based on EPIK and RISK resource methods, PaPRIKa method was developed as a resource and source vulnerability mapping method, allowing assessing vulnerability with four criteria: Protection, Rock type, Infiltration and Karstification. The P map (Protection) considers the protection provided to the aquifers by layers above the aquifers: the S (soil texture, structure and thickness), Ca (permeability formations), the Uz (thickness, lithology and fracture degree of unsaturated zone) and E (Epikarst aquifer). Moreover, including the catchments of water losses where the vulnerability is higher. R map (Rock type) considers the lithology and the degree of fracturing of the sutured zone. I map (Infiltration) distinguishes concentrated from diffuse infiltration. Ka map (Karstification development) assesses the drainage capacity and the organization of the karst conduits network.
To calculate the vulnerability index, the four mentioned maps(P. R. I. Ka) have been combined using the following equation coefficients (eq.1):
PaPRIKa Index= 0.2 P + 0.2 R + 0.4 I + 0.2 Ka (1) eq
Due to the fact that karst geomorphology has a great impact on the quantitative and qualitative characteristics of water resources and the vulnerability assessment of these resources, fuzzy logic has been used to zonation of the Karst development in the Aleshtar and Nourabad basins. In the fuzzy method used a gamma operator (eq.2):
µ Combination= ((Fuzzy Algebraic Sum) (Fuzzy Algebraic Product)) 1-γ (2) eq
The vulnerability map for aquifers was prepared using the software Arc GIS10.4.
Discussion and Results
In the Gareen Antarctic region, due to the availability of suitable Karstification, includes: Lithology, Active Tectonics, Mediterranean climate (with average rainfall of between 454-448 mm and average temperature of 13 C˚) features are formed by various forms of karst such as closed pits (Doline, Swallow Hole, Aven, Polyeh (Peljee), several types of Karrens, dissolution Cavities, small and large Caves and Springs. The most important karst features in this area including Dolines (Solutional, Collapse, Subsidence and Dropout) which are known the Karst Nival. Based on the Karst development zoning map by using the fuzzy logic, 15% of the study area has been developed. Due to the vulnerability based on PaPRIKa method, the Aleshtar and Nourabad basins divided into 5 categories. Resuls show that the vulnerability of the study area is mainly classified as High or Very High, due to the highly developed Epikarst, which minimizes the protective function of the unsaturated zone. There are many karst landforms such as dolines and Swallow Holes that are highly vulnerable.
Conclusions
The final evaluation of the vulnerability ground waters in the Aleshtar and Nourabad basins using the PaPRIKa method shows that the study area is divided into five vulnerable (very high, high, moderate, low and very low). So that areas with a very low, low and moderate vulnerability are 27.3%, 22.3% and 20.6% of the basin area respectively. Also that areas with a high and very high vulnerability are 17% and 12.8% of the study area cover, respectively. Due to the lack of soil and plant cover, heavy snowfall and the formation of Karst-Nival (including Dolines) highlands of the Gareen Anticline have a very high vulnerability potential. Validation of the results of the karstic aquifers vulnerability to Electrical Conductivity (EC) data and monthly discharge of springs shows that the Zaz and Ahangaran springs are in a high vulnerability zone. In the aquifer of this springs, Rapid reductions in EC are detected after each recharge period. Also in contrast Rapid increases in EC with reductions in recharge. This situation shows the High developed of this aquifers, as a result, the potential for vulnerability in these aquifers is high.
But in the springs of Niaz and Abdolhosseini in the Nourabad basin, the EC chart has not changed much compared to recharge. Therefore, the aquifer of these springs is less undeveloped or low developed and also less vulnerable.
Key Words: Gareen Anticline, Geomorphology, Karst, Lorestan, Pa
Hamed Heidari, Darush Yarahmadi, Hamid Mirhashemi,
Volume 9, Issue 2 (9-2022)
Abstract
Revealing surface reflection forcings of land cover in Lorestan province using MODIS sensor products
Introduction
Human interventions in natural areas as a change in land use have led to a domino effect of anomalies and then environmental hazards. These extensive and cumulative changes in land cover and land use have manifested themselves in the form of anomalies such as the formation of severe runoff, soil erosion, the spread of desertification, and salinization of the soil. The main purpose of this study is to reveal the temperature inductions of the land cover structure of Lorestan province and to analyze the effect of land use changes on the temperature structure of the province. In this regard, the data of land cover classes of MCD12Q2 composite product and ground temperature of MOD11A2 product of MODIS sensor were used. Also, in order to detect the temperature inductions of each land cover during the hot and cold seasons, cross-analysis matrix (CTM) technique was used. The results showed that in general in Lorestan province 5 cover classes including: forest lands, pastures, agricultural lands, constructed lands and barren lands could be detected. The results of cross-matrix analysis showed that in hot and cold seasons, forest cover (IGBP code 5) with a temperature of 48 ° C and urban and residential land cover (IGBP code 13) with a temperature of 16 ° C as the hottest land use, respectively. They count. In addition, it was observed that the thermal inductions of land cover in the warm season are minimized and there is no significant difference between the temperature structure of land cover classes; But in the cold season, the thermal impulses of land cover are more pronounced. The results of analysis of variance test showed that in the cold period of the year, unlike the warm period of the year, different land cover classes; Significantly (Sig = 0.026) has created different thermal impressions in the province. Scheffe's post hoc analysis indicated that this was the difference between rangeland cover classes and billet up cover.
materials and Method
In this study, to reveal the relationship between land cover levels and different land use classes, cross-information matrix analysis was used in the ARC-GIS software platform. Since one of the main objectives of the study was to investigate and reveal the albedo inductions of land cover classes in Lorestan province, so the relationship between these two factors was investigated by cross-matrix analysis technique. In this regard, two sets of data were used. The first set of data was related to land cover classes of MODIS sensor composite product with a spatial resolution of 1 km and hierarchical data format (MCD
12(Q2 (MCD product) which was obtained from the database of this sensor
Conclusion
Land cover classes or perhaps it can be said that land use is one of the most important shapers and determinants of climate near the earth. In this study, it was observed that in general, 5 major land cover classes in the province are separable, among which rangeland and forest lands account for 85% of the total land cover of the province. On the other hand, it was seen in this study that the average spatial albedo of the province in spring, autumn and winter is about 0.2, which is very close to the global value of this component, but in winter the average value of this index in the province reaches 0.3, which can be increased Shows attention. The five land cover classes in the province had their own unique albido induction in winter, which was separable and distinct from each other, but in spring, summer and autumn, no significant distinction of albido induction of these land cover was revealed.
Keywords: Land cover changes, Land surface temperature, Cross-information analysis matrix, Lorestan province