Search published articles


Showing 18 results for Rain

Fatemeh Sotodeh, Bohloul Alijani,
Volume 2, Issue 1 (4-2015)
Abstract

Precipitation is one of the important aspects of the Earth’s climate that has both spatial and temporal variations. Understanding the behavior of this element and analyzing its spatial and temporal variation is importantwhich can lead to a comprehensive and detailed planning for water resource management and agriculture. Geostatistical techniques and spatial autocorrelation analysis are the most widely used techniques in the field of the spatial continuity. Spatial autocorrelation analysis is applied to help researchers understand the spatial patterns in the area.

      The purpose of this study is to identify the heavy precipitation spatial patterns in Guilan Province. For this purpose, the 6- hourly sea level pressure of the network from  0 to 120 Easter longitude and 0 to 80 Northern latitude with 2.5×2.5 degrees spatial resolution were obtained from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) for the period 1979-2010. The daily precipitation data of 21 stations were obtained from the Islamic Republic of Iran Meteorological Organization and Ministry of Energy.

      Guilan province is one of the most humid regions in the country. The heavy rain days were selected as days when more than 30 percent of the all stations had daily rain amount more the 95th percentile. As a result, 321 days were selected as heavy and widespread rainy days. By using principal component analysis these 321 days were reduced to 9 factors. These factors then were subject to cluster analysis with Ward method and resulted in three surface pressure patterns of heavy rainy days. Within the resulted pressure patterns by using local geostatistical techniques we identified the heavy rain spots and their spatial orientation. These spatial methods include Kriging,  Geostatistical Analysis, and Anselin local Moran index.

According to the results of this research, the first pattern was characterized with a high pressure over northern part of the Black Sea causing the highest Variance of heavy rainfalls. The second pattern is identified as a low pressure on the Black Sea. But the third pattern showed a precipitation distribution with low variation caused by the Siberian high-pressure. The results of Spatial Statistics techniques indicated that heavy rains were clustered in all there patterns. The clusters of heavy rains were localized mostly over the coastal areas and some over the central regions. The clusters of the western high-pressure patterns penetrated somewhat inside the province, while clusters of the Siberian high pressures was located on the shoreline of the province. The precipitation of western migratory high-pressures was heavier than of the Siberian high-pressure. The results of the standard deviation ellipse showed that heavy rain clusters were oriented in the east-west direction and were nonhomogeneous. While the ones oriented in the south east direction were more homogeneous and clustered. Because of this arrangement, the entry of moisture from the Caspian Sea is relatively concentrated on the East or North East. Because of the concentration of heavy rains in the central areas of the coast, the risks of floods and soil erosion is very high in these areas. This study showed that contrary to the popular belief, the heavy rains of Guilan were produced by western systems and the role of the Siberian high pressure is less important and is limited only to the coastline.


Saeed Balyani , Mohammad Saligheh,
Volume 3, Issue 2 (5-2016)
Abstract

The results of this study indicated that the synoptic patterns that lead to heavy rainfall in 22 March 1996, 24 mar 1995 and 17 November 1994 in the northern portion of FARS province includes: the low pressure that located in eastern part of Mediterranean and Black sea and southern part of Caspian Sea that created by trough that located at the middle level of atmosphere. In addition to this low pressure, the bipolar pattern in of Saudi Arabia  having negative vorticity that lead to transporting moisture from (India ocean, Red sea, Arab sea, Persian gulf and Oman Sea )   and also to be alignment with east Mediterranean sea and black sea low pressure as ascending agent lead to precipitate of rainfall in mentioned days . and also we found that in 29feb 1996 as second patterns rainy day, a strong deep trough transporting moisture from Soudan region and east Mediterranean  low pressure, cause alignment of this atmospheric systems. In fifth patterns (21 mar 2001), existing an low pressure and positive vorticity center in east of Pakistan simultaneously with existing negative vorticity center in central part of Iran, lead to high pressure gradient which cause rainfall events in study area. The main founding of this study were that reveals the role of low pressure of east, north and south of Caspean sea in heavy rainfall events in study area.

Pre-warning of natural hazards events such as heavy rainfall has a significant effect in damage reducing. The analysis of synoptic-dynamic condition of atmospheric circulation patterns, has great importance in recognize affective agents in heavy rainfall events. Especially this heavy rainfall could lead to flash floods suddenly. This study's aim is to analysis and extraction of daily heavy Rainfall lead atmospheric patterns in northern portion of Persian gulf (Helle and Mond Subbasin).

The study area, Helle and Mond basins, with about 21,274, 47653 km2 area,respectively are located in the south of Iran. The Helle basin approximately is between 28° 20'N and 30° 10'N latitudes and between 50° E and 52° 20'E longitudes and Mond basin is between 27° 20' and 29° 55' latitudes and between 51° 15' and 30° 27'E longitudes.These basins are located in sides of a massive sources of moisture, Persian Gulf.

In this study we investigate the data of daily rainfall of 37 synoptic and meteorological station of study area during 1991 to 2011(20 years) to extraction the atmospheric patterns lead top heavy rainfall. In this study in order to archiving heavy rainfall days based on 95 percentile in study area, the data of sea level pressure, geopotantial high of 300 and 500 hp and also data of verticit and stream line and omega in the spatial framework of -10 to 100 longitude and 10 to 70 Latitude has been selected. Then we create the sea level pressure matrix as rainfall associated days, based on Lond method of Correlation to classify days.

Our founding indicated that the main synoptic systems that lead to heavy rainfall is related to low pressure in eastern Mediterranean  and southern part of Caspian sea. So that in detected rainfalls patterns shown that the transporting moisture from nearby sea by high pressure of Saudi Arabia by associating eastern Mediterranean low pressure and deep strong trough in east and southern part of Caspian sea  cause heavy rainfall events in study area. So that the low pressure located in eastern and southern portion of Caspian sea could affect the study area.


Khalil Rezaei,
Volume 3, Issue 3 (10-2016)
Abstract

Erosion is one of the most destructive and continuous phenomena that cannot be prevented and only could be controlled by studying the chemical and physical properties of soil. Marls are one of the most important sedimentary units in Iran which have high rate in sediment production and erodibility because of their Physico-chemical characteristics. These properties caused large environmental and civil damages and so, the study of erosion and erodibility of the marl units is essential. One of the most important points about marls is grain size nature and elements in them and their effects on amount of erosion. The physical and chemical proprieties of soil are very important in the development of badlands. This study deals with Physico-chemical properties of Marl and its impact on various land forms of erosion in Lotshur-Pakdasht region. Badlands are a typical landform of greatly dissected fine-grained materials in arid or semi-arid environments like Lotshour, although they are also found in different climatic conditions. Climate and geology are several factors determining the tendency to badland formation. Runoff, rain splash, marl and loose formations together with massive wasting processes such as creep, sliding and flow, become the dominant factors determining landform genesis, resulting in the formation of badlands in Clayey-silt slopes.

In this research, in addition to sampling the soil and sediments, rain simulated (using rain simulators) in two marl, two conglomerates and two alluvium  units, in area with different forms of erosion and runoff and produced sediment amounts in each point were measured in laboratory. Also, at the same time, soil samples were taken from adjacent plot and the amount of runoff and sediment produced in the laboratory, separated and measured in the lab for all points. parameters such as Ph, electrical conductivity, content of sodium, potassium, calcium, magnesium, gypsum, chlore, carbonate, solfate, nitrate, organic carbon, CEC was measured. In analyzing the data, analysis of correlations and Pearson and Spearman comparison of means method were used in SPSS software. Also, grain size and Aterberg limits for all samples were determined in lab.

Mineralogical, geochemical and grain-size composition of soil and pore-water chemistry parameters was characterized on both eroded (south-facing) and non-eroded (north-facing). Only a few grain-size parameters and mineralogy discriminate eroded from non-eroded slope substrates. Erosion occurs where the fine fraction is abundant. This may be due to reduced permeability in the eroded soil, whereas the non-eroded one is more stable with respect to weathering, as it is more permeable. The abundance of clay minerals is affected by pedogenetic processes in the non-eroded slope, which increases in mixed layers and indirectly reduces the amounts of other minerals, making clay mineralogy a discriminating parameter in the two different types. Chemical data enable discrimination between eroded and non-eroded slopes. pH, SAR (sodium adsorption ratio), TDS (total dissolved salts), mineralogy and PS (percentage of sodium) are distinctive parameters for both eroded and non-eroded slopes. TDS increases in depth in the non-eroded slope, whereas the maximum TDS is just below the crust in the eroded one. On average, eroded substrates are higher in pH, SAR and PS than non-eroded ones. The ESP (exchangeable sodium percentage) of the eroded slope has a higher value than the non-eroded one. Crusts are less dispersive than eroded substrates, and non-eroded substrates behave as crusts. This suggests that the portion of the slope most severely exposed to weathering tends to stabilize, due to strong decreases in SAR, PS and ESP. Several diagrams reported in the literature show similarly anomalous crust samples on eroded slopes, compared with other samples coming from greater depths on eroded slopes. In the present case study, the exchangeable form of Na characterizes crusts more than the soluble form. The meaning of maximum SAR and TDS (and covariant parameters) is interpreted as the effect of decreased permeability, as suggested by a local increase in the fine-grained fraction, which coincides with maximum TDS. Variations in SAR values are of primary importance for soil erosion, because many authors have used solution chemistry (i.e., SAR, PS, TDS, EC) as a descriptor of dispersity.

            Based on results of analysis of variance in various forms of erosion are significantly different in the sodium ion, sodium absorption ratio and the percentage of clay. The average amount of sodium ion and sodium absorption ratio in marl samples of region, increase from sheet to gully erosion forms while average clay percentage decreases in this trend. Finally, three variables of sodium ions, sodium absorption ratio and clay percentage of marl samples can be significant factors in erosion and related forms in this region. This study describes the erosional mechanism, which involves morphological and geographic exposure and climatic elements, as well as grain size, mineralogy, chemistry and exchangeable processes of soils.

In analyzing the data, correlation analysis and comparison of averages by the SPSS software has been used. As well as a brief comparison between north and south facing slopes that are different in terms of erosion, was also performed. Based on statistical analysis of in various land forms of erosion are significantly different in the sodium ion, sodium absorption ratio and the percentage of silt and clay. The average of sodium ion value and sodium absorption ratio increase from surface to gully erosion form and average silt percent reduced from surface to Gully erosion in marls outcrops in this area. Also, three variables of sodium ions, sodium absorption ratio and clay percent factors can be seen in the erosion of marl and create various land forms of erosion in the region.


Said Balyani, Yones Khosravi, Alireza Abbasi Semnani,
Volume 3, Issue 4 (1-2017)
Abstract

Hazard is potential source of harm or a situation to create a damage. So identification of zones exposed to hazards is necessary for planning or land use planning. But this situation becomes more critical when they appear at the population centers. So applying the principle of passive defense based on environmental capabilities is unarmed action that caused the reduction of human resources vulnerability, buildings, equipment, documents and arteries of the country against the crisis by natural factors such as drought, flood, earthquake, etc. Considering the possible occurrence of such risks in population centers, ready to deal with what is known unpleasant and undesirable consequences is necessary. On this basis and given the importance of population centers in Helle and Mond basins, in this study, the authors tried to analyze the Rain hazards of drought and flood.

The study area,Helle and Mond basins, with about 21,274, 47653 km2 area, respectively are located in the south of Iran. The Helle basin approximately is between 28° 20'N and 30° 10'N latitudes and between 50° E and 52° 20'E longitudes and Mond basin is between 27° 20' and 29° 55' latitudes and between 51° 15' and 30° 27'E longitudes.These basins are located in sides of a massive sources of moisture, Persian Gulf.

In this study, data from 23meteorological and synoptic stationsstations, during aperiod of20 years (1992-2011)in northern region of the Persian Gulf (Mond and helle basins)were used to calculate Standardized Precipitation Index (SPI). The data were collected by the Iranian Meteorological data website (http://www.weather.ir). The SPI is primarily a tool for defining and monitoring drought events. This index may be computed with different time steps (e.g. 1 month, 3months, 24 months). The SPI is defined for each of the above time scales as the difference between monthly precipitation (xi) and the mean value ( ), divided by the standard deviation. To assess flood risk zones, the flood, annual evapotranspiration, cities and populations centers layers were collected in Helle and Mond basins position. The annual precipitations and the SPI maps were drawn by Geostatistics, Kriging. It also the flood and annual evapotranspiration layers were weighted by Euclidian distance method, separately. Finally, all layers are weighted by AHP and fuzzy-linear methods (descending and ascending linear function) into vulnerable layers. The final map of vulnerable areas with flood and drought high risk was drawn based on the algorithm of linear-Fuzzy in a raster format.

According to the results, eastern, north eastern and south eastern part of Mond basin had high annual precipitation. Based on this result, it said that these parts of study area were known the least dangerous areas of vulnerability. The results also showed that with passing of the western regions and going to the center of the study area the annual rainfall have been added over the years. Kazeron, Chenar Shahijan, Firouz Abad, Borm plains and some parts of Khane Zenyan and Dash Arzhan are cities located in this regions. Low latitude, Proximity to the warm waters of the Persian Gulf, low annual precipitation and high temperature causing evaporation and inappropriate environmental conditions in Boushehr province and some coastal cities such as Genaveh, Deilam, Boushehr, Baghan, Lar and Khonj. Accordingly, west, north west, south and south west regions in Helle basin were located in extreme vulnerability zone with a loss of annual rainfall for drinking and agricultural production and poor nutrition underground aquifers.


Alireza Hosseini, Hediyeh Akbari Ghamsari,
Volume 3, Issue 4 (1-2017)
Abstract

Classifying daily climate circulation patterns has always been considered by climatologists. Investigating climate changes such as rainfall and the temperature in a same single time and place suggests that these changes are strongly influenced by atmospheric circulation patterns.

Regarding so, climate changes, known as variables here, such as rainfall, temperature, and other related phenomena, which are exemplified as flood, drought, glacial, and etc. are associated with special types of climate circulation patterns. The continuity and alternation of the systems are classified or identified climatically, therefore weather classification system is one of the main objectives of the synoptic climatology (Huth, 1996). Since every weather type creates its own special environmental condition, lack of identification in weather type frequencies leads to a difficult environmental explanation and alternation (Alijani, 1380: 64).

Identifying atmospheric circulation patterns different things that can be expressed inductively such as frequency, intensity, and spatial distribution of climate changes in rainfall and its physical causers (VicenteSerrano and LopezMoreno, 2006).

Heavy rainfall in many watersheds, particularly in the basin and sub-basin which involve less time exposure, causes floods and it also damages human, natural resources, infrastructure utilities and equipment. Before the occurrence of this kind of rainfall, it requires a deep understanding of the synoptic systems of their creator. This understanding is only possible through the classification and identification of rainfall patterns which used to cause floods in the studied basins.

The present study also aims at identifying and classifying the synoptic patterns of rainfall during the statistical stage of the study in the basin which caused flood in Taleqhan basin.

Taleqhan basin with area of (65/1242) per square kilometers is located in "36֯, 5', 20" to "36֯, 21', 30" north latitude and "50֯, 36', 26" to eastern longitude "51֯, 10', 18".

The study area is 120 kilometers away from North West of Tehran and located in a relatively high mountainous area in Alborz Mountain. This area is ranging from 1700 meters to 4400 meters above sea level. Average rainfall in this basin ara is 515/16 mm and its annual temperature fits 10.5 centigrade.  About 79 percent of rainfalls occurs from the cold weather period in November to March. It is also know as semi-humid cold weather based on the De Martonne classification.

Circulation algorithm (CA) and pattern clustering algorithm (PCA) were determined based on the daily methods in synoptic scale by applying information from stations in Taleqhan basin (Gateh deh, Dehdar, Dizan, Snkranchal, armouth, Ange, Joostan, Zidasht). In order to classify the weather type, daily average rate of 500 HPa and the sea level pressure (SLP) were extracted and reconstructed over the period (1980-2011) at the 2.5 degree of NCEP. Selected range includes 608 points from latitude of 10 to the 60 of northern degree, and latitude of 10 to 80 of eastern degree.

Principal components method mixes the interrelated points and reduces the matrix size, so 13 main components are remained that they includes 93 percent of the total variance. This study employs S array and Varimax rotation to identify different types of weather. It also makes use of K-Means clustering method to classify daily weather types. And finally, a matrix was formed in 118×608 dimension for 118 common days of rainfall among stations. All days were divided into four groups. They offer the most common climate circulation patterns in the proposed area. At the end, and finally integrated maps of sea level pressure and 500 HPa were drawn for each weather type. 

According to the results from factor analysis, 13 main elements were selected that they included 93% of the total variance of the data. According to the above mentioned method, all days (118 days) during the statistical period (1980-2011) were divided into 4 groups which provide the most climate circulation patterns in the study area. Then, integrated maps of sea level pressure and 500 HPa range were drawn for each of the types. Clusters were numbered according to the K-Means arrangement, and they were named based on the pressure patterns and the way circulation lines were ordered.

The classification shows two different resources for rainfall in this basin.

A: Those rain systems that are entered to the country from the West and South affect this basin. These systems humidity are caused by the Red Sea, the Mediterranean sea, the Black Sea, and the Atlantic Ocean. (B) Some parts of the Caspian coast rainfalls and the northern part of the Alborz mountain that has received their humidity from the Caspian Sea and it has infiltrated northern high-land, causes the rainfalls. It enters the basin from the wide valley of Sefid Rood. According to the rainfall measuring stations data, the least rainfall area is in western, which includes low-land areas. And the most rainfall area is its northern east. Rainfall in this area, in terms of rainfall time distribution in a year, is the Mediterranean. It does not involve a complete dry climate in summer and it takes 3 to 4 percent of the total rainfall.  Rainfall in the basin, respectively, is distributed in winter, spring, fall, and summer.


Ali Bayat, Mohammad Saligheh, Mehri Akbari,
Volume 4, Issue 2 (7-2017)
Abstract

Cyclones as the most important factor in the turbulence of mid-latitude regions are low pressure centers that have one or more closed Isobaric curves. Mid-latitude cyclones are responsible for transfer of the heat and moisture between the tropics and the polar regions. Mediterranean cyclones have the most important role in Iran's rainfalls and get from different tracks to the country and affect Northwest, West and South West of Iran in the cold period of the year. Cyclones are the prevailing weather phenomenon in Mid-latitude region and studying the characteristics and effects of these phenomena has always been of interest to climatologists and meteorologists. Iran which is located in mid-latitude region, actually is located in the path of one of the world's largest cyclone formation and the Mediterranean Sea has a main impact on the rainfall occurrence in Iran. Regarding the importance of cyclones in rainfall occurrence in Iran, especially in cold season, studying this atmospheric event seems very necessary.
The aim of this study, is to identify, tracking and analysis of the winter season (December, January and February or DJF) rain producing cyclones using special database and algorithm during three recently decades (1979-2009). 
In this study, in order to specify, tracking and statistical analysis of the DJF rain producing cyclones, relative Vorticity of 700 hPa were received from ECMWF data center  with AWT IMAGE spatial resolution  and temporal resolutions of 6-hourly for a 30 years period (1979-2009). The study domain includes Mediterranean and Middle East, from AWT IMAGE E to AWT IMAGE E and AWT IMAGE N to AWT IMAGE N.
Cyclone identification will follow the approach presented in Blender et al. (1997) and Flaounas et al. (2014), including two important points and conditions: 1- A cyclone is considered to be a relative Vorticity extrema, thus the aim will be to look for the maximum value of relative Vorticity at the 700 hPa level in a box of AWT IMAGE grid points. 2. For the intensity of the cyclone, the threshold of relative Vorticity, is considered equal or greater than AWT IMAGE. Then by 6-hour tracking the maximum amount  points of Vorticity  and connecting them to each other, identification and routing of cyclone is implemented. The track AWT IMAGE can be written as AWT IMAGE, where AWT IMAGE describes the cyclone position in sequential time steps t = 0, … , T, which are given at 00, 06, 12 and 18 GMT. The initial position is considered the first detected maximum of relative Vorticity. During the cyclone detection and tracking method, different threshold values are commonly applied to eliminate, for instance, the weakest centers and short living systems. For this reason, the threshold of equal or greater than 8 time steps (3 days and more) is considered based on Alijani (1366) to eliminate short living cyclones.
In this study, climatology of cyclones such as genesis and lysis centers, tracks and frequencies in the Mediterranean Basin and Middle East were analyzed. The results showed that, center and eastern part of the Mediterranean region include Aegean Sea, Cyprus, and northern borders of Mediterranean Sea, Adriatic Sea and also Red Sea, Sudan and Iraq, are most important cyclogenesis centers in winter season.
These cyclones which form in these cyclogenesis centers, move to the east with two eastward and northeastward distinguished directions. In northwest of Iran, the cyclones by passing over West and East Azerbaijan and Ardebil provinces in eastward and northeastward directions, move into western and southern shores of Caspian Sea. In southwest of the country, the cyclones are entered into Iran over Khozestan, Chaharmahal and Kohkilouyeh provinces. Part the cyclones are moved into center and northeast of the country with northeastward direction and other part by crossing over southern shores of the country move to the southeast of the country. In mid-west of the country, the cyclones are arrived into Iran in three different tracks. The most important path is Kordestan's path which the cyclones in the origin of Mediterranean are entered eastward into Iran by crossing over Zanjan and Hamadan provinces, under the Alborz ranges are moved into east and northeast of the country. Two other paths are observed in Ilam and Kermanshah Provinces which in these tracks also the cyclones are approximately moved eastward into center and northeast of the country. The results also showed that eastern part of the Mediterranean region specially Cyprus, Aegean sea, Adriatic sea, Red sea and Sudan and also Iraq are most important wintertime cyclogenesis centers of Iran. The main entrance paths of the cyclones includes northwest, mid- west and southwest. The averages cyclones lifetime are 4.5 days, movement speed is about 20 km/h and also travelling length is about 1700 km. Of the other notable results we can refer to decreasing of the rain producing cyclones during 3 last decades. 

Ali Mohammad Khorshiddoust, Mehdi Asadi, Hassan Hajimohammadi ,
Volume 4, Issue 2 (7-2017)
Abstract

Thunderstorms are among the first meteorological phenomena, which have attracted human attention. Thunderstorms with rain showers and storms accompanied by hail and their role in causing sudden floods, both in terms of agriculture and human and financial losses, have been noticed by researchers. Rain hail of bullets or pieces of ice ascends very high in elevation due to the weather conditions along with electrical features occurrence. Hail grains or pieces of ice with diameters of 5 to 50 mm occasionally take longer time to be made up. Strong growth of hail through severe and repeated vertical movements of air in cumulonimbus clouds freezes the absorbed water droplets around hailstones. Few thunderstorm hails arrive on land many of which even contain no hail even in the most suitable parts of the clouds. The creation and hail falling, despite being warm and humid in the lower atmosphere and the ascending of clouds condensed with respect to the altitude and cold weather are coupled with the continuing maximum air instability. Because of the importance of hail event, studies on the formation and growth of hail in different countries are conducted for its prediction. In connection with hail and hail storms extensive research work has been carried out in including: Costa et al. (2001), Simonov and Gergiev (2003), Whiteman (2003) and Sterling (2003).
To investigate the thunderstorm and hails occurred in the region, we examined weather conditions. Initially the values of pressure, temperature and dew point temperature by the radiosonde measurements in different layers of the atmosphere were studied and the plotted graphs were obtained from NOAA. In the next stage for a closer look at weather conditions parameters like air temperature (Air), sea level pressure (SLP), geo-potential height (Hgt), specific humidity (Shum), vertical velocity (Omega) orbital wind component (Uwnd) and meridional wind component (Vwnd) were analyzed. The data records were collected from the website of the National Center for Environmental Prediction and National Climate Science (NCEP/NCAR). Instability investigation in the atmosphere for different levels of instability indices was applied.
Investigation on instability indices showed that on the first day the ascending index values (LI) were at 2-, which are the values added in the next two days. These conditions prove that the atmospheric turbulence is intensified in the days after the first day. By examining the thickness of the atmosphere it is seen on the Azerbaijan area On 16 July that on 5785 geo-potential meters the next day was associated with reduced 51 meter geo-potential added value at the third day. The results also revealed that the atmospheric precipitation of water values is calculated on a three-day index value of 17, 18 and more than 23 mm per day. To check the status of stormy weather index (SWEA) and K we found that the occurrence of thunderstorms in that area started on 16 July, approaching the end of high value added indicators that show strengthening of storms and their destructive mechanism in the day after the end of the other.
 
Investigation of thermodynamic charts showed that rapid convective ascent of available potential energy depending on the weather in the region has been so high and caused the weather to approach three days in advance to the upper layers of the atmosphere and atmospheric turbulence was created for the region. Examining the rainfall map of geo-potential height and vortices in 500 hPa on the first day exhibited that tthunderstorms were the result of interactions of the atmosphere, so that in middle levels the strong condensation of location with a range of more than 25 degrees of latitude on Caspian Sea was created and polar latitudes spread to nearby areas. On the second day, high-altitude thunderstorm in the core atmospheric cut-off formed on the Caspian Sea on the East of Turkey, northern Iraq and North West of Iran created the geo-potential height of the center of the 5750 geopotential meter. On the third day, atmospheric cut-off core to cut area of low pressure was made on the maximum positive vortices in the climate system. Conditions over the surface in the first day of the storm in the region indicated very strong contour of low pressure formed in the North East to West and North West of Saudi Arabia. In front of the two sides one of on Mediterranean Sea and other northern Russia, the contour of the pressure was imported into the Middle East.

Ma Mahmoud Ahmadi, Fj Farzane Jafari,
Volume 5, Issue 3 (12-2018)
Abstract

Problem statement
The occurrence of terrible floods due to climate change has caused much damages in different parts of the world in recent decades, and the effect of these changes is more pronounced in dry areas. Floods are the most common environmental damage. On average, 60 floods occur annually in Iran, with an average annual flood loss of 141 people, meaning more than 2 deaths per year per flood event.
Research Methodology
The study area consists of six stations located in Hormozgan, Kerman, Yazd, Kohgiluyeh, and Fars provinces. In this study, two types of ground and high data are used as follows:
A) - Using daily rainfall data of the 44 years (1967-2014) statistical stations of the region obtained from the country's Meteorological Organization
B) Use of high-level data. Includes revised data for geopotential heights, sea level pressure, wind direction, meridian wind, omega, and humidity, from the National Center for Environmental Excellence at Colorado. To conduct synoptic analysis, the circular environmental method was used; after observing the daily rainfall during the statistical period of all rainfall over 50 mm in selected stations of Yazd, Jiroft, Shiraz, Bandar Abbas, and Yasuj, 118 heavy rainfall events were investigated. After identifying and separating days, 105 observation systems were identified and analyzed.
After the evaluation and control of the pressure maps of the sea of the systems of landing, 4 patterns were selected and identified.
Explain and interpret the results
The results showed that heavy precipitation occurred in the months of December, December, February, February, and November, respectively. Since November, with the retreat of high-performance dynamic systems to the southern latitudes and the influx of western winds from high latitudes on the area, conditions for the occurrence of heavy rainfall are provided. Most centers with 9 heavy rainwater systems of Sudan's lowland, 6 the moderate Sudanese-Mediterranean component of the Middle East has been on Iraq, and the four satellite systems have been the Mediterranean-Sudan-Mediterranean integration. The most frequent Sudanese pattern in 2-day continuity with 17 cases was Sudan-Mediterranean integration pattern with 7 cases in 3-day continuation, Sudanese-Mediterranean integration pattern in the Eastern Mediterranean, 4-day continuity with 7 events, and equidistant Mediterranean pattern The continuity of 2 to 4 days has been due to the increased load of Mediterranean systems ranging from 70 to 90 mm.
 
Gholam Hassan Jafari, Hazhir Mohamadi,
Volume 6, Issue 3 (9-2019)
Abstract

The consequence of human activities caused destructive and irreversible problems to the original state in the few past decades that has attracted the attention of all walks of life. The sinkholes are one of the mentioned effects in different parts of the planet such as Iran, Hamadan and especially have been happened in Kaboudarahang-Famenin plain. Researchers believe that the most important consequences of the indiscriminate withdrawal of groundwater and illegal wells and the activities of Shahid Mofatteh thermal power plant change the parameters of soil caused appearance sinkholes in that area. All of the geological information, faults, hydrological, elevation, slope, aspect, and land use investigated by topographical geological maps, also digital elevation models and Google Earth image processes used for the study on the extraction and sinkholes due to the numbers and distribution of wells were assigned in GIS software. The results show that the level of groundwater, geology, land use and height of the range are the most effective factors in the creation of sinkholes; but the efficiency of surrounding factors and in somewhere farther from the sinkholes. The construction of Ekbatan dam on the most important river as the main water provider of understudy plains, the development of Hamadan city and changing the surrounding land use in Bahar county to agricultural, prevent from reaching water to the Kabodarahang and Famenin plains as a former and increasing the water demand in downstream is caused numerous sinkholes that was provided with favorable conditions than before (the dissolution of limestone).


Saeid Jahanbakhsh Asl, Behruz Sari Sarraf, Hosein Asakereh, Soheila Shirmohamadi,
Volume 7, Issue 1 (5-2020)
Abstract

The study of temporal - spatial changes of high extreme rainfalls in west of Iran (1965-2016)
 
 Extended Abstract
Introduction                                   
Rainfall is one of the appropriate weather parameters not only in describing weather condition in one specific area but also is in estimating potential impacts of climate change in the environment and in many economic and social systems. Some studies show that during half a century weather patterns by more and severe raining events and by changes in scheduling and rain status has been changed. From 1960s with its much slope, the abundance and severity of extreme rainfalls throughout the world has increased and it is expected to continue the increase until the end of the current century. So understanding the behavior of extreme events is one of the main aspects of climate change and the increase of information about heavy rains has utmost importance for society, especially for the population who lives in areas with increased flood risk.
According to above mentioned cases and abnormal behavior and irregular rainfalls in Iran and its high variability from one hand and Iran's west region ability to heaviness and extension of rainfalls on the other hand, the necessity of understanding and study of temporal and spatial dangerous rainfalls is recognized. Among extreme rainfall characteristics, the portion of such rainfalls in total rain production is studied less.   Due to the experiments carried out, the increase of annual rainfall in Iran happens through heavy rainfalls. Therefore heavy rainfall portions out of total annual rainfalls can be defined as an index of crisis. The increase of this index implies the heavy floods in rainy years and severe drought and drought years.
 
Data and Method
Iran's west region including East and West Azerbaijan provinces, Zanjan, Kurdistan, Kermanshah, Hamadan, Lorestan, and Ilam consists of about 14 percent of Iran's total area. The height of this region includes a domain of 100 to about 4000 meters. Zagros mountain ranges are the most important characteristic of west of Iran, which are drawn from north-west to south-east.
In this research, we used network data from interpolation daily rainfall observation of 823 meteorology stations from January 1st up to December 31st, 2016 by using Kriging interpolation method and by separating 6×6 km spatial. The results formed matrix interpolation process by dimension of 18993×6410. This matrix has the rain status of 6410 points of west of Iran for every day rainfall (18993). Extreme rain falls are identified in terms of threshold of 95 percentile in each point and each day of year. The rainfall of each day and each pixel is compared to that related pixel and corresponding to that day and those days which their rainfalls rates were equal to or larger than threshold were identified for studying extreme rain fall portion in total yearly rainfall, the total of equal rainfalls and more than 95 percentile is calculated for each year and each of pixel and, it is divided to total of the same pixel rainfalls in that year.
We used the least squarely error for understanding temporal- spatial behavior of regression.
 
Results and Discussion
The average extreme rain falls in west of Iran is under the influence of their roughness and placement and also synoptic rainfall. The proof of this claim identifies through placement of average extreme rainfall over altitudes of region. By increasing geographical latitude in Iran's western provinces, it is decreased both of total extreme rainfalls and portion of such rainfall out of total yearly rainfall. Total extreme rainfall trend shows a frequency in a domain with 16 mm in each year. The negative trend of total rainfall with the area of 74.72 percent consists of three quarters of Iran's west.
The narrow strip of the west of Kurdistan and south-west of west Azerbaijan have the highest amount of positive trend which is meaningful in certainty level of 95 percent.
The study of process showed the ratio of extreme rainfalls portion to total yearly rainfall, which is increasing about 60.7 percent of west area of this country extreme rainfalls in total yearly rainfall and the greatest part of this area is located in southern half of the studied area.
The negative trend also is located in northern half and they have consisted of 39.29 percent of studied area of these, only in 29.81 percent of region, the trend ratio of extreme rainfalls to total yearly rainfalls are meaningful in certainty level of 95 percent.
Keywords: Extreme Rainfalls, Trend, 95 Percentile, Rainfall Portion, west of Iran.
 
Mr Farshad Pazhoh,
Volume 7, Issue 1 (5-2020)
Abstract

 Identification of the Effective Jet Stream Patterns In the Heavy Precipitation of the Cold Season In the Southern Half of Iran
Farshad Pazhoh[1], PhD in Synoptic Climatology, Department of Natural Geography, Faculty of Geographical Sciences, University Kharazmi, Tehran, Iran
 
Every year, important parts of a large part of our country are affected by the climatic hazards of heavy precipitation and lots of damages are done to the country. If the generating circulation patterns of heavy precipitation waves will identify, its occurrence can be predicted from at least one or two days before the beginning of the sequence of patterns ending in floods (Alijani, 2006, 156). Occurrence of heavy precipitation, so that its amount is more than the soil penetration capacity, causes runoff and floods. Now, if these heavy precipitations occur in urban areas, it is associated with more dangers, because the permeability in urban areas is less than in out-of-town areas, and a significant amount of such precipitation in urban areas has turned into runoff and floods. Cause damages to places, buildings and urban facilities (Taheri Behbahani and Bozorgzadeh, 1996, 2).
Two sets of data were used to conduct this research. One is surface data and the other is high atmospheric data. For this purpose, in the first category, the related precipitation data of the cold season of 8 synoptic stations in the southern half of Iran (Table 2) in the period from December 1, 1970 to March 31, 2014 were obtained from the Meteorological Organization. To identify the occurrence of heavy precipitation leading to major floods in the study area, considering that heavy precipitation has covered more than 50% of stations and the precipitation of each station is more than 95% during the study period.
    Considering the above two conditions, 61 heavy and pervasive precipitations were selected from the total precipitations above the percentile of 95% of the stations. In the second category, high atmospheric data obtained from the National Oceanic and Atmospheric Administration of the United States. The synoptic scale in order to tracking the troposphere synoptic patterns includes a longitude of 20 west degrees to 100 east degrees and a latitude of 0 to 80 north degrees. In the selected synoptic scale, 1790 cells are located; the distance between each cell is 2.5 by 2.5 arc degrees.
    In order to identify the jet stream patterns, first the factor analysis method with Varimax rotation was applied on the geo potential height data of 500 hPa during the selected 61 days of heavy and pervasive precipitations and found that the first 12 factors explain more than 90%   data’s diffraction. The first factor accounts for about 32% of geo potential height data diffraction (Table 4). In the next step, in order to reduce the data volume and identify the synoptic patterns, the cluster analysis method was performed on the scores of the first 12 factors by the integration method and 4 synoptic patterns affecting the arrangement of the winds were extracted. Then, for each of the identified patterns, a representative day that had the highest correlation with the desired pattern determined (Table 3) and appropriate maps for the representative days of the patterns were drawn and analysed.
The results showed that the merged jet stream patterns (subtropical-sub polar), tropical jet stream (ridge-trough), orbital subtropical jet stream and meridian subtropical jet stream were effective in the occurrence of heavy precipitation, which meridian subtropical jet patterns and merged have played the most important role. In the first pattern, the merged jet stream plays role in 16 days and 26.3% of the precipitation days. The merged jet streams core is generally located on the Red Sea, and the subtropical jet stream penetrates from North Africa, and after crossing the Red Sea and northern Saudi Arabia, the left half of the jet stream’s exit covers the whole of the southern and central half of the country. The sub polar jet stream in a northwest-southeast direction from central and the west of the Europe from the centre and west of Europe penetrate to the lower latitudes and from central and eastern part of the Mediterranean and at the entrance part of the left side merge with subtropical jet stream. In the merger pattern, the sub polar jet stream corresponding to the western half of the trough of the middle-level of troposphere plays the role of cold air Advection and transferring the western winds to the lower latitudes, and the subtropical jet stream, corresponds to the eastern half of the trough, play the role of the discharge and divergence of warm and southern humid air on the southern half of the country’s atmosphere. In the second pattern, the subtropical jet stream (ridge-trough structure) with 13 days and 21.3%, generally in Northeast Africa, the subtropical jet stream with a huge ridge structure in direction of northwest to south east extends to the centre of the Red Sea and Saudi Arabia and also the trough structure of   jet stream stretches from north of Iraq to the centre of the Red Sea. This trough structure’s sinkhole of jet stream this subtropical sinkhole has caused the left half of the jet stream's outlet with meridian curvature cover the whole of the southern half and most of the country after crossing Saudi Arabia and the Persian Gulf. But in the third pattern of the orbital subtropical jet stream, which plays a role in 14 days and 23.4% of heavy and pervasive precipitation days, the jet stream core has the most stretching and range, mainly from the eastern Mediterranean and north of Saudi Arabia to the western half of Iran, and the jet stream structure is completely formed west to east with least meridian structure. The intensity and pervasiveness of precipitations in this pattern such as the second one is weaker than the other patter. However, in the fourth pattern, the meridian sub-tropical jet stream is present as the most frequent pattern with 18 days and 29% of the selected precipitations days.  In this pattern the jet stream has a southwest to northeast direction and the jet stream's core, like the third pattern, generally extends from north of Saudi Arabia to centre of Iran and sometimes to northeast of Iran. The locating of this jet stream with a suitable curvature on the important water resources of the south of the country and corresponding to the north eastern half of the trough from north eastern of Africa to north eastern of Iran after the merged pattern, has caused the most pervasive and intensive precipitations days in the south of the country.
 
Keywords: Heavy and Pervasive precipitation, Cluster Analysis, Subtropical Jet stream, Low Pressure, Trough, Southern half of Iran
 
[1] Corresponding Author:                                                                                  Email: climate.synoptic@gmail.com

Kamal Omidvar, Mehdi Mahmodabadi, Parisa Shams, Mahbobeh Amiri Esfandegheh,
Volume 7, Issue 3 (11-2020)
Abstract

Due to the fact that the mechanism of anticyclone Movements is the desire to descend and suppress the air, so the effect of these movements and their location in the occurrence of flood falls is significant. For this purpose, in this paper, flood precipitation in the last two decades of Kerman province was studied and two of the most severe ones were selected. Due to the emphasis of this paper on the province of Kerman, the heavy rainfall was calculated for each station in the province using the Gumble Type 1 Distribution Statistical Index. Then, the thermodynamic properties of the precipitation were analyzed using radial data and Kerman station's sketch diagram. For analysis of these floods, daily rainfall data of the synoptic station 10 of the province and sea surface pressure maps and850,500,300 hectopascal levels were used. Then, the arrangement of the simulated pattern and its trend in the air maps, were studied during a selective period daily3. The results of the study indicate that the main cause of flood precipitation in the study area is to strengthen the eastern Mediterranean landfall in the middle troposphere, so when moved downward to the bottom of the polar system, it is transmitted to lower latitudes As a result, Western systems, with their movements on the southern warm waters, have a high moisture content and cause heavy rainfall in the region. Also noteworthy in the occurrence of precipitation is the presence of intense swinging movements on the southern waters, especially the Oman Sea, which causes more humidity to be injected into the interior areas of the country and provides the conditions necessary for the occurrence of such rainfall.

Dr. Shahrokh Pourbeyranvand,
Volume 8, Issue 2 (9-2021)
Abstract

Seismic risk investigation by Strain rate variation study in central
 Alborz by using GPS data
Abestract  
The Alborz Mountains, South of Caspian Basin and separates Central Iran from Eurasia.  Talesh and Kopeh Dagh bound the Alborz as major thrust belts in the west and east respectively. The tectonic evolution of this important region is still unsolved and there are many questions to answer, such as the origin of the Alborz Mountains as well as its crustal structure. The Alborz is of great important in natural and most particular, seismic hazard investigations, because of the existence of Tehran megacity. This importance resulted in development of a relatively dense network of GPS stations in this regions and adjacent areas. The Alborz Mountains formed successively during the collision of Central Iran with Eurasia in the Late Triassic (Cimmerian Orogeny) and the collision of Arabia with Eurasia. Tectonic activity in this belt is currently thought to be controlled by two motions with different velocities, the 5 mm/yr northward convergence of central Iran to Eurasia causing a compression from 7 Ma and the 4 mm/yr left‐lateral shear northwestward motion of the South Caspian Basin resulting in a left lateral transpressive tectonic environment in the Alborz . Since middle Pleistocene transtensional motion is also observed in the region because of acceleration of SCB motion toward North West.
GPS studies in the Zagros started in 2000 and are continuing by gradual expansion of the permanent GPS network and several GPS campaigns and temporary stations. These studies have significantly improved our understanding of the surface deformation in the Alborz. In this study the interpolation of GPS velocity vectors in a rectangular grid and calculation of the strain at the center of each grid cell, were used for the study of the strain rate variations in the central Alborz. We used velocity vectors from Djamur et al. (2010) to estimate the strain rate field in the Alborz. To avoid edge-effects in the strain calculation, we only showed the results for the central part of the dataset. The GPS velocities are interpolated onto a rectangular north-south grid of 0.2 by 0.2 degrees and strains are calculated at the center of each grid cell, following the methodology of Haines et al. (1998) and Beavan & Haines (2001). The study of the strain rate variations can help in understanding the tectonic settings of the region and the obtained results, combined with other geodetic, geological and seismological studies, already performed in the region, can provide a comprehensive insight into the geodynamic evolution of the range.
The results showed spatial variations in principle strain rate axes directions and areal strain rate or dilation, which in combination with seismicity data, reveals important information about the fault movement mechanisms in the area. Observed anomalies in dilation, showed important correlations with seismicity, subsidence and uplift, dip slip and strike slip movements on the faults in the region and confirmed deformation partitioning which takes place due to tectonic forces, acting on pre-existing faults and weak fracture planes. The partitioning of the deformation causes dominant strike slip motion in some parts of the Central Alborz, while shortening occurs dominantly on other parts of the mountain range. These different parts are spatially separated in the region and correlate with the seismicity with regard to the faulting mechanisms expected from the orientation of the major faults and the directions of strain rate axes.
 
Key words: areal strain rate Central Alborz, deformation partitioning, dilation, faulting mechanisms, GPS, seismic ris

 
Halimeh Kargar, , Mohammad Saligheh, Mehry Akbary,
Volume 8, Issue 4 (1-2021)
Abstract

Conclusion
The results showed that the length of the precipitation period in the study area is 8 months (out of 213 systems, 60 systems were recorded in January and 50 systems were recorded in December). June, July, August and December did not have a comprehensive rainfall system. The difference in height between the Mediterranean Cyclone  and the Arabian Anticyclone, i.e. the MAI index, was identified in 5 categories. The results showed that the higher the value of MAI index, the less rainfall systems and the higher the rainfall intensity. Most rainfall systems occur when the MAI index reaches 100 to 150 geopotential meters. In addition, the concentration of precipitation occurred in February when the MAI index reached 200 geopotential meters and above. In the continuation of the research, the difference between the Sudan Cyclone and Arabian Anticyclone, i.e. the SAI index, was also identified in 5 categories. The results showed that most of the systems occurred in the third category with a value of SAI index between 100 and 150 geopotential meters. Moreover, the results showed that the higher the value of the SAI index (, the lower the number of rainfall systems and the higher the average of rainfall systems.
Rasool Nooriara, Seysd Jamalaldin Daryabari, Bohlol Alijani, Reza Borna,
Volume 9, Issue 3 (12-2022)
Abstract

 
Synoptic analysis of the torrential on Day 21, 1398 (Case study: Zahedan and Qeshm)

Abstract
Rainfall is the most important phenomenon or feature of the environment and so far many studies have been done about its causes. In any place, rainfall occurs when humid air and climbing cause are provided. Both of these conditions are provided by the circulation pattern. The study area is affected by some severe and sudden weather phenomena such as low annual rainfall, short rainfall period and rainfall in the form of heavy showers. Thus, it is possible that the limited and pervasive precipitation of the area is due to a different synoptic pattern. Because the relationship between circulation patterns and precipitation is significant, achieving acceptable results in the field of the relationship between these patterns with the limit and total rainfall of the studying area requires the analysis of synoptic maps. Therefore, the most important purpose of the present study is the synoptic analysis of heavy cloud rainfall of the studying area on Day 1398.
Two sets of data were required for this study: A: Daily precipitation data of study stations on the day of heavy cloud rainfall on 21 Day (January 11, 2020) along with daily precipitation data in the days before the flood (96 hours before the flood) which was received from the main Meteorological Organization of the country.
B: atmosphere data levels including: sea level (SLP), 850 and 500 hPa levels, vertical atmospheric velocity and wind flow levels of 1000, 850 and 500 hPa, specific humidity of 1000 and 700 hPa levels and 250 hPa surface flow winds for study days from the US National Center for Environmental Forecasting / National Atmospheric Research Center (NCEP/NCAR) were provided in the range of 0 to 60 degrees at north latitude and 0 to 80 degrees at east longitude, and finally, maps were drawn and prepared in Gardes software to provide the ability to interpret.
The synoptic analysis of sea level showed that: on the day of the heavy cloud, a low-height closed center with a central core of 1,010 hPa in the northeast-southwest direction covered the entire study area. Then, the high-height with a central core equal to 1030 hPa is located at northwest of Iran, northwest of Europe and on Tibet. According to the location of high-pressure dams around Iran and the location of low-pressure centers on the study area and water resources in the south, a strong pressure has been created. Subsequently, with height increasing, low-height with central core equal to 1440 geopotential meters is located at northeast-southwest direction of entire study area. And the low height of northern Russia extends to the Persian Gulf and provides the conditions for severe ascent and instability in a very large area. The rear dams of Nave transferred the cold air of the high latitudes into the bottom of the Nave located on the study area and have intensified the instability. Also, the geopotential height of 500 hPa level of deep descent is located at the northeast-southwest direction of Iran and core of the Nave covers the Persian Gulf completely, that is the study area in the best condition and in front of the Nave, which is diverged by hot and humid weather. This deepening of the rotation and the penetration of the Nave to the lower latitudes caused the cold air to fall. 
The analysis of the 250-hectopascal-level flow-wind shows that the flow-wind with a core speed of 65 meters per second has covered the entire study area by crossing above the Persian Gulf, and compared to the previous days, the flow-wind is completely meridional.
Synoptic analysis of the vertical velocity at the level of 1000 hPa shows that the maximum negative omega -0.2 to -0.15 Pascal per second in the northwest-southeast direction has covered the study area. The presence of negative omega index values ​​indicates the role of convection in intensifying precipitation in mentioned area and the dynamic ascent of air. The study map shows that compared to other countries in the study map, the maximum of negative omega is located on Iran, which is reduced along to the west of Iran. With increasing altitude, the maximum negative omega has increased to -0.3 Pascal per second and the core of the maximum negative omega is completely located on the study stations (Zahedan and Qeshm). Then, at the level of 500 hPa, the maximum negative omega has reached -0.6 Pascal per second and its value has doubled compared to the level of 850 hPa, which covers the northeast-southwest direction from Zahedan to the Strait of Hormuz. Cold air fall has increased with increasing of omega levels in the middle levels of the atmosphere.In other words, in the middle levels of the atmosphere, with increasing temperature difference between the earth's surface and the level of 500 hPa, the amount of precipitation has increased.
Synoptic analysis of specific moisture level of 1000 hPa shows that the most moisture deposition was from south water sources to the study area, and the amount of moisture equal to 14 grams per kilogram has entered the study area from the Oman Sea and then its amount has been reduced crossing to other regions of Iran. Furthermore, at the level of 700 hPa, the maximum advection of hot and humid air is in front of the upper atmosphere of Nave from the Red Sea over the study area. There is a moisture strip from the southeast to the whole area under analysis. These suitable humidity conditions with the depth of the western wave have been able to cause heavy cloud rainfall. The maximum amount of moisture in the study area is equal to 7 grams per kilogram, which is a large amount compared to heavy rainfalls.

Keywords: heavy rainfall, flood, synoptic, Zahedan, Qeshm




Dr Seyed Keramat Hashemi Ana,
Volume 10, Issue 1 (5-2023)
Abstract


Abstract
Introduction and issue: In today's century when the effects of climate change on different sectors are undeniable, investigating and analyzing the behavior during dry spells is always of special importance and basic priority. On the other hand, the occurrence of extreme events such as precipitation can accelerate the occurrence of climate change. In Iran, rainfall is one of the basic variables for evaluating the potential availability of water resources, but its temporal and spatial distribution is very uneven. The change of dry Spells depending on precipitation always have different fluctuations in different seasons of the year. It seems that this is due to the inherent behavior of precipitation, which generally shows itself as an unstable and unruly variable. This feature causes changes and differences in the temporal and spatial distribution of precipitation in arid and semi-arid regions such as Iran. This inconsistency will face fundamental challenges to regularize dry spells on a seasonal and monthly scale. With a detailed understanding of the behavioral mechanism of dry spells, it is possible to know more precisely the climatic condition of different regions in order to plan in sectors such as; Water resources, agriculture, health, transportation and etc we able to do basic and preventive measures compatible with climate change. It is hoped that this research and related studies will be a positive step towards a more accurate understanding of the climate and its behavior in different seasons of the year.
Data and method: In order to investigate the seasonal behavior of the duration of dry spells, we used daily precipitation data for 44 synoptic stations of Iran and a 30-year statistical period (1988-2018). To reveal the behavior of dry spells, the precipitation data after validation and temporal integration were classified on a seasonal scale.
After the statistical integration of the data, dry spells related to precepitation were extracted and long-term periods lasting more than 20 days were the basis of the study. In the next step, to determine the seasonal weight of courses was used, the step-by-step evaluation method of Swara's fuzzy-numerical logic (SWARA). Thus, in the first step, the longest and most frequent periods are sorted based on relative importance. In the second step, the initial weights of the courses are determined, and in the third and fourth steps, the final and normalized weights of the courses in different seasons are determined, and unrealistic results are removed from the final analysis for proper explanation.
Findings and Results: The effectiveness and weight of each of the criteria with the Swara method in the fuzzy environment showed that in the western and northern regions of the country, winter and spring seasons and criteria such as reversibility and percentage of probability of occurrence have the most initial weight in explaining the periods. In the final explanation, these two season,s had a high weight. These two seasons explain more than 65% of the weight of courses in these regions. In the southern regions and parts of the center (Isfahan, East Fars and West Kerman), winter and autumn explain more than 71% of the weight of periods. Among the criteria explaining the weight of the courses, the reversibility criterion and the probability of occurrence have taken more than 55% of the weight. The northern and humid regions of the country vary in criteria from periods such as; Reversibility, continuity and probability of occurrence are more apparent and this indicates that the border of dry areas in the future of Iran's climate will move towards northern areas. It can be acknowledged that the behavior of long-term dry periods is more a function of two criteria of reversibility and probability of their occurrence. The weighting of the criteria affecting dry periods showed that the return period and the continuation of periods in the cold seasons of the year in dry areas have a more irregular behavior than in wet areas and have more weight in explaining the periods. By determining the weight of seasons in explaining dry periods, we can have better planning and management in related sectors such as water and agriculture.

Key words: dry spells, weighing, precipitation, climate, Swara method, Iran.
 
Mr. Ali Abdinezhad, Mr. Mojtaba Yamani, Mr. Jafar Hassanpour, Mr. Abolghasem Goorabi, Mr. Mostafa Karimi Ahmadabad,
Volume 10, Issue 2 (9-2023)
Abstract

Analysis of occurrence potential of the earth/debris flow and
shallow landslides using the TRIGRS model
(Case study: Babolrood Basin, Mazandaran)

In this study, the occurrence potential of rainfall-induced shallow landslides in the Babolrood basin has been investigated. In this basin, due to the mountainous topography and the presence of loose organic soils, the potential of such landslides is high, and landslides of different sizes occur every year after long and intense rainfalls. These landslides, which start with the sliding mechanism in the upper parts of the soil cover, immediately turn into earth/debris flows, and from their joining together, large flows may form downstream of the basin, which is considered a destructive phenomenon. In this research, to investigate the effect of rainfall on the occurrence of shallow landslides and flows, the TRIGRS program, which is a comprehensive and grid-based program for slope stability analysis using the infinite slope method, has been used. In this program, the effect of rainwater penetration into the soil and runoff caused by rainfall, which are important parameters in the occurrence of shallow landslides and subsequent flows, are also fully considered and this natural phenomenon is fully simulated. The input data required for this research includes topographical data of the basin, geological and hydrogeological properties of soil units, and rainfall data in the region, which are prepared in the form of appropriate text files and GIS maps. The output of the Triggers program includes maps of the spatial distribution of the minimum safety factor, the depth of the failure, and the pore water pressure at the failure depth, which are prepared in the form of text files and can be interpreted in GIS-based software. The results of this study showed that in the high and steep parts of the basin, wherever there are soils on a bedrock rich in clay minerals (such as mudstone, marl, and shale), the potential for shallow rainfall-induced landslides is high. In the field studies, a good agreement between the results of this study and the experiences obtained from field observations of landslides caused by rainfall in the region was obtained in terms of their spatial distribution and time of occurrence.
Keywords: Shallow landslide; Pore pressure; Rainfall-induced landslide

 
Mrs Mozhgan Shahriyari, Dr Mostafa Karampoor, Dr Hoshang Ghaemi, Dr Dariush Yarahmadi, Dr Mohammad Moradi,
Volume 11, Issue 1 (5-2024)
Abstract

Flash floods are one of the most dangerous natural events and often cause loss of life and damage to infrastructure and the environment. This research investigated the occurrence of the most intense continuous monthly floods (October-March) from 1989 to 2021. Precipitation data from 115 synoptic stations were selected. Then, the total rainfall of 1 to 9 days was sorted according to intensity. Using Minitab statistical software and the Andersen-Darling index, heavy rains were extracted based on the 95th percentile. Then, based on the criteria of the highest and lowest number of rainy days, the highest and lowest accumulated rainfall, the wettest and driest months were determined. Considering the three criteria of intensity, continuity, and rainfall coverage, the strongest storms in the wettest months were selected. The data used for synoptic analysis include the average sea level pressure data, the height and vertical component of the wind at 500 hPa, the wind and humidity field specific to the pressure levels 925, 850, and 700 hPa, and the horizontal moisture flux values specific to the pressure level 925, 850 and 700 hPa. The probability of the occurrence of atmospheric rivers was identified by the moisture flux extracted from the specific, meridional, and meridional wind components. The results showed that the storms of October 27-31, 2015, November 5-7, 1994, December 12-16, 1991, January 11-15, 2004, February 3-9, 1993, and March 13-15, 1996 were the strongest in the wettest months. During the storms of October, November, February, and March, moisture has been transported from the southwest of the Red Sea by atmospheric rivers to the western, southwestern, southern, and southeastern regions of Iran.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb