Search published articles


Showing 6 results for Resiliency

Mehdi Ramezanzadeh Lasboei, Ali Asgari, Seyed Ali Badri,
Volume 1, Issue 1 (4-2014)
Abstract

Natural disasters are investigated of various dimensions and consequences of natural hazards. As well, they can become as a repeatable phenomenon in the absence of mitigation systems, and could be caused devastating consequences. Resiliency approach as a basis for reducing the negative effects is taken into account to reduce the impact of natural disasters. Today, the two tourist areas of Cheshmekile (Tonkabon County) and Sardabrud (Kelardasht County) as typical feature of regional tourism planning have important potentials for development of tourism. But in recent years they have repeatedly been invaded by floods so that in some cases the impact of economic, environmental, socio-cultural and physical environment is followed. In economic dimension, flash flood destroyed agricultural fields and rural houses and in socio-cultural dimension it has increased insecurity. And finally, in terms of the physical and environmental aspect, it has created the most damage such as adverse changes in the appearance of the landscape, loss of trees, and destruction of public infrastructure (roads and bridges network). It is an approved hypothesis that rural settlements cannot be moved to the riverbank, but have created a situation that endangered abiding rural settlement. Various aspects such as socio-cultural, economic and administrative highly effect on resiliency. Among them, the role of infrastructures such networks, the location of health care facilities, police stations, fire stations and disaster management offices, communication networks (telephone, Internet) are more important to improve resiliency. This paper seeks to answer the key question that is the infrastructure in promoting resiliency after flooding in the two areas satisfactory?  The methodology of the study is objective and analytical analysis is based on the nature and method. The main variables are infrastructures and resiliency. Resiliency as the dependent variable consists of two main components of individual and community resiliency. Required information on the objectives, data integrity and availability has been developed in both library and field methods. In previous studies, library and documentation center is studied. Questions are sorted in the distance range, rated and ranked based on the needs and nature of the research and the knowledge and the education level of the local community. Questions are tested initially and after a measurement of the level of reliability (0.812), which is obtained using Cronbach's alpha. First, to determine the total sample size of villages located in flood risk areas in the two basins 9 villages (50%) were selected. Cochran formula is used to determine sample size. According to Cochran formula for the total population 296 households that included 129 head of households for Sardabrud basin and 167 head of households for Cheshmekileh basin. After the initial survey the collected information is encoded using a statistical software SPSS and then has been processed according to the assumptions formulated. Based on the results of the questionnaire analysis, some indicators, same as access to aid agencies (Crescent) and disaster management center, there were no significant differences between rural settlements such as the two basins distance to the city center is short. The nearest major communication route roads - Branch is located at a distance of 5 km from the city of Kelardasht, but in Cheshmekileh basin there are less than 5 kilometers distance to the main road of the Caspian Sea. That is why the average satisfaction of the local authorities in these areas is much higher than Sardabrood basin. Check out the highlights of each area residents is showed more satisfaction on facilities and services infrastructure in Cheshmekile. Result. To understand the relationship between resiliency and infrastructure used is the correlation coefficient between these two measures 003/0 there is level. This relationship of mutual relations, the improvement of infrastructure in the area with 99% probability of increasing population resiliency against natural disasters (floods) within it. The average calculated for the physical aspects - infrastructure represents the position of the component. Ring roads in northern cities, near airports such as Ramsar Branch, and there are several large medical centers, access to police stations in both basins are made ​​from the perspective of the respondents favored the status of this criterion is to be evaluated. However, among the subset of infrastructure, the roads are better than others. The reason can be attributed to the investment and construction of new networks of communication. In the case of energy network, although the topography of the area is caused that part of the basin, some of villages such as Gavpol, Letak, Drazlat in Cheshmekile basin and Lush, Krdychal and Roudbarak in Sardabrood basin was still stay deprived of the gas network but have favorable drink water and electricity network. However, keeping the population in the rural area is largely dependent on the infrastructure. Resiliency in relation to rural and infrastructural facilities, access to places of temporary accommodation is very important but in this particular field in any of the villages still planning has been done.


Mehdi Mohammadi Sarin Dizaj, Mohsen Ahadnejad Roshti,
Volume 3, Issue 1 (4-2016)
Abstract

Iran, due to its geographical location and its human and environmental characteristics including those at risk of natural hazards there. In the area northwestern Iran, Zanjan city in three dangerous fault ,Zanjan in the north, fault Soltanieh in south and Byatlar located in West And based on a hazard map for earthquake country, prepared by the International Institute of Earthquake Engineering and Seismology as well as Based on Earthquake Resistant Design of Buildings (Regulations 2800) prepared by the Research Center, Department of Housing and Urban Development and Urban Country, the relative risk of high-grade is zone. A major part of the Physical structures of Zanjan in recent decades regardless of the strength and stability of the regulations, such as Regulations 2800 is applied.On the other hand the lack of required data, including geometric and non-geometric data of the infrastructure and buildings in the city Such as the problems that have not been noted. Accordingly, this study examines the relationship between resilience Zanjan city's Against Earthquake And indicators and factors affecting resilience Physical and infrastructure to identify And will evaluate the resiliency Physical and infrastructure in the city of the study.

The results of scientific and experimental studies in the field of natural hazards and the head of the earthquake, in the last few decades shows That the best way to deal with these risks, is be more resilient settlement in different dimensions. Settlements in risk reduction approach, resilient system that can temporarily or permanently absorb risks And with conditions changing rapidly, adapted without losing its function.

In this study, the analysis and evaluation; the region and evaluation criteria include Quality building, types of structures building, Old building, facade building, building density,  particle size distribution and land use compatibility. With the explanation that in the analysis of the dimensions and physical infrastructure and support multi-criteria decision-making methods (model Todim) and produced for the processing of the above mentioned methods, is used Arc GIS software. This study is applied and in terms of methodology, quantitative comparative and analytical. This study from to goal ,applied and in terms of methodology, quantitative- comparative and analytical.

International :::union::: strategy for disaster risk reduction program titled "Strengthening the resilience of nations and communities to disasters" in the Hyogo Framework for 2005 to 2015 plan adopted, The program, in addition to reducing vulnerability of communities in crisis, will tend to increase and improve the resilience of communities.

Hyogo Framework for Action (HFA) to motivate more active at the global level in the wake of the International Decade for Disaster Reduction natural framework (2000-1990) and Yokohama Strategy adopted in 1994 and the International Strategy on Disaster Reduction (UNISDR) in 1999, was formed. After the Hyogo Framework period (2015-2005) in order to improve the resilience of nations and communities to disaster, Sendai framework (2030-2015) aimed at the Third World Conference of the United Nations Disaster Risk Reduction in Sendai, Japan in dated March 18, 2015 was adopted.

Generally, in this paper, according to the definitions and objectives resilience, resilience include: 1. The destruction and damage that a system can absorb, without being out of equilibrium, 2. The ability of a system to organize and self-renewal in different situations and 3. Create and increasing learning capacity and strengthen the system's ability to cope with the situation.

In this study, the analysis and evaluation; district and Evaluation criteria include the quality, type of structure, building, old building, the facade of the building, building density, particle size distribution and consistent user. With the explanation that in the analysis of the dimensions and physical infrastructure and support multi-criteria decision-making methods (Todim,s model) And for processing materials produced by the above mentioned methods, GIS software ARC GIS, is used. Todim,s technique is one of the techniques used to solve multi-criteria decision making problems. The technique using pairwise comparisons among decision criteria, accidental incompatibilities of this comparisons to remove it. In this study, according to seven criteria affecting the physical dimensions and infrastructure (quality building, building structures, old building, the facade of the building, building density, particle size distribution and consistent user) to assess the resilience of the 24 districts in Zanjan, a matrix of 24 * 7 production was.

After performing calculations according to the formulas described in steps 1 and 2 of this technique, the performance of each supplier to obtain. Finally, according to the formula Step 3 to obtain the minimum and maximum for each criterion to rank the areas according to the values 0 and 1 action. The highest value obtained from the best available option. This study is applied and in terms of methodology, quantitative comparative and analytical.

Our results can be inferred from That regions corresponding to the North and East of Zanjan due to Old low and relatively new texture That neighborhoods Zibashahr, Amirkabir and PayenKoh, Golestan Andishe and Daneshgah alley, Golshahr Kazemieh, poonak, Vahidieh and Ansarieh covered And most have regular access to the local system and network resilience were presented. But the central and southern parts of city, That old and historic neighborhoods such as Hosseinieh and Bazar, Yidde Borogh, Yery mosque and Dbaghlar are included ,Because of Ancient and worn out textur and also Islamabad Neighborhoods, trans and Bisim, Fatmieh as problematic texture, the degree of resilience of poor and very poor were evaluated. Given the discussion above earthquake fault lines that crosses the city from two sides, Strength and high-level security measures should also be implemented in the arteries of infrastructure and structural elements. On the other hand, in the historic old city neighborhoods in the city should strengthen endogenous development based on standard building regulations 2800 and the geographical structure of the region be made available.


Farzaneh Sasanpour, Navid Ahangari, Sadegh Hajinejad,
Volume 4, Issue 3 (9-2017)
Abstract

International studies show that the damages caused by natural hazards is essential that special attention to natural hazards in urban societies of the world, especially in urban areas of developing countries. In many of these communities needed new ways to deal with these challenges. This method should provide sufficient knowledge to identify the nature of problems and the identification of individual characteristics, socio-economic, physical, environmental and management, would in effect do the "Back to Balance" against natural hazards. This feature Back to Balance the same resiliency. The term resilience has a very long history and its use goes back at least a century BC. According to the different interpretations of the concept of resilience, this term is rooted in the traditions of various disciplines such as law, engineering, ecological and social sciences. Today, the concept of resilience has entered the field of planning with different orientations (social, economic, physical, and administrative, etc.).Although it still focuses more attention on environmental issues and a large part of its exploration dedicated to managing the environmental hazards such as earthquakes, floods, hurricanes and global warming. Tehran, as a result of political and economic influence, special conditions to deal with the crisis in terms of the influence of natural disasters and crisis management in terms of organizational structure and legal. In this respect, residential and urban areas of 12 with characteristic their history can be acute against the imbalances caused by natural hazards and create a crisis in urban life. Therefore, the present study has been prepared for the purpose of stability analysis flexibility in District 12 of Tehran metropolitan city.
This is of cognitive research that has been done for analytical and descriptive. All data is obtained in the manner of library and field. The library of available resources and work conducted the form of a questionnaire survey. Questionnaires have been used of type Likert spectrum (numerous, high, high, somewhat, relatively low, low and very low), and its completion is done by fieldwork. Statistical population has problems of urban planning experts, among them 80 people were interviewed for targeted samples. Resiliency that includes four dimensions (economic, social, ecological, environmental and institutional). Was approved the validity of the index by 7 experts manage urban planning problems. For measuring reliability coefficient is calculated Cronbach's alpha equal to 0/79. For data analysis, the use of statistical analysis such as frequency, maximum and minimum, average and standard deviations, T-Test one sample test and Friedman nonparametric test
The results of the indicators of urban resiliency against natural hazards suggests that economic indicators 73/24 Average been determined and relatively low level, ie below the average level. Results of the test showed one sample T-Test is an indicator of economic status of urban resilience against natural hazards of poor utility. As well as the social, ecological, environmental and institutional (organizational) urban resilience against natural hazards associated with poor utility. Finally the 12 metropolitan Tehran metropolitan areautility resilience against natural hazards with respect to all dimensions were too weak. Friedman test results on the scoreboard indicators showed that the index of environmental sustainability (20/33) related to the ecology and environment in the first rank the importance of urban resilience and adaptability Index System (10/11) related to next institutional (organizational) is set as the least significant indicator. Also, significant chi-square statistic is calculated at a rate of 09/67 in three degrees of freedom at the level of 0.000. So, with a probability of 99% can be said that there is a significant difference between the performance rating of 80 specialist urban resilience dimensions (economic, social, ecological, environmental and organizational) against natural hazards, and not the distribution of the same rank.
This research been prepared with the aim of assessing the scale of urban resilience against natural hazards in District 12 of Tehran Metropolis. Results showed that social, environmental and institutional ecology and urban resilience against natural hazards associated with poor desirability. According to this result, it is concluded that the region as a whole is resilient against natural hazards. In this direction, the resilience approach guidance to managers and practitioners use of flexible decisions and concerted policy for urban management. Build resilience in this area to support programmes should invest in organizing access to both external and existing resources in a fair manner, with a coordinated governance structure, and to facilitate social solidarity and support as part of disaster response. The findings also stress the importance of taking an ecological approach to studying resilience to disasters. Many factors from individual, community, and societal levels seem to be important in shaping resilience perceptions of natural hazards survivors. Understanding this evidence will help to validate and further develop indicators of resilience. Our findings point out that, despite existing pre-disaster vulnerabilities, resilience can be fostered following disasters if community members perceive availability of aid and support and mobilize resources Hence, psychosocial support programmes should invest in organizing access to both external and existing resources in a fair manner, with a coordinated governance structure, and to facilitate social solidarity and support as part of disaster response. The findings also stress the importance of taking an ecological approach to studying resilience to disasters. Many factors from individual, community, and societal levels seem to be important in shaping resilience perceptions of natural hazards survivors. Future research should conduct multiple levels of analysis with an all-hazards perspective to reveal how they can be integrated to increase adaptive capacities. Future research should focus on the process of capacity building through informing action to better prepare for disasters. Finally, this research tells us that due to the resiliency of the city will be able to have knowledge of all relevant indicators in the resiliency and reduce the adverse effects of these risks in urban communities

Mr Seyed Ali Badri, Mr Hossain Karimzadeh, Mis. Sima Saadi, Mis Nasrin Kazemi,
Volume 6, Issue 1 (5-2019)
Abstract


Analysis of Rural Settlements Resilience against Earthquake
Case Study: Marivan County
 
Iran is a seismic prone country located over the Himalayan-Alpine seismic belt. Striking earthquakes during the past years and decades are strong proofs for vulnerability of rural areas in this country; loss of lives, damage to buildings, even demolishing villages have been experienced in Iran rural areas. All these fatal effects are evidences to make villages more resilience and strengthen their structures because in the case of vulnerable structures, earthquake can be tremendously destructive. Therefore, losses of live and property can be avoided through making resilience rural social, economic and physical structure like construction of buildings that sway rather than break under the stress of an earthquake. Making villages resilience are directly related to saving rural residents lives and their property. Briefly, reaching or maintaining rural areas capacities to an acceptable level are the main purpose of this study by analyzing mentioned structures. This study conducted in Marivan rural settlements which exposed to earthquake.
According to Morgan Table, 310 samples responded to the questionnaires. The samples of this study were selected by chance from 6 districts and 18 villages. The main methods for analysis of collected data were Dimatel, ANP and Statictical analysis by SPSS. The results of ANP and Dimatel analyses led to the determination of relation among the factors. It should be noted we used Delfi method for this part. Moreover, for the final part ANOVA analysis is used by the authors. 
All around the world, countries have different approaches to deal with hazards in order to mitigate fatal affects. In fact, the goal of all management practices is to reduce hazard impacts. Iran faces a variety of hazards because of placing in a special geographical position; in this regard earthquake is the most important one. Resiliency approach can improve the flexibility of rural settlements through strengthen the capabilities of them and reduce their vulnerability. In the present study, analysis of rural settlements resilience against earthquake has been investigated. The results show that the resiliency is lower than the average in the studied villages. Also, there was a significant difference among the studied villages in terms of the resiliency against earthquake. The findings are consistent with the results of Nouri and Sepahvand in 2016 and Rezaei et al., in 2014.
Considering the analysis of data and ANP analysis of the internal and external factors in a general and separate way, the studied villages of Marivan city can be considered as non-resilience structures; in this regard, the most important reason is the inappropriate condition in the internal factors of rural settlements. The poor quality of construction and the inadequate structure of buildings must be considered, as well. Another obvious reason is the existence of eroded texture in this area. According to external factors, relief does not cover rural areas and led to reduce the resilience of rural settlements. Investigating the resilience of rural settlements based on external factors not only indicates the inappropriate situation of rural structure in this analysis, but also it proves a more favorable situation than internal factors. The findings show that structure and the amount of structure confinement in decrease the tissue texture of rural settlements play a profound role; changing these factors requires a long time and long-term planning. Regarding the post hoc test, variance analysis suggests the highest resiliency in Zarivar with an average of 2.99 and the lowest survival rate in KhavumirAbad rural district with an average of 1.87. Moreover, according to the one-sample T-Test, the socio-cultural dimension with a mean of 3.05 has the best situation in terms of resiliency against earthquake in the studied villages. For improving resiliency in the studied villages, authors’ suggests are including: managing and organizing preparation measures and response along with effective actions to reduce the risks of earthquake and providing a crisis management department; strengthen scientific and research studies to identify and reduce the risks; applying the rules to retrofit the buildings and increasing the safety factors in new construction; mapping the vulnerabilities in rural areas; increasing people participation and preparing them to deal with an emergency situation caused by an earthquake.
 
Keywords: Resiliency, Rural Settlements, Earthquake, Marivan County
 
 
Dr. Sahar Nedae Tousi, Ms Roza Hosseini Nejad,
Volume 6, Issue 2 (9-2019)
Abstract

Resilience, as a concept to confront abnormalities, surprises and unexpected changes in recent years has been raised as the ability of places, societies, and systems to respond to the dangers of tensions and pressures; so that the system can quickly return to pre-stressed situation, threats It accepts the future and confronts them. Central region of Iran according to the zoning studies of the national physical plan of Iran, including three provinces of Isfahan, Chaharmahal and Bakhtiari and Yazd, in a desert climate with many crises in the permafrost environment that has disturbed the state of resilience of the region, and as a result the scheme and target application regional resilience on policy and planning to reduce vulnerability and to cope with various trans-regional crises. Despite the fact that the concept of resilience at the level beyond the city has become apparent, there is still no clear framework for measuring this situation at the regional level. Based on this research, it is believed by the trans-regional and multi-dimensional nature of the resilience that by modifying and applying the concept of resilience to the integrated and multi-dimensional at the regional level, an appropriate framework for status measurement regional resilience in the form of a composite index and thereby risk reduction planning and promoting the resilience of the presentation To give. In this regard, the major purpose of the research is to develop an optimal framework for assessing, measuring and ranking the resilience situation in the central region of Iran. The results show that Chaharmahal and Bakhtiari province have the highest resilience and then there are two provinces of Isfahan and Yazd, respectively. In the meantime, Yazd province has the lowest resilience among the provinces of the central region; therefore, it is necessary to focus on planning and allocating resources to promote and improve priority sectors. Responding to resilience agendas requires the adoption of transregional planning and decision-making approaches such as environmental regionalism.
Zahra Keikha, Javad Bazrafshan, Sirous Ghanbari, Aleme Keikha,
Volume 7, Issue 4 (2-2021)
Abstract

The occurred disasters in recent decades show that communities and people have getting incrementally vulnerable against the hazards. Therefore, social resiliency is the capacity of change, adaptation, and power of resisting against the social stresses and disasters. This research aims at the spatial analysis of the local community to have effective social indexes on resiliency against the environmental hazards in the Sistan region. The methodology of the research is applied due to its nature and descriptive-analytical with the quantitative-surveying approach based on structural equations modeling (SEM) due to its method. The statistical population of the research includes heads of households in 373 villages that 189 people were selected as a statistical sample in proportion to the population volume by Cochran formula using the stratified random sampling method. Inventory was used as a tool to collect data of research, and validity and reliability of tools were studied and confirmed by confirmatory factor analysis, and Cronbach’s alpha test and composite reliability, respectively. SEM method with partial least squares technical approach and SMART PLS3 software was used to analyze the research data in inferential statistics level. Findings of research showed that the path coefficients of social indexes relationship with social resiliency are significant based on t-value and p-value. In a way that t-value of this path is 11.28 and higher than its critical value, 2.58, and the p-value is lower than 0.05.  In addition, WASPAS model was used for the spatial analysis of the effective social factors on the resiliency of the studied villages. This showed that villages of Zahak city have the maximum Qi and villages of Hamoon city have the minimum Qi. Thus, it is concluded that there is a significant relationship between the social indexes and the resiliency of the villagers. Moreover, the volume of the social index effect is high. Since villagers have higher Qi, they have more social resiliency. Hence, it is claimed that the villages of Zahak region have higher social resiliency.

 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb