Nowadays air pollution in large cities such as Tehran have dramatic effects on public health, hence study of the way air pollutions varies with meteorological parameters appears to be important. One important aspect of sustainability of large cities such as Tehran, is controlling the emissions of pollutants as the meteorological (climatic) conditions are becoming more acute in terms of air pollution and temperature rise. In this paper some recent records of near surface meteorological parameters as well as some pollutants records are examine to observe how they change daily, monthly and annually and how they are correlated. Considering the variations of winds and temperature (extracted from a 2D sonic anemometer at 10 m at the Institute of Geophysics, Tehran University in the northern part of central Tehran, with one minute intervals) and hurly data of CO and PM10 concentrations for the same station for 2007, their relations were investigated. Also using upper air meteorological data (at 00.00 and 12.00 UTC) from Mehrabad Airport station, the stability of the atmosphere during this period was analysed. Here the buoyancy frequencies that are measure of stability of air column were calculated. For averaging of winds two methods based on the real wind vectors and wind unit vectors were used. By correlations between the pollutants concentrations and meteorological parameters, their relationships were considered. Based on the probability distributions of winds for 2007, it was found that most of the time wind speeds were in the range of 0.5 and 2 m/s. Hence most of the time due to this weak wind there was a condition of air pollution accumulations over the city and only local winds could move the polluted air over the area. Annual cycle of variations of mean surface winds had small amplitude that appears to be due to high mountain ranges that surround the city from north and east. The annual cycle of CO variations showed a peak in autumn and winter while PM10 amounts showed a trough in winter and spring. The higher values of CO in winter seems to be due to the surface temperature inversions and improper burnings of the fuel of vehicles as well as the domestic heating systems. This was indicated in the correlations between temperature and CO concentration. In annual cycle the correlation between CO and PM10 concentrations was about 0.4 which increased to 0.7 for spring time. This may indicate that in this season the sources of these two are similar and one of them may be used to estimate the others is the sources are not changed. There are two maxima in the daily variations of CO which coincides with minima of wind in morning and evening transition times. In this study it was found that due to calm meteorological conditions (often od local origin, called mountain breezes) over the city air pollution problem is a serious problem requiring more emission control. Also trend factors as the pollutant sources (traffic) and the depth of the atmospheric surface layer are important. It is particularly noticeable that during the midday as the depth of the mixed layer increases, the air pollution concentration is reduced substantially. At night surface drainage flow from north of the city and surface radiation cooling creates near surface inversions that can limit mixing and ventilation of the polluted air from the area leading to higher values of gaseous pollutant over the city. Also lager stability in the air over the city at higher levels in autumn and winter is due to subsidence inversions as a result of the prevailing meteorological conditions of high pressure systems over this area in these months. Such conditions seem to have increased the creation of more acute conditions for air pollution over the city. For a more resilient city in terms of air pollution, some mitigation need to be undertaken in the face of climate change effects that are deteriorating the atmosphere of the city.
Although environmental hazards occur because of natural factors, however, political economy, controlling the sociospatial relations and conditions, also affect centrally the increase or decrease of physical and social vulnerability caused by hazards. In this regard, present paper has put the spotlight on “explaining the role of spatial distribution of social stratification in vulnerability to environmental hazards in the city of Tehran”. This is based on Political Ecology Approach which emphasizes the domination of prosperous social strata on the urban natural-ecological endowments and utilities and marginalizes low-income and inferior social strata. So, the recognition of social strata inhabitation across the city is significant for the analysis of social inequalities and their effects on the vulnerability of environmental and human hazards. The concentration of middle to high class and working and inferior classes has also caused the range of social inequality to increase in the metropolitan of Tehran and this trend per se has transformed Tehran to the spatial reflection of the contrast between poverty and wealth to the greatest extent in the country. Hence, regarding the fundamental role of social stratification and class structure and its evolution in explaining the dynamics of socio-economical relations in the dominant society and the process of urban space production and reproduction, explaining the role of spatial distribution of social stratification in vulnerability to environmental hazards in the city of Tehran is significant and necessary. Vulnerability to environmental hazards has been studied from the physical, biological perspectives, social construction perspective and contingency perspective. The present paper emphasizes the effects of social construction on the production of vulnerability. Scientists think radical and critical geography of space is a kind of social production. They believe that not only urban space, but also the entire space has a social structure and nobody can analyze it thoroughly regardless to the society’s work on the space. Thus in a world under the Capitalist System, urban space represents a reflection of the control and domination of superior social strata (owners of power, wealth and high status, or the owners of political, economic and socio-cultural assets) in its functional zones. This has been appeared in the recent decades, within the literature of hazards and catastrophes and based on “an approach of vulnerability” which has been rested on Political Ecology. The mentioned approach has been concentrated on a series of socio-spatial conditions and political economy which shapes the hazards and catastrophes. Some of the effective social conditions in shaping the hazards and catastrophes and their amounts of vulnerability depend on the racial, ethnic and class characteristics. Racial, class, ethnic and political economy analyses, which dominate their social ties, are considered as part of understanding knowledge system of hazards and catastrophes. Since this causes detecting the role of political economy of inequalities and racial, class and ethical processes and the marginalization caused by it, in the emergence of hazards and exacerbation of catastrophes and crises impacts. To use job structure means to emphasize concrete class structures, according to which an image of social inequality can be offered. Thus in present study, for structure determination and main composition of social stratification in Iran and Tehran “Structure Determination and Composition of Social Strata Model” was used. According to this model and with the use of data from matrix tables, major occupational groups and occupational situation have been classified in 5 classes superior strata, traditional middle strata, new middle strata, working and inferior strata and farmers. The data were prepared and analyzed by ArcGIS and Ms Excel softwaares. During the last century, uneven development process of the country was in favor of the Tehran and superior strata and powerful institutions located in this city. Regarding the processes and relations emerged from political economy of space and political ecology of Tehran, social strata inhabitation of Tehran has been in compliance with environmental capacities raised from topographic and microclimatic distinctions and ecological endowments. The findings of present paper also indicate physical and social vulnerability changes caused by probable hazards related to the general pattern of social strata inhabitation in north-south geographical direction. Spatial distribution of populated blocks in 1996, for which more than 30% of their inhabitants were “senior managers and experts” and “manufacturing jobs employees and laborers”, indicates the above mentioned issue and clearly show the poverty (old poor neighborhoods) and wealth (expensive and rich neighborhoods) spatial centers. In addition, according to the supporting studies on Tehran Comprehensive Plan, most of old urban tissues are in central and southern regions. Also according to the International Seismological Research Agency (JICA), the mentioned regions would be the most vulnerable in the Tehran probable earthquakes. Therefore, it can be said that findings and results of the present study indicate the determining place of political economy of space and urban political ecology and also the fundamental role of social stratification and class structure for recognition, analysis, explanation and understanding of the urban development challenges and problems. Hence, this is impossible to reduce social and physical vulnerabilities caused by natural and human hazards, particularly in the poor neighborhoods, regardless of political economy of space mechanisms and reduction of the gap and even urban development.
Illegal sale of extra building density (footages) and building violations all are being considered as the most important measures regarding urban management rent issues in Tehran, between 1991-2001. This in turn, intensifies the occurrence of building violations and instability regarding to Tehran’s spatial organization during the mentioned decade. This study aims to investigate the type, rate and spatial distribution of building violations and spatial-physical changes in districts of Tehran metropolis. The objective of this paper is to identify and explain the types of urban management functions and their resulting consequences in Tehran metropolis. The distribution pattern of building violations and some of their impacts are the major outcome of this research. This research based on its objective, possesses applied nature at strategic level. This study is based on spatial-structural and analytical approach. The under study area are all constructions in 22 districts of Tehran metropolis. It further supports the application of documentation. Data analysis demands descriptive statistic as well as GIS technique. This study suggests that 59% of all the issued construction permissions are associated with zone 1-5 followed by 67% which pertains to zones 1-7 between 1993-2002. These northern zones possess large holdings, good location, comparative advantage and very beneficial vertical density. About 117028 building licenses contain extra building footage problems. Total area of these violations occurrences has been amounted up to 32710210 meters. The distribution of the extra building footages associated with different zones represents a sharp but regular gradient with north-south direction. Moreover, this study suggests most of the governmental institutions committed violations associated with illegal land possessions as well as construction of illegal land uses in the area of public lands during 1990 decade. In addition, 249 illegal constructions pertaining to public institutions were identified by 2002 out of which 137 (55%) were visited by Tehran's municipalities.
The statistics associated with Tehran's building violations which referred to variance number 1 of 100 municipality law represents a high magnitude and level of violations occurrence during 2000 decade. The total area deal with these building violations inspected by these commissions has been amounted to be 2810559 and 1565644 square meters in 2001 and 2008 respectively. However, some of these types of violations informally resolved without ever referred to this corresponding municipality commissions. Most of these violations are associated with land use changes (56.98%). This is followed by violations pertaining to extra density footages. It is argued that 3.5 violation cases registered against each issued construction license between 1997-2008 in Tehran metropolis. Generally, the issuances of building permits and sale of extra construction density and footages were dealt with market demand and geared toward gaining its resulting rents. These measures and actions were contradicted with Tehran's master plan principles. These violations possess a sharp gradient with north-south directions in Tehran's south and north economic-social basins. These activities are harmful to public interests and simultaneously very beneficial to very small inclusive private group which possess capital and lands. This in turn, is associated with lack of a master plan and subsequent spatial equalization, imbalanced land uses per capita and services and cons equally. Tehran's unsustainable physical development, For instance, Tehran's residential per capita in 1991, 1996, and 2001 has been amounted to be 20.35, 22.51 and 23.88 square meters respectively. This amount is associated with 17.37% growth rate unit during 1990 decade. However, Tehran's residential per capita in 1996 and 2001 have been underestimated and amounted to be 17.8 and 12.8% respectively compared with 1995 estimation (27.39 square meters). Tehran's existing commercial per capita in 2001 (2.05 square meters) compared with previous estimation of 1996 (0.87 square meters) shows 136.44% growth. This has been resulted from change in existing residential unit in central part of Tehran. Tehran's military per capita land use in 2001 (7.50 square meters) compared with the previous estimation of 2006 (1.5 square meters) shows 400.87% growth as well.
Various community groups can play important role in disaster management. Countries with different segments of people directly participate in activities to reduce the risk. Therefore, regarding the role of women's participation in disaster management process and as a part of human society will have an important role in this process, identify and analyze the factors affecting women's presence is essential. However, the central role of women in families and communities remains unknown in most parts of the world specially in planning and managing the disaster. The purpose of this study is to identify and understand the different capabilities of women to participate actively in the cycle of disaster management and providing strategies for increasing women's participation in the prevention, preparedness, response and recovery of probable disasters. This study is an original and practical research. According to the theoretical research, a questionnaire was designed in four parts and it was completed through sampling. The sample population is women living in 22 districts of Tehran. This study implies that there is the low participation rate of women in disaster management among citizens of Tehran. To complete the data, proportional sampling was used and data were analyzed using factor analysis. Using this method, the data and the variables were summarized and the most effective factors were set in the partnership. These factors include disaster management, cultural factors and gender, fatalism, a feeling of power and confidence that the results of the factor analysis was performed using four dimensions. Based on tradition of social research and the findings of previous empirical research on women's participation in disaster management and the factors influencing voluntary participation, contextual condition of social variables (including socio-economic condition, occupation, marital status, number of children and age), as well as religious and fatalistic attitude would studied and evaluated the factors influencing the motivation and willingness to participate as a volunteer in the field of disaster management. The findings show that KMO value was equivalent to 0.74 in four factors of disaster management and the total values of the sector were defined 67.42% of total variance of the variables. KMO value in the sense of power and confidence variables was 0.72 and 65.27% of this segment can be explained by four factors the variability of the variables. In fatalism variable the KMO value was 0.599 and 59.56% of the four factors could explain the variability of variables. Finally, the KMO of socio-cultural norms was 0.71 and 70.52% of the variability of the variables was explained by five factors in this sector. Women cooperation alongside men play a major role in the use and implementation of policies and programs related to accidents. Thus, participation as one of the arguments in crisis management requires people involved in all processes related to the crisis management cycle. Since public participation opportunities and fields are different in societies and in different groups, so, to attract the participation in each group, identifying effective components is essential. Finally, after using factor analysis and extracting four factors, including knowledge of effective crisis management, cultural factors and gender, fatalism, a sense of power and self-confidence were classified. In general, most people do not do any activities in disaster management and their awareness and knowledge does not lead to disaster management needs. Thus, organizational barriers, structural, administrative and educational activities to promote social and cultural constraints are considering strategies promoting women's participation in disaster management cycle.
Today, urban and regional issues related to sustainable development is a key challenge for policy-makers, planners and specialists in various disciplines. Geomorphologic studies can be useful and effective in analyzing and deriving acceptable means to assess the growth and development of the city, and to set criteria to determine the directions of urban development. Landslides range of motions not only affect the human structures such as roads, rail lines and residential areas, but also lead to casualties. Tehran metropolis mountainous basins, including Kan, Vesk, Farahzad, Darake, Velenjak, Darband, Golabdare, Darabad, Sorkheh-Hesar, and Sohanak due to the lithology, geologic structure, weathered sediments, steep slope, rainfall and poor urban development are considered as one of the places where landslides are a range of geomorphologic processes can be studied. At this research, using Fuzzy and AHP methods and by the use 8 factor variables such as lithology, elevation, slope, aspect, annual rainfall, maximum daily rainfall, distance from fault and drainage system. the map of landslide zonation hazard in mountainous areas of the city is prepared to determine risky strips. After the standardization of the criteria for the occurrence of landslides and using frequency ratio method and fuzzy model and functions, Landslide hazard zonation maps was prepared for evaluating from the fuzzy sum, fuzzy product and fuzzy gamma operator 0.8 and 0.9. Then the final map of landslide zonation, obtained from the above-mentioned method matched with the map of urban regions in mountainous areas. In this way the constructed region have been distinguished from very high and very low hazard zonation. Lithological studies showed that most of the basin areas covered by Karaj Formation. About 45/7 percent of units with sliding movement in areas with "rock crystal tuff and tuff lytic green, with the layers of limestone" (unit Et2) of the intermediate tuff formation occurred. Cross of faults distance map with landslide density map showed that about 33/1 percent of landslides occurred within 200 m of the fault lines and 78/4 percent of landslides occurred within 500 m of drainage network. Most sliding movements (60/2 percent) in the range of 1900 to 2500 meters altitude and about 35/3 percent of this type of range of motion in height of 1500 to 1900 meters occurred. This area is about 81/6 percent of sliding movements in slopes between 15 and 40 degrees (26/8 to 83/9 percent) and about 17/6 percent on slopes less than 15 degrees (26.8 percent) occurred. In the aspect, sliding movements of the basin, mainly in the south-western slopes (about 23/2 percent), the South (about 17/5 percent), West (about 16/6 percent) and Southeast (about 77/1 percent), northwest (about 33/1 percent) occurred. About 88/9 percent of sliding movements in areas with average annual rainfall of 244 to 280 mm occurred. According to the zoning map, 12 percent of mountainous basins area (approximately 10,057 acres) is in the zone of very high risk, 33 percent (approximately 27,723 acres) is in high risk areas, 20.5 percent (approximately 17,143 acres) in the moderate risk zone, 30/ 7 percent (approximately 25,672 acres) in area and 3.8 percent of the total area of the basin, low risk (approximately 3172 acres) located in low risk areas. The results showed that approximately 5.2 hectares (about 0/05 percent) of the urban in zones with a huge landslide, about 51/5 acre (approximately 1 percent) in zones with high landslide risk and about 821 acres (equivalent to 25/16 percent) in the medium risk landslide zones are located and developed. The final results indicate that some mountainous regions of Tehran Metropolis are apt to landslide with middle to high risk. (Apart from strengthening the vulnerable area) avoiding these areas is an important solution to decrease damages caused by landslide.
Tectonic geomorphology is part of Earth Sciences, which deal with study of the interaction of tectonic and geomorphology. In other words it studies the effective tectonic processes in forming and changing the landforms. Geomorphic and morphometric indicators are suitable tools to the morphotectonic analysis for different areas. These indicators are used as the base tool to identify and recognition of tectonic deformation or estimates of the relative instability of tectonic activity in a particular region. Some of geomorphic indicators has been widely used, then the results of research projects are used to obtain comprehensive information about active tectonics. Full assessment of contemporary tectonics and tectonic activities, especially the young tectonic and its hazards need to Full understanding of geomorphologic processes speed and made for this purpose, geomorphological methods play an important role in this context.
This research uses a descriptive-analytical approach, using library studies and aims at determininge the activity of Neotectonic in 7 Watersheds of Tehran metropolis (from west to east: Kan, Vesk, Farahzad, Darakeh, Velenjak, Darband and Darabad). In the first step, using topographic and geological maps of under the studied area, faults, drainage networks and watersheds are identified, then to evaluation the indicators of Mountain Front sinuosity (Smf), the main river sinuosity (S), the drainage watershed asymmetry (Af), rivers density index (D), hypsometric integral (HI), the ratio of the watershed shape (BS), the ratio of valley floor width to valley height (Vf), river longitudinal gradient index (SL) and Index active Tectonic(IAT) have been determined. Survey of these indicators by topographic and geologic maps and Google Earth images of the under studied area using software of Google Earth, Arc GIS and Global Mapper are derived and calculated. In the following, parameters and how they are calculated are given:
-Mountain Front sinuosity is the result from equation (1):
Smf = Lmf / Ls (1)
In the equation (1), Smf is index of sinuosity Mountain Front. Lmf is the front along the foothills and mountains of the specified slope failure and Ls: straight line along the front of the mountain.
- The main river sinuosity index is as follows: S = C / V. In this formula, S is main river sinuosity. C: along of the river. V: valley along of the straight line.
- Rivers density index, drainage density is obtained from the formula:
µ=
Li is length in kilometers of drainage Watershed, A is area in square kilometers, μ is total drainage watershed in terms of kilometers per square kilometer.
- Hypsometric integral is an indicator which represents the distribution of surface heights variation from equation (2) is obtained:
HI= H - Hmin / H max – H min (2)
In this equation Hi is hypsometric integral, Hmin and Hmax respectively are the minimum and maximum height and H is the height of watershed.
- The ratio of width to height of the valley floor is another geomorphologic parameters to investigate the tectonic forces in the region .This index is obtained from the equation (3):
VF = (3)
VF, represents the relationship of the valley floor width to valley height, VFW: the valley, Eld and Erd to the height of the left and right and Esc is valley floor elevation valley.
- The ratio of the area ratio of the area and the equation (4) is obtained:
BS= Bl / BW (4)
-BS; the shape of the watershed; Bl; length dividers watershed of water to the bottom of the watershed outlet and BW: width of the flat portion of the watershed.
-The longitudinal gradient index (SL) for a range of drainage path is calculated and determined by the relationship: SL = (ΔH / Δ L) * L. In this regard, SL: the longitudinal gradient index, ΔH: height difference between two points measured, ΔL: during the interval and L: total length of the specified channel to assess where the index to the highest point of the canal.
The classification provided for indicators Sl, Smf, Vf, Bs, Af by Homduni et al (2008), this indicator is obtained based on the amount of 1, 2, 3 classified in three classes. Index of active tectonic (Iat) Geomorphic indicators by means of different classes Calculated based on the value of (S /n) is divided into four classes, That the division are characterized by class 1 with very high activity Neotectonic, Class 2 with high Neotectonic activity, Class 3 with medium Neotectonic activities and and Class 4 with low Neotectonic activity. In this classification of Class1 have the highest and Class 3 have the lowest Neotectonic activities (Table11).
On the basis of Iat indicator Neotectonic activities in the under studied area were assessment and results were is in table (13). Based on the data in Table (13) , watersheds of Kan and Darband hava a high Neotectonic activities and located in Class 2 and watersheds of Vesk, Frahzad, Darakeh, Velenjak and Darabad have a medium Neotectonics activities and and located in Class 2, and Neotectonic activities are a high relative tectonic activity in all watersheds. Geomorphic indicators are reflecting activities in the metropolitan Tehran watersheds can say that tectonically active watershed has not yet reached stability and tectonic activity are relatively high. Geomorphologic indicators drainage watershed asymmetry, the main river sinuosity, the valley floor width to height ratio of density of rivers and valleys, structural geology and tectonic activity in the7watersheds of Tehran metropolis better show it.
The results show that Tehran metropolis Watersheds have a high relative tectonic activity in all watersheds, because of the proximity to the major faults (such as Mosha- Fasham and North Tehran faults) and minor faults, tectonic activity exists. Finally it can be stated that, due to the presence of multiple faults and background seismicity and tectonic activity in Tehran metropolis and its watersheds, occurrence of earthquakes in the study area is not unexpected and this issue requires serious consideration and management.
Air pollution has become one of the main problems of cities. Among the sources of air pollution, vehicular traffic plays an important role. Planning for efficient management and control of the air pollution caused by vehicular traffic requires accurate information on spatio-temporal dispersion of the pollutions. This research studies 3D spatio-temporal dispersion of NOx pollution caused by vehicular traffic at Valieasr-Fatemi intersection resides in Tehran, Iran. It is selected for being crowded and having the required meteorological and pollution data sensed by the Air Quality Control Corp. of Tehran Municipality.
This study uses GRAL that is a local micro-scale air dispersion model defined based on Euleran-Lagrangian dispersion models. It investigates the level of spatio-temporal autocorrelation generated by GRAL simulations at both 2D and 3D modes and discusses how it adapts with the reality.
Adopting the GRAL air pollution dispersion model, streets are defined as the linear source of pollution of NOx caused by vehicular traffic. The traffic rate is estimated based on street areas and directions, the designed average traffic velocity, traffic volume and car passage counting at the intersection. The 3D geometry of the buildings is also added to the model. All the required data that were available for winter of 2007 are gathered and introduced into the model.
The model is executed at 9 heights vary from 1.7 m to 52.5 m. These heights are defined covering a range from an average human level height to average building height and above. These levels are considered both separately in 2D mode and integrated into a 3D mode. The formation of NOx clusters is investigated analyzing their autocorrelation using Moran Index at global and local scale.
The calculated Moran-I at global scale at each 9 levels of heights, varies from 0.7 to 0.9 that depicts the validity of the GRAL model adopted to simulate the expected autocorrelation of pollution density affected by spatial issues. The Moran-I increases at higher levels as less air turbulence happens. However the result show that the turbulence increases temporarily at about 10m to 15m which are the average building heights. At local scale, the Moran-I/Anselin shows that HH clusters dominate at lower levels, around streets central areas that are farther from the buildings, and around the intersections. At higher levels, esp. higher than buildings average height, the LL clusters dominate. However the HH clusters formed around intersections, while are shrank, are still visible at high levels. The turbulence caused by building fronts and their down wash effect is also shown in the result as no definite cluster is formed near the buildings front and back.
The autocorrelation analysis is also carried for an integrated 3D model consists of all the 9 levels of heights. Considering the weight matrix for a 20m 2D neighborhood and 1m/s dispersion of the pollution vertically, the global calculated Moran-I equals 0.229 which shows existence of a spatio-temporal autocorrelation of the results generated by GRAL. At local scale the results show that the HH clusters have higher temporal dispersion rate than LL clusters.
Flood as a natural disaster follows certain erratic patterns which was made confounding factor. Flood risk is variable and complex that depends on very phenomena such as rainfall, runoff concentration and high exposure of the flooding downstream areas.
This are changes over time and from regions due to natural conditions, human activities, and damage culture of the community at risk. Occurrence of chaos at flood risk changes the trend of predictable processes. In the other words, although flood is a disaster, the occurred irregularities in its patterns can reveal its complicated nature. Flood pattern irregularities are the incident evidence of chaos in the system which can be studied by fractal geometry. The occurred events in spatial variability of floods in the last 50 years show they can be occur as unusual urban flood in Tehran.
Tehran city may experiences the difference life and property damages because the high varieties in the socio-economic and the life quality level in regions, also structural varieties in the city fabric??. Ignoring the natural factors in spatial planning, overrun and destruction of natural morphology as a result of urban activities and subsequently disturbing urban drainage system lead to unpredictable and destructive floods in Tehran.
The Tehran precipitation layer was prepared based on 27 weather stations data in the period of 10 years (1998-2009) and Kriging model with a Gaussian function. The runoff is calculated by Soil Conservation Service Curve Number (SCS-CN) and precipitation layer. The flood hazard potential map has been created by 8 variables and Analytic Hierarchy Process (AHP). This map as an index to define the said complexity was prepared in 5 categories of risk by combination of Tehran metropolis flood hazard and vulnerability maps. Then it was divided into hydrological basins and 12 basins were selected randomly. The Perimeter-Area Fractal and Number-Area Model were used to study the chaos and turbulence in the Tehran’s flood pattern.
Explanation of locational changes of risk between the basins needs to calculate the weighted average risk and the independent variables in 12 basins that obtained by zonal statistics. Based on these average values the factor analysis used to determine the Varifactors or main components of the variability in flood risk between the basins. Finally, fractal geometry models (perimeter-area and cumulative number-area) were used to demonstrate the chaos of the flood risk value in 5 categories of risk.
In this research the Tehran flood zoning map was calculated at 5 hazard categories. The fractal of sample basins had increased by increasing in the level of hazard map. Generally, the higher DAP values from 1 represented increasing in the chaos or irregularities of Tehran floodhazard. The obtained DAP from very low to very high risk levels are 1.206, 1.216, 1.23, 1.263 and 1.293 respectively. The increasing of DA indicated that turbulence hazard increases based on Perimeter-Area fractal model, thus, with the increase in hazard the DAP and DP values were greater. Also, the results of Number-Area Model showed turbulence floods in the five classes of hazard. The area cumulative number of risk levels are 0.74, 0.79, 0.85, 0.86 and 0.88 respectively; this trend showed the less size of flood risk polygons from very low to very high risk levels. In the other words, by increasing the risk level the polygons gets smaller and indicates the increase the flood risk chaos.
The occurrence pattern of natural phenomena and even natural hazards have a regularity type in normally condition; if this regularity disrupts for any reason, irregularities or chaos happens. In present study, the results of fractal analysis in sample basins presented the chaos pattern in Tehran floods. Also the heavy rainfall can be predicted in Tehran but the prediction of the flooding distribution was not provided. According to the recorded floods in Tehran the flooding begins always in the northern valleys of Tehran, like Darband, Kan or Golabdareh basins, are not similar to damage pattern. As a result, despite several studies and projects which have been implemented about flood phenomenon in Tehran, this is unpredictable and uncontrollable in the city.
Tehran, in the south of Alborz Mountains, is faced with three types of weather risk, weather risk caused by geography, climatic risks caused by air resistance and weather risk due to global warming. The aim of this study is to examine the three types of risk in Tehran. The method of this study was to evaluate the changes of synoptic factors that affect global warming and urban development. In order to detect the height changes of 500 hPa two 5-year periods including 1948 to 1952 and 2010 to 2014, were studied.
The results showed that changes in heights of 500 geopotential, there was an increased risk in the city of Tehran. The effect of climate change in recent decades, increased the stability of air in Tehran. Human factors in the formation of heat islands, increase LCL height and density of the air balance is transferred to a higher altitude. Changing urban wind field, atmospheric turbulence intensified, exacerbated thermodynamic gradient, fat and refugee cyclones, heat island effect of the city.
Thermal stability in the warm period will appear. The thermal stability of all levels of lower, middle and upper troposphere was intensified. Thermal stability couraged the development of subtropical high pressure in the area. With the arrival of the atmospheric pressure during calm and humid days the stability and pollution were increased. Negative vorticity from early June developed the intensive high pressure over the region. Compare the conditions of the two study periods showed that : the height of the high pressure was 100 meters higher than the second period. The number of days of intensified subtropical high increased during the second period. The high pressure has moved to the northern areas during the second period. This change in the subtropical high pressure increased the dry periods motivating the loss of vegetation. Heat island effect was increased as well. More than 90% of the temperature inversions occurred at an altitude of less than 500 meters in both warm and cold periods of year. Wind direction at both stations has shown that the establishment of any pollutant source in the West of Tehran will increase the pollution.
The City-region of Tehran is encountered with various environmental problems, including traffic, air pollution, lack of drinking water and green space, physical texture conflict, flood and earthquake. Capital accumulation has considerable role in shaping spaces which can create and intensify environmental disaster in special socio-economic situation. The second cycle is the conversion of capital to fixed and long-term assets with the aim of further benefits, which in fact produces two types of artificially environment during this process namely the built environment for production, and the built environment for consumption.
The third cycle is aiming to connect science to production and increase production capacity by investment in science and technology. When production of surplus value reduced in the first cycle, surplus value of second cycle increases through speculation and real estate transaction (real estate capital). Therefore, the owners of the lands and buildings are encouraged in production, trade and supply of these type assets.
In the courtiers that are legally and administratively encounter with tax receipt problems, urban lands ownership is deposited to market system without any control, hosing transaction continues without any limitation, situation is moving forward to personal vested interests, asset value rises rather than production value, the price of land and construction increase severely. In the above mentioned condition, beneficiaries attempt convert the natural resources including park, mountain, river privacy and road privacy to marketable commodity and legally or quasi legally seize them. Therefore, unreasonable construction and population density increases and city-region will encounter with environmental disasters.
The main objective of this research is to understand the underlying factors of capital accumulation through construction and its impacts on createion and intensification of environmental disasters in the Tehran city-region.
Five different regions of Tehran were selected for data collection. "Q-methodology" was used for gathering and analyzing data. The society of communication or people whom the study sought to identify their mentality towards the research topic, were 25 experts selected through purposive sampling. To set the concourse of communication, a combination of primary (experts commented in an interview) and secondary (sources of credit) sources have been used and 34 statements have been developed. After sorting the data for analysis, SPSS software data matrix is formed. Factor analysis, as main method of analyzing Q data matrix has been used based on Q logical methodology.
The results of Q analysis depicted four viewpoints with variance of 95.911 percent on the underlying cause of capital accumulation through construction and its contribution on increasing risk of natural hazards in Tehran city-region.
The first viewpoint has devoted 52.800 percent of total variances and can be titled as" Function of real estate transaction and Non-productive economic domination".
The second viewpoint which has received 18.914 percent of total variances is accordance with "commodification of land and housing". The third viewpoint is" management and monitoring of the city-region space" with 15.163 percent of total variances. The fourth viewpoints under the title of" monitoring and control of natural resources" has assigned 9.034 percent of total variances.
As result of these processes, land and housing business have weakened society's productive capacity by extensive land use change in the urban peripheral area's due to its huge and quick profit. The above process accompany with selling excess density policy created a powerful political and economic stratum which harmed city sustainable development. The mountainous area of north, north east and west of Tehran, have annexed to metropolis as a result of above mentioned regulation and may gardens have converted to construction by different gropes and institutions.
Q method analysis depicted that the Tehran City-Region has converted from use value to exchange value. It means that values of the city including work, security, education, leisure and welfare have been lost in favor of exchange value. In other words, the city has been converted to a commodity for exchange and selling in pursuit of profit, rising cost of urban land, building and housing. Consequently, the city-region construction site is extended to the river beds, steep slops and surrounding natural environment. This in turn is leading to rapid land use change and violation of environmental and spatial rules and regulations and intensification of environmental hazards.
Resilience are concepts that are finding increasing currency in several fields of research as well as in various policy and practitioner communities engaged in global environmental change science, climate change, sustainability science, disaster risk-reduction and famine interventions (Vogel, et.al, 2007). Where the risk is a probability of damage, injury, liability, loss, or any other negative occurrence that is caused by external or internal vulnerabilities, and that may be avoided through preemptive action (Benson, et.al, 2004). Among natural disasters, earthquakes, due to the unpredictable nature of these events, are one of the most destructive. Iran is one of the most earthquake-prone countries in the world that its cities most affected by this phenomenon. Among the cities of Iran, Tehran, as the country's first metropolis, due to dense population, poor physical development, structural density, and lack of standards, is potentially facing a serious threat. The purpose of this study is to investigate the spatial flexibility of Tehran over the region 12 after the earthquake incidence.
The present study is dealt with the data preparing and analysis using geospatial methods. The several geospatial data such as Peak Ground Acceleration (AGA) map, urban structure, infrastructure and population collected from Tehran Disaster Management Center were provided and analysis based some GIS known algorithms. In other to urban spatial resilience zonation the AHP (analytical Hierarchy Process) was implemented to generation risk map. Finally OWA (Ordered Weighted Average) method was implemented in order to Production spatial flexibility map of earthquake incidence over the District 12 of Tehran. AHP model uses of priorities straight experts, but OWA provides of control the level of compensation and risk-taking in a decision. Using the conceptual of fuzzy quantifier with OWA makes the qualitative data analysis enter to decision.
According to flexibility of the final map with fuzzy operator (All) equivalent to the operator MIN, the worst result Was obtained and resulting the highest risk and lowest flexibility respectively (Districts Nos. 2,12,7,8 and 11).By taking all the criteria of a criterion without compensation by other criteria as "non-risk" is obtained .
Map obtained with fuzzy operator (Half) has the high potential to provide suitable options, because in addition to integration criteria the importance of each parameter based on the weight given to the criteria are considered. In this map Districts Nos.2.6 and 8 (Baharestan, Emamzadeyahya and Sanglajedarkhangah) respectively were most Risk to earthquakes and therefore less flexibility to the earthquake. The map obtained with the fuzzy operator "Atleast one" is equivalent to MAX operator districts Nos. 2,12,7 and 8 (Baharestan ,DarvazehGhar of Shush,Abshardardar and Sanglajedarkhangah) respectively were most Risk to earthquakes and therefore less flexibility to the earthquake.
The fuzzy conceptual map quantifier showed that districts Nos. 2 and 12 (Baharestan and DarvazehGhar of Shush) were most vulnerable and therefore less flexibility to the earthquake as final results.
Today, air strike on installations and urban areas, is normal. As such, vulnerability assessment cities and provide the right solution for harm reduction is essential. The purpose of this investigation was to identify factors causing damage in the district of twenty in Tehran. The research method is descriptive-analytic and Data collection is library and field. Data analysis is based on using Ahp and GIS. Results show, In the district twenty , There are three zones vulnerable. Including, The old Central, The high-density Dolatabad and sizdah aban neighborhood. These zones are 34 percent of the land. The reason of it is Poor physical structure. Statistical Society is Twenty district in Tehran. Sample size is 384 people of residents of the district. Because, in this area there are strategic factors, is An important part of the tehran city. in the end, are provided The right solution of Reducing vulnerability.
© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts
Designed & Developed by : Yektaweb