Javad Sadidi , Mr. Ehsan Babai , Hani Rezayan,
Volume 3, Issue 4 (1-2017)
Abstract
Accessibility to precise spatial and real time data plays a valuable role in the velocity and quality of flood relief operation and subsequently, scales the human and financial losses down. Flood real time data collection and processing, for instance, precise location and situation of flood victims may be a big challenge in Iran regarding the hardware facilities (such as high resolution aerial imagery devices) owned by the correspond organizations. To overcome the mentioned inabilities as well as reducing the financial costs for real time monitoring purpose of a flood, the current research intended to use the capacity of the flood victims and other volunteers to collect and upload real time data to rescue themselves. By means of this, flood real time spatial and non-spatial data collection is applicable via public and per-person participation based on the needs of each victims. The current Open Source workflow has been so designed that by using a browser like Mozilla, Explorer, Chrome and etc., and without the need for installing any software, the victim transmits his/her exact geographic location (captured automatically by the designed web service) and other multimedia data such as video-photo. Also, the flood-affected person announces the type of the damage and consequently, demanded rescue operation to the managers as a text information. After data processing on the server, the information is represented as a real time rescue map for decision making. The rescue plan may be mapped based on the singular aid as well as plural plan in the cluster form specialized for a particular group of victims in each bounding box. To design the web service, a client architecture for victims, other volunteers and managers has been developed, for implementing the service, Open Source technologies, server-side and client-side programming languages, Geoserver and WFS (Web Feature Service) standard adopted by OGC for spatially-enabled representation of victims demands, have been exploited. The research result is a browser-based service in which the client service offers automatic zooming to the current location of the clients and sends the rescue request including personal identifications and the type of injury using PHP (stands for Hypertext Preprocessor) and SQL (Structured Query Language). In the other side, on the client side designed for managers, the requested rescue submitted by the victims and other volunteers are mapped and displayed real time by OpenLayers and WFS. The result introduces an efficient applicable method for gathering real time and high accuracy geographic-multimedia-text data collection and consequently, extremely reduces the relief operation costs. Finally, the proposed methodology causes better performance and spatially clustering of victims to decrease the aftermath of the flood in a region like Iran suffers from the lack of expensive hardware technologies for precise data collection and transmission.
Dr. Javad Sadidi, Mr. Mansour Bayazidi, Dr. Hani Rezayan, Dr. Hadi Fadaei,
Volume 8, Issue 4 (3-2022)
Abstract
Designing a Volunteer Geographic Information-based service for rapid earth quake damages estimation
Introduction
The advent of Web 2.0 enables the users to interact and prepare free unlimited real time data. This advantage leads us to exploit Volunteer Geographic Information (VGI) for real time crisis management. Traditional estimation methods for earthquake damages are expensive and time consuming. In contrast, volunteer and web-based service are near real time with almost no cost services. the lack of accessible real time data collection services causes delayed-emergency responses for disasters like an earthquake. This drawback is critical when we encounter a problem like buried people with valuable seconds for emergency rescue operation.
The current research aims to design and implement a web-based volunteer data collection service for rapid estimation of earthquake damages and number of buried people.
Methodology
To investigate the capacity of VGI in rapid estimation of earthquake, a technical frame work based on the web technologies has been programmed and implemented. The designed service is comprised of server and client sides.
The client side is a two-side browser-based service includes volunteers (users) and managers pages. On the user page, volunteers have a web page to enter and fill in the blank forms and taking a photograph of the target building and compare it with pictures. They watch the sample pictures in different level of damages and compare their building with the samples and give a grade of the most similar picture with their building. This grading process leads the server to analysis and classify the incoming data and create the heatmaps for managers. On the managers page two online discrete heatmaps for the both earthquake damages and buried people are displayed. In fact, the heatmaps present the online and real time quantitative situation of the building damages and buried persons as hot spots. These hotspots have the first priority for giving emergency services. The manager page also exploits query tools to request different level of details and classes from the server side.
The server side is responsible for receiving, saving, spatial analysis and transmission of the requested result to the client side. This task is carried out by the exchange side. As the citizens are entered to the browser-based service and fill in the blank forms for building damages based on the mentioned guideline and report the buried people, These forms are transmitted to the server side and a geo-server performs spatial analysis including Heatmap, distance and clustering analysis. Then, a real time damage and buried people map are prepared and delivered to the client side. The server updates the created maps whenever a new data is submitted. By this, a real time damage and buried people maps are accessible for official managers to conduct a goal-oriented emergency operation and a preliminary earth quake damages on city building blocks.
After the technical frame work has been designed, it was tested in Oshanvieh city by 132 volunteers on the scene for an earthquake.
Results and discussion
To investigate the capability of volunteer geographic information for earth quake afterwards, the designed service mentioned in the methodology was utilized on Oshnavieh city. It was assumed that an earthquake has occurred. 132 volunteers participated for the data collection process. According to the crisis management organization experts, 102 reports of the total 132 reports are correct that shows the accuracy of 76.52 percent. Besides the building damage level based on the defined guideline, the citizens also select their vital needs after the earthquake.
the most requested vital needs are warm stuffs, medicine, water and foods respectively. Unfortunately, the participation rate is ranged from some seconds after the earthquake to three days. This means that some citizens have filled and transmitted their data three days after the earthquake.
In the following, a comparison between the designed service and traditional earthquake damage estimation methods (in situ) was carried out. The result shows that field-based methods for a city like Oshnavieh need about 20 days. However, the designed volunteer-based service what is programmed and implemented in the current research does this job by 3 days.
Conclusion
As the results show, the proposed service designed in this research implements the damage estimation process 6.5 times faster than the governmental procedures. This proves the efficiency of the research achievements. Besides the velocity, traditional damage estimation methods are expensive compare to volunteer-based data collection and processing which are almost free, scalable and pervasive.
Keywords: Volunteer Geographic Information (VGI), earthquake damage estimation, heatmap, oshnavieh city.