Somaiyeh Khaleghi, Mohammad Mahdi Hosseinzadeh, Payam Fatolah Atikandi,
Volume 8, Issue 2 (9-2021)
Abstract
River channel changes, bank erosion and sedimentation are the natural processes of the alluvial rivers that destroy the agricultural land and damage to human installations around the river. In the present study, the CAESAR model was used to assess the changes of the Kaleibar Chai River in order to measure the variation of 3 km of its main channel.CAESAR is a cellular automata model for river system evolution. CAESAR is a cellular model that uses a regular mesh of grid cells to represent the river catchment studied. Every cell has properties of elevation, water discharge and depth, vegetation cover, depth to bedrock and grain size. It is based upon the cellular automaton concept, whereby the repeated iteration of a series of rules on each of these cells determines the behaviour of the whole system. CAESAR has a set of rules for a hydrological model, hydraulic model (flow routing), fluvial erosion and deposition and slope erosion and deposition. For every model iteration, cell properties (e.g. elevation) are updated according to the rules, and the interaction between an individual cell and its neighbours. For example, the amount of fluvial erosion in a cell may depend upon the depth of water in the cell and the slope between that cell and its neighbours.
For modeling, the input data such as topography (DEM), daily discharge (year 2012) and sediment grain size were prepared and then channel modifications were simulated. Channel changes were identified before and after the simulation by plotting profiles of each cross-sections and were analyzed sensitive to erosion and sedimentation.Six cross-sections were selected before and after simulation. Results showed that the channel geometry has changed. The width and depth and form of the channel have changed. And only the mean depth of the channels was changed in sections 1, 2, 6 and 4. The erosion was dominated in the cross- sections 1, 2, and 3 (the initial part of the main channel). Then the sedimentation was dominated in the cross- sections 4, 5 and 6.
Dr Javad Mozaffari, Mohamad Pooranvari, Dr Seyed Asadolah Mohseni Movahed,
Volume 10, Issue 1 (5-2023)
Abstract
Introduction
Soil erosion is the process by which soil particles and components are separated from their main bed by an erosive agent and transported to another location. In the soil erosion process, there are three distinct phases: 1- separation of soil particles, 2- particle transfer and 3- sedimentation of transported materials. In water erosion, the erosive factors are rainfall and runoff. Erosion and the consequent reduction of soil fertility are among the issues that make it difficult to achieve sustainable agricultural development and environmental protection. It is important to study the quantity and quality of erosion in the country's watersheds and to prevent the loss of one of the richest and most valuable natural resources of the country, namely soil, and to fight against this process. (Tabatabai, 1392). Therefore, to calculate the rate of erosion and sediment production in most watersheds of the country that lack statistics or lack of statistics, the use of experimental models to estimate erosion and sediment is required. According to what has been said, the present study was conducted based on the following two main objectives: 1- Estimation of erosion and sediment in Adineh Masjed watershed, which is one of the main sub-basins of Kamal Saleh Dam, using EPM and MPSIAC experimental models and 2- Investigation and comparing two models and choosing a better model for similar regions and climates.
Materials and methods
Adineh Masjid watershed is one of the sub-basins of Dez and the main sub-basin of Kamal Saleh dam. Temperature, isotherm, geology of the area, slope and available information were performed and finally, by interpreting the photos, types, land units, current land use were determined and updated with field control. For a more detailed study, first, according to the condition of the main waterway and changes in the appearance of the land and vegetation and new land material, the ridges separating the basin were divided into 15 sub-basins. In EPM model, four watershed erosion coefficient (Ψ), land use coefficient (Xa), rock and soil susceptibility coefficient to erosion (Y) and average basin slope (I) and in MPSIAC model, nine geological, soil, climate factor (Climate), runoff, slope, vegetation, land use, current erosion status and waterway erosion are examined. Each model was scored according to data analysis and digital images and then placed in the relevant formula. Finally, the amount of erosion and sediment in the basin was estimated and the sedimentation class of the area was determined.
Results
To determine the score of nine factors affecting soil erosion using MPSIAC method and the four factors of EPM model, each of the factors affecting erosion in units were analyzed. Finally, by weighting, the points of each factor in the models were calculated. The degree of R deposition from the sum of the nine factors of MPSIAC model and the degree of Z erosion was obtained by combining the four EPM factors. Then, the amount of sediment production and erosion in the field of relationships related to each model was calculated and compared and analyzed. In MPSIAC model, the amount of specific sediment (M3 / Km2 / year) was calculated as 112.713 and the specific erosion (M3 / Km2 / year) was calculated as 375.71. In the EPM model, the amount of specific sediment (M3 / Km2 / year) was calculated as 213.95 and Specific erosion (M3 / Km2 / year) was calculated to be 395.86.
Discussion and conclusion
The results of sediment and erosion estimation were estimated separately for each sub-area using two models and it was found that the two models are somewhat relatively compatible with each other. The results of MPSIAC model, have more accuracy and reliability, and therefore the results of the MPSIAC model can be used to estimate the amount of sediment entering the Kamal Saleh Dam. However, due to the small distance between the results of the two models, if we do not have access to MPSIAC model data in similar areas, the EPM model can be used with less data and more easily accessible. It was also observed that in the upper and entrance parts of the basin, where the slope is higher and the vegetation is less, the amount of sediment production and erosion is higher in these areas. So that the upper parts of the basin are in the medium erosion class and the rest of the basin is in the low erosion class.
Keywords: watershed, erosion and sediment, modeling