Hot, humid weather causes to the sultry feel. Sultry condition is usually accompanied with loss of physical ability and human respiratory and it has an adverse effect on peoples who have circulatory or other heart problems and this feeling is more than others. Sultry feel is a feeling like any other sensitive reflections of mental state. And this state apparently can’t be measured by special instruments. With this description, there are a lot of efforts has been done to identify this phenomenon by meteorologists and climatologists. And a series of psychological climate tests show that we can examine the creation and incidence of this sense based on empirical studies as a scientific and objective attitude. Therefore, this study aims to classify the sultry days in the southern half of Iran based on sultry continuous hours. And the obtained results are presented as a form of zoning maps.
The studied zone in this research is selected stations in the southern half of the country located in the province of Sistan & Baluchestan, Kerman, Hormozgan, Fars, Bushehr and Khuzestan. This area is located between two latitude 25 and 35 north and length of 47 to 63 east degrees. To achieve this goal, hourly partial pressure of water vapor of 13 selected stations were obtained for a period of 15 years (1995-2009) from Meteorological agency. After obtaining data and creating the database, to separate sultry conditions from non-sultry conditions, threshold of partial pressure of water vapor of Scharlou which was equivalent to 8.18 Hpa were used.
Based on these data, the hours and days that the partial pressure of water vapor was equal or greater than 8.18 hpa will have sultry conditions and otherwise, they have non-sultry conditions. Then, based on this threshold, sultry days were divided into eight categories. The basis of this classification is that if in a particular day among eight branches of observation, one station, only in one observation record a pressure equal to or greater than 8.18 hpa was observed, it will be placed in first class and if only two observed records a value equal or greater than defined value, it will be placed in second catagory and finally, if all eight observations amounts equal to or greater than 8.18 had been recorded, it will be placed in eight class. After placing the sultry days in one of eight branches of classes, long-term averages of monthly, quarterly, quarterly and annual were calculated and mapped.
Based on defined thresholds, sultry days were separated from non-sultry days, then sultry days were extracted and it was placed in first to eighth classes. The results of this classification showed that on monthly scale, January has the fewest sultry days in twelve months of the year. In this month, only two stations of Chabahar and Bandar Abbas had the sultry days of eighth classes. It means that 24 hours, they were in sultry conditions. Other stations that have a sultry day in this month, often their sultry days are from first to fourth classes and it means that they had maximum 3 to 12 hours of sultry conditions during the day. Most sultry days can be seen in two June and July months. So, in these two months, all studied stations have at least one sultry day,Specially in three stations of Chabahar, Bandar Abbas and Bushehr. And all 61 days, they have sultry conditions. In terms of classification of sultry days, all 61 days of Chabarhar station are part of sultry days of eighth class. In two stations of Bandar Abbas and Bushehr, except few days that are from sixth and seventh classes, other days are from eightth class, other stations experienced one of the eightth classes of sultry days with different ratios. , and at the seasonal scale, winter has the lowest days of sultry and summer has the most days of sultry days. In term of classification of sultry days in seasonal scale, there are conditions as monthly scale. The interesting point in summer season is that sultry days on two stations of Zabul (35 days) and Iranshahr (51 days) are considered due to their Geographical locations. In Zabul station, the reason of these sultry days can be due to the neighborhood of this station with Hamoon Lake. But it should be mentioned about Iranshahr stationthat the reason of its sultry condition is entrance of monsoon low pressure and moisture transfer by the system on the south-east of Iran an especially Iranshahr. On an annual basis, it was also observed that always in south east of Iran (Especially Chabahar station), the number of sultry days is much more than south west of Iran, also occurring sultry days with eighth, seventh and sixth classes in this zone is so different from south-west of Iran. The reason of these differences in number of sultry days and sultry classes related to the latitude of south east of Iran which is lower that south west and in other words, we can say that climate of south East of Iran is more similar to tropical climate than subtropical climate.
The application of Extreme value analysis method in heat wave hazard climatology; case study in Mid-Southern Iran
Abstract
Greenhouse warming poses the main cause of atmospheric hazards’ exacerbation and emergence in recent years. Earth planet has been witnessing frequent and severe natural hazards from the distant past; however, global warming has strongly influenced the occurrence of some atmospheric hazards, especially the ones induced by temperature and has increased the frequency and severity of those risks. Such extreme risks arising from temperature element and being affected by global warming could be referred to hot days and their frequency more than one day which undergo heat waves. Of the studies conducted worldwide in conjunction with the phenomenon of heat waves, the following can be pointed out; Schär (2015) has focused his studies on the Persian Gulf and the worst heat waves expected in this area. The recent work revealed an upper limit of stability which enables the adaptability of human body with heat stress and humidity. If people are exposed to a combination of temperature and humidity over long periods higher than this level, they will lead to hyperthermia and death, because heat dissipation from the body is physically impossible. Paul and al-Tahrir (2015) using a high-resolution regional climate model demonstrated that such a situation can occur much earlier. In Iran, in relation to heat waves, Ghavidel (2013) analyzed climatic risk of Khuzestan province in 2000 regarding super heat waves using the clustering approach. The obtained results unveiled the establishment of a low pressure at ground level and high pressure dominance at mid-altitudes up to 500 hp as well as the increase in atmosphere thickness having led to the ground overheating. Added to that, the source of heat entering into Khuzestan is advective and hot and dry air transport through Arabian Peninsula, Iraq and Africa. Ghavidel and Rezai (2014) addressed in a study to determine the temperature-related threshold and analyze the synoptic patterns of super heat temperatures in southeast region of Iran; the results of study approved that the only pattern effective on the occurrence of super heat days in Iran’s southeast is the establishment of the Grange’s heat low-pressure at ground level and subtropical Azores high elevation dominance at 500 hPa level. In this study, absolute statistical indicators, also recognized as above-threshold values approach, were used in order to identify, classify and heat waves synoptic analysis in the warm period of the year in the southern half of Iran. To use above-mentioned indicators, firstly daily maximum temperature statistics of studied stations with the highest periods were averaged every day once in June to September and once for the months of July and September. Using statistical indicators of long-term mean and standard deviation or base period, indicators would be defined for the classification of heat waves and days with peak extreme temperatures. In such classifications, usually long-term average or base period is multiplied by 1 to 3 to 4 times standard deviation and each time is account for the factor of each class.
To select the days for synoptic analysis, averaging was performed of all classified waves into four heat wave categories of low, intermediate, strong and super heat; accordingly based on the maximum blocks in each class of heat waves, days that had the highest temperature values were selected as the class representative for mapping and synoptic analysis.
This study dealt with investigating heat waves synoptic during the year’s warm period in the southern half of Iran. Studies showed that a variety of synoptic systems in the year’s warm period affect the study area. As well as, synoptic analyses concluded that in the southern half of Iran over the year’s warm period when occurring heat waves, low-pressure status dominates the ground level (caused by Gang’s low-pressure and local radiant mode); thus high-pressure status with closed curves is prevailing in atmosphere’s upper levels that gives rise to the divergence, air fall and Earth's surface heating. Studying the status of the atmosphere thickness in the days with the heat wave in the study area indicates its high altitude and thickness that this itself implies the existence of very hot air and susceptibility of the conditions for the occurrence of heat waves. In addition, wind maps at atmosphere’s different levels well illustrate the wind of very warm and hot air masses from the surrounding areas to the southern part of Iran; therefore it can be noted that aforementioned hot air masses mainly wind from places like different regions of the Arabian Peninsula, Iraq, North Africa and the low latitudes to the study area.
Keywords: Synoptic analysis, heat waves, maximum blocks, southern half of Iran.
Page 1 from 1 |
© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts
Designed & Developed by : Yektaweb