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Abstract 

In this paper rationalized Haar (RH) functions method is applied to approximate the 

numerical solution of the fractional Volterra  integro-differential equations (FVIDEs). The 

fractional derivatives are described in Caputo sense. The properties of RH functions are 

presented, and the operational matrix of the fractional integration together with the product 

operational matrix is used to reduce the computation of FVIDEs into a system of algebraic 

equations. By using this technique for solving FVIDEs computation time is low. Numerical 

examples are given to demonstrate application of the presented method with RH functions 

base. 

Introduction 

In resent years, many important problems in fluid mechanics, viscoelasticity, 

electromagne-tics, chemistry, biology, physics, engineering and other areas of science 

can be modeled by fractional derivatives and integrals, see [1], [2]. In this work, we 

study numerical solution of FVIDEs of the type 

  
 
                                                                                      

 

 

 

0 ≤ x  ≤1,        n-1 <   ≤n,           n ∈ N, 

with n initial condition 

                                                                                  

where *D
 
 is Caputo

,
s fractional derivative and   is a parameter describing the order of 

fractional derivative. Also,   is a real known constant, f,g L
2
([0,1]) and k L

2
([0,1]

2
) 
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are given functions, y(x) is the solution to be determined and G(t,y(t)) is an analytic 

function of the unknown function y(x). Such kind of equations arise in the mathematical 

modeling of various physical phenomena, such as heat encountered in combined 

conductions, convection and radiation problems [3], [4], [5]. Since, FVIDEs are usually 

difficult to be solved analytically, several methods have been used for the solution of 

FVIDES. Examples of such methods are, Adomian decomposition method (ADM) [6], 

[7], Spline collocation method [8], Fractional differential transform method [9], 

Homotopy pertubation method [10], Operational Tau method (OTM) [11] and other 

methods [12], [13], [14]. Ordokhani [15] has described the orthogonal set of Haar 

functions and transformed it to RH functions. In this method, we want to expand the 

*D
 
y(x) by RH functions with unknown coefficients and by using Newton-Cotes nodes 

[16] we can evaluate the unknown coefficients and find an approximate solution to Eq. 

(1). 

The article is organized as follows: 

In section 2, we will introduce some necessary definitions and preliminaries of the 

fractional calculus theory. We shall present the properties of RH functions required for 

our subsequent development in section 3. Section 4 is devoted to the solution of Eq. (1) 

by using RH functions, and in section 5 we will report our numerical findings and 

demonstrate the accuracy of the proposed method by numerical examples. 

 

Definitions and preliminaries 

In this section, we give some definitions and mathematics preliminaries of the 

fractional calculus theory. 

Definition1. The Riemann-Liouville fractional integral operator of order   is defined as 

[2], [17] 

       
 

    
         
 

 

                           

              

whrere  (.) is Gamma function. It has the following properties: 
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Definition2. The Caputo definition of fractional derivative operator is given by [18], 

[19] 

  
 
            

 
      

 

      
            

 

 

            

where   n-1 <   ≤  n,     n ∈  ,    x > 0. 

It has the following properties 

  
               

                                    
 
               

   

   

    
  

  
             

 

Properties of rationalized Haar functions 

1. Rationalized Haar functions 

The RH functions hr (x), r=1,2,..., are composed of three values +1, -1 and 0 can be 

defined on the interval [0,1) as [15] 

                                              hr(x) =  

                  
  

             
  
     

                       

                                        (3) 

where     
   

  
          

 

 
      

The value of r is defined by two parameters i and j as 

                                            

h0(x) is defined for i=j=0 and given by 

                                                                                    

The orthogonality property of RH functions is given by 

                
 

 

  
           
              

  

where 

                                                   

2. Function approximation 

A function f(x)  L
2
([0,1]) may be expanded into RH functions as [15] 
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where    given by 

                                      
 

 

 

with r=2
i
+j-1, i=0,1,2,3,..., j=1,2,3,...,2

i
  and r=0 for i=j=0. 

The series in Eq. (5) contains an infinite number of terms. If, we let i=0,1,2,...,β then the 

infinite series in Eq. (5) is truncated up to its first  m terms as 

                   

   

   

   
                                                            

where,    β       β              

The RH function coefficient vector Cm  and RH function vector Hm(x) are defined as 

                 
                                                           

                                                      
                                             

Also, we can expand the function k(x,t) ∈ L
2
([0,1]

2
) into RH function as 

            

   

   

   

   

            

where 

                
 

 

 

 

                 

Hence we have 

           
                                                                       

          
                                                                    

Taking the Newton-Cotes nodes as following [16] 

   
    

  
                                                                                 

The m-square Haar matrix Φm×m can be expressed as                               

   Φ        
 

  
     

 

  
       

    

  
                                                

for example if  m=8 we have 
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              Φ    

 
 
 
 
 
 
 
 
        
            
          
          
         
         
         
          

 
 
 
 
 
 
 

     

Using Eq. (6) we get 

   
 

  
    

 

  
      

    

  
       

 Φ                                         

From Eqs. (10) and (13) we have 

       Φ
   
   T

    Φ   
  

                                                             

where 

                                      
      

    

  
 
    

  
 
                          

3. Operational matrix of the fractional integration 

The integration of the vector Hm(x) defined in Eq. (8) can be expanded into Haar 

series with Haar coefficient matrix Pm×m as follows [15] 

    

 

 

                                                                           

where Pm×m is called the RH functions operational matrix of integration. In this section 

our purpose is to derive the RH functions operational matrix of the fractional integration 

[12]. For this purpose, we consider an m-set of block-pulse functions as 

            
 

 
     

   

 
 

                         

  

where i=0,1,2,…,m-1. 

The function bi(x), are disjoint and orthogonal. That is 

            
                    

                
  

 

              
 

 

   

                    
 

 
               

  

The RH functions may be expanded into an m-set of block-pulse functions as 
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       Φ                                                                   

where Bm(x) =[b0(x),b1(x),...,bm-1(x)]
T
 and Φm×m is an m×m matrix defined in Eq. (12). 

In [20], Kilicman and Alzhour have given the block-pulse operational matrix of the 

fractional integration F
 
 as follows: 

          
                                                                   

where 

    
 

  

 

      
  

 
 
 
 
 
 
 
  

 
 
 

 
 

  
   

   
 

 
 

  
   

    
 

  
   

      
      

 

       
 
 
 
 
 
 

                                     

with  
 
=(k+1)

 
 - 2 k

 +1
+ (k-1)

 -1
. 

Next, we derive the RH function operational matrix of the fractional integration. 

Let                                          

            
                                                                

where     
  is called the RH functions operational matrix of the fractional integration. 

Using Eqs. (16) and (17), we have 

        Φ         Φ    
       Φ    

        

from (16) and (19), we get 

    
           

 Φ         Φ    
         

Then,      
  is given by 

    
  Φ    

 Φ   
                                                            

where, Φ   
   is inverse of matrix Φm×m. 

Therefore, we have found the operational matrix of fractional integration for RH 

functions. 

For example, let m=4, then we have 
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and for  =0.25, the operational matrix     
     can be expressed as following 

     
       

                           
                         
                         
                    

 . 

3.4. The product operational matrix 

In this work, it is necessary to evaluate the product of Hm (x) and    
    , that is 

called the product matrix of RH functions. 

For this purpose, let 

       
                                                                 

where vector Cm is what defined in (7) and       is m×m-dimensional coefficient 

matrix. 

Using (16), we have 

       
       Φ          

    Φ   
                                    (22) 

Let 

   
  Φ   

       
    

        
                                             

From Eqs. (16), (21), (22) and (23), we have 

       
                  Φ        

 Φ   
                                  

where      
         

    
        

     is the product operational matrix of block-pulse 

functions. 

Therefore, we have the coefficient matrix as   m m  Φm m  m m

 
Φm m
 1 .   

For m=4 we have 

       

 
 
 
 
 
c0 c1 c2 c 
c1 c0 c2  c 
c2

2

c2

2
c0  c1 0

c 

2
 

c 

2
0 c0  c1 

 
 
 
 

. 

 

Solution of FVIDEs 

In this section we consider the FVIDEs given in Eq. (1). To solve for y(x), we first 

approxmate  
 

  x  as 

  
 

  x   m
  m x                                                                  2   
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where Cm is the RH functions coefficient vector and  Hm (x) is RH functions vector.By 

using the initial conditions in Eq. (2) and Eqs. (19), (25) and properties of Caputo 

derivative we have  

  
n 1

  x  In   1   
 

  x         0   m
   m m

  n 1 m x   n 1, 

  
n 2

  x    m
   m m

  n 2   n 1e
 Φm m

 1  m m
1   m x   n 2  

  

  x    
m

 
 m m
  e Φm m

 1   i   m m
1  in 1

i 0   m x                    (26) 

where 

e=(1,1,...,1)
T,  m m

1  is operational matrix of RH functions defined in Eq. (15) and P0
=I is 

m×m-dimensional identity matrix. 

Also, we let 

  x    G x   x                                                                     2   

Suppose z(x), f(x), g(x) and k(x,t) can be expressed approximately as 

z(x)= m
   m x ,     f(x)=  m

   m x ,    g(x)= Gm
   m x ,     k(x,t)= m

  x  K  m(t),           (28) 

where Zm, Fm, Gm and K are given in Eqs. (6) and (14) respectively. 

Using Eqs. (9), (15), (24) and (28), we have 

 k x t 
x

0
G(t,y(t))dt =   m

 x

0
 x  K  m t  m

 (t)  mdt =  m
  x  K   m m m m x               (29) 

Let  

Am     
m

   m m
   e Φm m

 1   i   m m
1  i

n 1

i 0

                                              0  

 with substituting Eqs. (25), (26), (28), (29) and (30) in Eq. (1), we have 

( ) ( ) ( ) ( ) ( ),T T T T
mm m m m m m m m m m m mC H x F H x G H x H x A H KZ P H x                   (31) 

by using (24), Eq. (31) can be written as 

 m m x   m
  m x  Gm

 
A m m

 x    m
  x    m m m m x                     2  

from Eqs. (26), (27), (28) and (30) we get 

 m
   m x   G  x Am

   m  x                                                            

In order to construct the approximation for y(x) we collocate Eqs. (32) and (33) in m 

points. For a suitable collocation points we choose Newton-Cotes nodes defined in Eq. 

(11). By using Eqs. (8), (11) and (12) we have 

 m xi  Φm mei         i  1 2   m            
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where 

ei  0 0   0     
i 1

 1 0   0   
m i

  . 

Then, Eqs. (32) and (11) can be expressed as 

 

 m
 Φm mei    m

 Φm mei     Gm 
  A mΦm mei      ei

 Φm m
     m m mΦm mei

 m
  Φm mei   G xi Am

  Φm mei                                                                                          

i   0 1 2     m 

     (34) 

Therefore, we convert Eq. (1) to the systems of algebraic equations. Eq. (34) can be 

solved for the unknowns  m and  m, then the required approximation to the solution 

y(x) in Eq. (1) is obtained. 

 

Numerical examples 

In this section, we apply the present method and solve some examples that were 

given in different papers. All calculations were performed using MATLAB software. 

Example 1. Consider the following nonlinear FVIDE ([11]) 

  
 
  x  x

 
(-1+esinx)-sinx- x x

0
cost e  t dt,         x > 0,     1 <   ≤ 2, 

with the initial conditions: 

y(0) = 0,         (0) = 1. 

 he onl  case which we know the exact solution for  =2 is  (x)=sinx. 

We have solved this example for m=128 for different   and have compared it with 

OTM method [11]. The comparison is shown in Table 1 and Table 2. 

Note that in the theory of fractional calculus, it is obvious that as   (n-1<   ≤n) 

approaches to positive integer number n, then the numerical solution continuously  

converges to the exact solution of the problem with derivation n. i.e. in the limit, the 

solution of fractional equations approaches to integer-order equations [11], [19]. 
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Table1. Comparison of the solution of OTM and RH for different α of example 1 

x 
  = 1.2    = 1.    = 1. 5 Exact 

for  =2  
   

             
  

  
   

               
  

  
   

                 
  

 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.000000 

0.097355 

0.185847 

0.272375 

0.347526 

0.412246 

0.464013 

0.499207 

0.512786 

0.497956 

0.445845 

0.000000 

0.097793 

0.189532 

0.274037 

0.350668 

0.419073 

0.479133 

0.531011 

0.5751171 

0.612450 

0.644121 

0.000000 

0.098677 

0.193716 

0.283807 

0.367799 

0.444601 

0.513081 

0.571968 

0.619749 

0.654568 

0.674130 

0.000000 

0.099047 

0.194627 

0.285247 

0.369858 

0.447660 

0.518045 

0.580614 

0.635167 

0.681736 

0.720628 

0.000000 

0.099419 

0.196812 

0.290975 

0.380815 

0.465333 

0.543605 

0.614770 

0.678009 

0.732528 

0.777544 

0.000000 

0.099597 

0.197299 

0.291790 

0.381966 

0.466862 

0.545631 

0.617556 

0.682040 

0.738624 

0.787000 

0.000000 

0.099833 

0.198669 

0.295520 

0.389418 

0.479425 

0.564642 

0.644217 

0.717356 

0.783326 

0.841470 

CPU - 7.7788 s - 6.2642 s - 6.0147 s - 

Table2. Comparison of the solution of OTM and RH of example 1 

x 
  = 2   = 2 

 
   

                 error  
  

                 error 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.000000 

0.198669 

0.389418 

0.564648 

0.717397 

0.841666 

0 

0 

0 

6.0000×10   

5.1000×10   

1.9600×10   

0.000000 

0.198669 

0.389418 

0.564640 

0.717350 

0.841471 

0 

0 

0 

2.9187×10   

5.5916×10   

4.7900×10   

CPU - - 5.6256S - 

The results in Table 1 show as    , numerical results tend to exact solution of    . 

From Table 2 we conclude that approximate results with present method is in good 

agreement with the exact solution when    . So, for cases       ,       and 

       that the exact solution is unknown present method is reliable tool. 

Example 2. Consider the nonlinear FVIDE ([7,21,22]) 

   
 
  x     e tx

0
   t 2 dt,         0 ≤ x ≤ 1       <   ≤  , 

with the boundary condition:  

y(0) =    (0) = 1, 

y(1) =    (1) = e, 
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The only case which we know the exact solution is for  =  and given by y(x) = ex. We have 

solved this example for m=128 for different   and have compared it with methods of  [22]. The 

comparison is shown in Table 3 and Table 4. 

Table3. Approximate and exact solutions for different α of example 3 

 

x 

Method of [22] 

     =  .2         =  .            =  .                       

 

   =  .2                 

Present Method 

   = .            = .75 

 Exact 

for 

  =   

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.000000 

1.106551 

1.223931 

1.353200 

1.495600 

1.652553 

1.825654 

2.016687 

2.227634 

2.460690 

2.718281 

1.000000 

1.106750 

1.224324 

1.353756 

1.496270 

1.653273 

1.826354 

2.017294 

2.228084 

2.460931 

2.718281 

1.000000 

1.106151 

1.223227 

1.352308 

1.494636 

1.651615 

1.824824 

2.0160234 

2.227176 

2.460458 

2.718281 

1.000000 

1.105236 

1.222011 

1.352093 

1.497436 

1.660166 

1.842597 

2..047219 

2.276726 

2.534034 

2.822302 

1.000000 

1.105194 

1.221655 

1.350861 

1.494480 

1.651950 

1.832533 

2.031227 

2.252871 

2.500118 

2.775866 

1.000000 

1.105178 

1.221484 

1.350204 

1.492783 

1.650830 

1.826128 

2.020643 

2.236539 

2.476198 

2.742238 

1.000000 

1.105170 

1.221402 

1.349858 

1.491824 

1.648721 

1.822118 

2.013752 

2.225540 

2.459603 

2.718282 

CPU - - - 7.7788s - 6.0147 s - 

Table4. Comparison of  present method and method of [22] in case a=4 

 

 

x 

Method of [22]  

Numerical             Absolute 

solution                     error 

Present Method  

Numerical             Absolute 

solution                     error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.000000 

1.105160 

1.221382 

1.349829 

1.491788 

1.648681 

1.822078 

2.013716 

2.225513 

2.459587 

2.718282 

 

0 

1.0000×10   

2.0000×10   

2.9000×10   

3.6000×10   

4.0000×10   

4.0000×10   

3.6000×10   

2.7000×10   

1.6000×10   

0 

1.000000 

1.105171 

1.221403 

1.349859 

1.491825 

1.648721 

1.822119 

2.013754 

2.225543 

2.459604 

2.718280 

 

0 

9.2860×10 10 

5.4492×10 8 

1.3930×10   

5.0993×10 8 

6.2063×10   

1.9676×10   

1.1158×10   

1.6183×10   

8.9789×10   

2.1930×10   

CPU - - 5. 6734s - 

Numerical results in Table 4 show our numerical solutions using the RH functions is more 

accurate than the numerical solutions obtained using the method of [22]. Therefore, we 

 [
 D

ow
nl

oa
de

d 
fr

om
 c

4i
20

16
.k

hu
.a

c.
ir

 o
n 

20
24

-0
4-

09
 ]

 

                            11 / 14

https://c4i2016.khu.ac.ir/jsci/article-1-1845-fa.html


Numerical solution of fractional Volterra integro-differential …                           Y. Ordokhani, N. Rahimi 

 

222 

conclude that the solutions for   =  .2 ,   =  .  and    =  .   that show in  able   are also 

credible.  In Table 3 as     numerical results tend to be the exact solution of   =   but 

numerical results of  method of [22] do not have this property. Although, for obtaining a good 

accuracy with our method number of values must be very large but in this method computation 

time is very low.. 

Example3. Consider the following FVIDE  

  
 

2   x  f x   cos x t   t  
x

0
dt,     

y(0) =    (0) = 0, 

 where f x   20  x sin x  120 x    x  
2

  1   
 x

1

2  and the exact solution is y(x) =x2. 

We have solved this example  for different  m . The absolute error  in  Table 5 shows that  the 

accuracy improves with increasing the m. 

 Table5. Absolute error for different m of example 3 

x m=8 m=16 m=32 m=64 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

2.0042×10   

55160×10   

6.2680×10   

4.4735×10   

4.8269×10   

5.4539×10   

8.2439×10   

8.5314×10   

6.2813×10
  

 

6.0884×10   

0 

1.3790×10   

1.1190×10   

1.3709×10   

2.8321×10   

1.7195×10   

2.5265×10   

2.0628×10   

2.1743×10   

2.8480×10
  

 

2.2171×10   

0 

2.7975×10   

5.4594×10   

6.3356×10   

5.5630×10   

6.0926×10   

6.7714×10   

8.7750×10   

9.1878×10   

7.9774×10
  

 

7.9890×10   

0 

1.3648×10   

1.3911×10   

1.6980 10   

2.3325 10   

2.1538×10   

2.7592×10   

2.5602×10   

2.7110×10   

3.2023×10
  

 

2.8596×10   

CPU 0.1533s 1.4405 s 1.8215 s 2.4966s 

 

Conclusion 

In the present work RH functions are used to solve the FVIDEs. We reduce the 

FVIDEs to a system of algebraic equations via the RH functions and collocation points. 

In this method time computations is short, because the matrix Φm m introduces in Eq. (12) 

contain many zeros, and these zeros make the RH functions fast and easy to use. 

Numerical examples with satisfactory results are given to demonstrate it is a useful tool 

for solving the FVIDEs.  
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