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Contractibility and idempotents in Banach algebras 
 

R. Alizadeh:Amirkabir University of Technology 

 

Abstract 
Let A  be a Banach algebra. It is shown that a contractible ideal of a Banach algebra is 

complemented by its annihilator. Then, it is proved the existence of minimal central 

idempotents in a contractible Banach algebra with a nonzero character. Moreover, the 

notion of b-contractibility and one of its equivalent forms are introduced. Throgh an 

example, it is shown that b-contractibility is strictly weaker than contractibility.  

 
Introduction 

Taylor in [13, Theorem 5.11] showed that a contractible Banach algebra with 

bounded approximation property is finite dimensional. Johnson in [6, Proposition 8.1] 

showed that a contractible commutative semisimple Banach algebra is finite 

dimensional. Curtis and Loy [1, Theorem 6.2] extended this result by dropping the 

semisimplicity assumption. But the question for noncommutative case has remained 

open. For more results of this type see [4],[ 5], [8], [10], [13].  

This paper is organized as follows. In the second section, we show that a contractible 

ideal of a Banach algebra is controlled by its commutant and annihilator. Then, we 

prove the existence of minimal central idempotents in a contractible Banach algebra 

with a nonzero character. In the third section, we introduce a weaker version of 

contractibility which we call b-contractibility. We give a characterization of b-

contractibility analog to that of contractibility given by Taylor. Also, we show that b-

contractibility is strictly weaker than contractibility.  
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First we recall some terminology. Throughout this paper, A  is a Banach algebra and 

A -module means Banach A -bimodule. For a subset E  of A  ,  E ′  is the commutant of 

E . If  for  every A -bimodule X  every bounded derivation from A  into X  is inner, 

then A  is called contractible. Also, the term "semisimple" means Jacobson semisimple. 

An idempotent e A∈  is called minimial if eAe  is a division ring. If e  and f  are 

idempotents in A , we write e f≤  if fe ef e= =  holds. A nonzero idempotent e A∈  is 

called primitive if 0 f e≤ ≤  imlies that 0f =  or f e= . Also, two idempotents e  and 

f  are said to be orthogonal if they satisfy 0ef fe= = . Let S  be a subset of A . The 

right annihilator of S  in A  which we denote by ( )ran S  is the set  

 ( ) { : 0 for }= ∈ = ∈ .ran S a A ba b S  

The left annihilator ( )lan S  is defined semilarly. The annihilator of S  is the set 

( ) ( ) ( )Ann S ran S lan S= ∩ .  

 

Contractibility 

Theorem 2.1. Let A  be a contractible Banach algebra which is an ideal in a Banach 

algebra B . Then  A A B′+ = .  

Proof. If  A A B′+ ≠ , then we can choose  ( )b B A A ′∈ − + . Now define  

.,: bxxbxAAD −→ a  

 Clearly D  is a derivation on A . By assumption there exists an a A∈  such that ( )D x xa ax= −  for 

all x A∈ . The latter result implies that  b a A ′− ∈  or equivalently  b A A ′∈ +  which contradicts the 

selection of b . Therefore  A A B′+ = .  

Theorem 2.2. Let A  be a contractible Banach algebra which is an ideal in a Banach 

algebra B . Then Ann( )B A A= ⊕ .  

Proof. Since A  is contractible then 2 ( )M A  with 1l -norm is contarctible, where 

2 ( )M A  is the algebra of 2 2×  matrices with the enteries from A . On the other hand 

2 ( )M A  is an ideal in 2 ( )M B  and by Theorem 2.1 we have the equality 
 

2 2 2( ) ( ) ( )M B M A M A ′= + . One can easily observe that  
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2  

( )
( )

( )
A Ann A

M A
Ann A A

′ 
 ′
 

′ 
  

= .  

Thus ( )B A Ann A= + . But ( ) 0A Ann A∩ = , because A  is unital. Therefore the 

identity ( )B A Ann A= ⊕  holds.  

Remark. In Theorems 2.1 and 2.2, A  and B  are related only algebrically. Indeed if 

there exists an infinite dimensional contractible Banach algebra A  which is an ideal in a 

Banach algebra B , then the norm topology of A  could be different from the relative 

norm topology of A  which inherits from B .  

Theorem 2.3. Let A  be a contractible Banach algebra which admits a nonzero 

multiplicative linear functional f . Then A  contains a central minimal idempotent.  

Proof. Let 
1 n nn

d a b∞

=
= ⊗∑  be a diagonal for A  and define  

.,,:
1
∑
∞

=

><→
n

nn baafaAT a  

Since 1n nn
a b =∑ , then  

, (1) ,

1 1
n n n nn n

n n n nn n

f T f f a b f a f b

f a b f a b f

< >=< < , > >= < , >< , >

= < , >=< , >=< , >= .

∑ ∑
∑ ∑

 

Thus T(1) 0≠ . Moreover for every a A∈  and g h A∗, ∈  we have  
, n n n nn n

n nn

n nn

n nn

n nn

h g aa b g aa h b

g h aa b

g h a b a

g a h b a

h g a b a

< < , > >= < , >< , >

=< ⊗ , ⊗ >

=< ⊗ , ⊗ >

= < , >< , >

=< , < , > > .

∑ ∑
∑
∑

∑
∑

 

This implies that 

n n n nn n
g aa b g a b a< , > = < , > .∑ ∑  

Thus we assume that  
T(1)=e, then we have ( ) n n n nn n

T a f aa b f a b a ea= < , > = < , > = .∑ ∑  On the other 

hand we have ( ) n n n nn n
T a f aa b f a f a b f a e= < , > =< , > < , > =< , > .∑ ∑  Hence T is 

an operator of rank one and e
2 ( )T e f e e e= =< , > = .  Now define  

.,,:1 ∑ ><→
n

nn aafaaAAT a  
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With a similar argument we can show that  
   

1( )T a ae f a e a A′ ′= =< , > ∈  

where  
1(1)′ =e T . Also we have  2  ′ ′=e e  and  1′< , >=f e . Now the identities  

      ′ ′ ′ ′ ′=< , > = , =< , > =ee f e e e ee f e e e  

imply that  ′=e e  and for every ∈a A  we have  

   ′ ′=< , > =< , > = = .ea f a e f a e ae ae  

Therefore e  is a central idempotent. In addition since T  is a rank one operator and 

=ranT eAe  , then = =eA eAe Ce  is a division ring. Therefore e  is a minimal 

idempotent.  

b-Contractibility 

Definition. Let A  be a Banach algebra and π  be the natural map,  

: ( )n n n n
n n

A A A a b a bπ π⊗ → , ⊗ → .∑ ∑  

Let b A∈  and X  be an A -module. We say that a derivation A Xδ →  is a b-

derivation if there exists another derivation  A Xδ ′ →  such that  bδ δ ′= , where 
  ( )( ) ( )b a b aδ δ′ ′= . Also we say that A  is b-contractible if for every A -module X , 

every bounded b -derivation from A  into X  is inner. We call ˆd A A∈ ⊗  a b-diagonal 

if ( )d bπ =  and a d d a. = .  for all a A∈ .  

Theorem 3.1. Let A  be a unital Banach algebra and  {0}b A ′∈ − . Then A  is b -

contractible if and only if A  has a b -diagonal.  

Proof. First suppose A  is b -contractible and π  is defined as above. Clearly kerπ  is an 

A -module and if we define  

ababaA ⊗−⊗→ 1,ker: aπδ  

then it is easy to see that δ  is a b -derivation. Indeed  bδ δ ′=  where  

aaaA ⊗−⊗→′ 11,ker: aπδ  

ince A  is b -contractible, then threre exists an element kern nn
c d π⊗ ∈∑  such that  

 ( ) n n n n
n n

a ac d c d a a Aδ = ⊗ − ⊗ ∈ .∑ ∑  
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Let 1 n nn

d b c d= ⊗ − ⊗∑ . The above identities show that ( )d bπ =  and a d d a. = .  

for all a A∈ . Therefore, d  is a b -diagonal for A .  
Conversely suppose n nn

d a b= ⊗∑  is a b -diagonal for A , X  is an A -module and 

: A Xδ →  is a bounded derivation. Clearly the map  

)(),(,: cacaXAA δψ a→×  

 is a bounded bilinear map. So by the universal property of projective tensor product 

there is a linear map ˆ: A A Xϕ ⊗ →  such that ψϕ =⊗o  that is ( ) ( )a c a cϕ δ⊗ = . In 

particular using the fact that d  is a b -diagonal for A , we get  
 ( ) ( ) ( ) ( )n n n n

n n

aa b a d d a a b a a Aδ ϕ ϕ δ= . = . = , ∈ .∑ ∑  

Now if ( )n nn
x a bδ=∑ , then for every a A∈  we have  

 ( ) ( ) ( ) ( ) ( )n n n n n n n n
n n n n

ax xa aa b a b a aa b b a a b aδ δ δ δ δ− = − = + − .∑ ∑ ∑ ∑  

Thus the identity ( )ax xa b aδ− =  holds for every a A∈ . Therefore every b -

derivation is inner.  

Example 3.2. Let A  be the Banach algebra 1( )l N with pointwise multiplication and 

{ }ne be the standard basis for A .Then for every positive integer n , A  is ne -contractible. 

Indeed n ne e⊗  is an ne -diagonal for A . But A  is not contractible, since it is not unital. 

Therefore b -contractibility dose not imply contractibility.  

Remark. If A is contractible, then it is unital and one can easily observe that A is b-

contractible for every }0{−∈ Ab . However the above example shows that for non-

unital Banach algebras the converse is not true. We do not know whether this is true for 

unital Banach algebras or not.  

Problem. Does there exist a unital Banach algebra which is b -contactible for some 

nonzero central idempotent b , but is not contractible?  
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