Volume 17, Issue 18 (12-2019)                   RSMT 2019, 17(18): 23-33 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gorzi A, Jazaei R, Rahmani A, Bahari A. The effects of different rest interval durations between resistance exercise sets on gene expression of CGRP and IGF-1 of muscle in male wistar rats. RSMT 2019; 17 (18) :23-33
URL: http://jsmt.khu.ac.ir/article-1-398-en.html
Abstract:   (2950 Views)
Determining the best rest interval durations between resistance exercise sets for adaptation is very important. This study investigated the effect of different rest intervals duration between resistance exercise (RE) sets on the gene expression of CGRP and IGF-1. Forty two male Wistar rats were randomly divided in to 7 groups. The resistance exercise included one session of climbing on one meter ladder with 26 steps. Exercise included 4 sets of 5 repetitions with an overload of 150 percent of the rat's body weight and 30, 60, 90, 120, 150 and 180 seconds rest intervals. The qRT-PCR technique was used to evaluate the gene expression of CGRP and IGF-1. The gene expression of CGRP in soleus muscles following RE with rest intervals of 30 (P=0.001), 60 (P=0.001) and 90 seconds (P=0.001) were significantly lower than 120, 150 and 180 seconds. However, there were no significant differences in the gene expression of IGF-1 among all groups (P=0.12). Based on our results, it seems that these rest interval domains can be addressed as a cut point of gene expression for the strength and hypertrophy developing process at the cellular level. 
Full-Text [PDF 1297 kb]   (694 Downloads)    
Type of Study: Research |
Received: 2020/02/5 | Accepted: 2020/02/5 | Published: 2020/02/5

References
1. 1. Deschenes, M.R., Judelson, D.A., Kraemer, W.J., Meskaitis, V.J., Volek, J.S., Nindl, B., Harman, F.S., Deaver, D. (2001). Effects of resistance training on neuromuscular junction morphology. Scandinavian Journal of Medicine & Science in Sports. 11:61-61. DOI: 10.1111/j.1600-0838.2001.110111-2.x [DOI:10.1111/j.1600-0838.2001.110111-2.x]
2. 2. Eslami, R., Parnow, A., Gharakhanlou, R. (2010). The Effect of strength training on calcitonin gene-related peptide content in slow and fast muscles of wistar rats. The Horizon of Medical Sciences. 16:25-32.
3. 3. Nanou, E., Yan, J., Whitehead, N.P., Kim, M.J., Froehner, S.C., Scheuer, T., Catterall, W.A. (2016). Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2. 1 Ca2+ channels. Proceedings of the National Academy of Sciences. 113:1068-73. [DOI:10.1073/pnas.1524650113]
4. 4. Eftekhari, S., Salvatore, C.A., Johansson, S., Chen, T.b., Zeng, Z., Edvinsson, L. (2015). Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood brain barrier. Brain Research. 1600:93-109. [DOI:10.1016/j.brainres.2014.11.031]
5. 5. Parnow, A., Gharakhanlou, R., Gorginkaraji, Z., Rajabi, S., Eslami, R., Hedayati, M., Mahdian, R. (2012). Effects of endurance and resistance training on calcitonin gene-related peptide and acetylcholine receptor at slow and fast twitch skeletal muscles and sciatic nerve in male wistar rats. International Journal of Peptides. 2012. Article ID 962651, 8 pages. http://dx.doi.org/10.1155/2012/962651 [DOI:10.1155/2012/962651]
6. 6. Fernandez, H.L., Ross, G.S., Nadelhaft, I. (1999). Neurogenic calcitonin gene-related peptide: a neurotrophic factor in the maintenance of acetylcholinesterase molecular forms in adult skeletal muscles. Brain Research. 844:83-97. [DOI:10.1016/S0006-8993(99)01891-0]
7. 7. Mora, M., Marchi, M., Polak, J.M., Gibson, S.J., Cornelio, F. (1989). Calcitonin gene-related peptide immunoreactivity at the human neuromuscular junction. Brain Research. 492:404-7. [DOI:10.1016/0006-8993(89)90930-X]
8. 8. Ambalavanar, R., Dessem, D., Moutanni, A., Yallampalli, C., Yallampalli, U., Gangula, P., Bai, G. (2006). Muscle inflammation induces a rapid increase in calcitonin gene-related peptide (CGRP) mRNA that temporally relates to CGRP immunoreactivity and nociceptive behavior. Neuroscience. 143:875-84. [DOI:10.1016/j.neuroscience.2006.08.015]
9. 9. Zaidi, M., Breimer, L.H., MacIntyre, I. (1987). Biology of peptides from the calcitonin genes. Quarterly Journal of Experimental Physiology. 72:371-408. [DOI:10.1113/expphysiol.1987.sp003084]
10. 10. Russo, A.F. (2015) Calcitonin gene-related peptide (CGRP): a new target for migraine. Annual Review of Pharmacology and Toxicology. 55:533-52. [DOI:10.1146/annurev-pharmtox-010814-124701]
11. 11. Philippou, A., Maridaki, M., Halapas, A., Koutsilieris, M. (2007). The role of the insulin-like growth factor 1 (IGF-1) in skeletal muscle physiology. In Vivo. 21(1):45-54.
12. 12. Chakravarthy, M.V., Davis, B.S., Booth, F.W. (2000). IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. Journal of Applied Physiology. 89:1365-79. [DOI:10.1152/jappl.2000.89.4.1365]
13. 13. Matheny, W., Merritt, E., Zannikos, S.V., Farrar, R.P., Adamo, M.L. (2009). Serum IGF-I-deficiency does not prevent compensatory skeletal muscle hypertrophy in resistance exercise. Experimental Biology and Medicine. 234(2):164-70. [DOI:10.3181/0808-RM-251]
14. 14. Philippou, A., Papageorgiou, E., Bogdanis, G., Halapas, A., Sourla, A., Maridaki, M., Pissimissis, N., Koutsilieris, M. (2009). Expression of IGF-1 isoforms after exercise-induced muscle damage in humans: characterization of the MGF E peptide actions in vitro. In Vivo. 23(4):567-75.
15. 15. Hameed, M., Lange, K.L., Andersen, J., Schjerling, P., Kjaer, M.D.R., Harridge, S., Goldspink, G. (2004). The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. The Journal of Physiology. 555(1):231-40. [DOI:10.1113/jphysiol.2003.051722]
16. 16. Tidball, J.G. (2005). Mechanical signal transduction in skeletal muscle growth and adaptation. Journal of Applied Physiology. 98:1900-8. [DOI:10.1152/japplphysiol.01178.2004]
17. 17. Schoenfeld, B.J., Pope, Z.K., Benik, F.M., Hester, G.M., Sellers, J., Nooner, J.L., Schnaiter, J.A., Bond-Williams, K.E., Carter, A.S., Ross, C.L., Just, B.L., Henselmans, M., Krieger, J.W. (2016). Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. The Journal of Strength & Conditioning Research. 30:1805-12. [DOI:10.1519/JSC.0000000000001272]
18. 18. Ahtiainen, J.P., Lehti, M., Hulmi, J.J., Kraemer, W.J., Alen, M., Nyman, K, Selänne, H, Pakarinen, A., Komulainen, J., Kovanen, V., Mero, A.A., Häkkinen, K. (2011). Recovery after heavy resistance exercise and skeletal muscle androgen receptor and insulin-like growth factor-I isoform expression in strength trained men. Journal of Strength and Conditioning Research. 25(3):767-77. [DOI:10.1519/JSC.0b013e318202e449]
19. 19. Kido, K., Ato, S., Yokokawa, T., Makanae, Y., Sato, K., Fujita, S. (2016). Acute resistance exercise-induced IGF1 expression and subsequent GLUT4 translocation. Physiological Reports. 4(16):e12907. [DOI:10.14814/phy2.12907]
20. 20. Miranda, H., Maia Med, F., Paz, G.A., Costa, P.B. (2015). Acute effects of antagonist static stretching in the inter-set rest period on repetition performance and muscle activation. Research in Sports Medicine. 23(1):37-50. [DOI:10.1080/15438627.2014.975812]
21. 21. Grgic, J., Schoenfeld, B.J., Skrepnik, M., Davies, T.B., Mikulic, P. (2018). Effects of rest interval duration in resistance training on measures of muscular strength: A systematic review. Sports Medicine. 48(1):137-51. [DOI:10.1007/s40279-017-0788-x]
22. 22. Gorzi, A., Ghanbari, N. (2017). The effect of folate supplementation during 10 weeks of resistance training on serum and stomach level of ghrelin and serum level of insulin in male Wistar rats. Sport Physiology. 9(33):15-29.
23. 23. Bompa, T., Di Pasquale, M., Cornacchia, L. (2004). Serious Strength Training 3rd Edition, Human Kinetics.
24. 24. Tevfik Dorak, M. (ed). (2006). Real-time pcr (AdvanceTa) (Taylor & Francis Ltd, Oxford). [DOI:10.4324/9780203967317]
25. 25. Homonko, D., Theriault, E. (1997). Calcitonin gene-related peptide is increased in hindlimb motoneurons after exercise. International Journal of Sports Medicine. 18: 503-9. [DOI:10.1055/s-2007-972672]
26. 26. Vega, A.V., Avila, G. (2010). CGRP, a vasodilator neuropeptide that stimulates neuromuscular transmission and EC coupling. Current Vascular Pharmacology. 8(3):394-403. [DOI:10.2174/157016110791112287]
27. 27. Robinson, J.M., Stone, M.H., Johnson, R.L., Penland, C.M., Warren, B.J., Lewis, R.D. (1995). Effects of different weight training exercise/rest intervals on strength, power, and high intensity exercise endurance. The Journal of Strength & Conditioning Research. 9:216-21. [DOI:10.1519/00124278-199511000-00002]
28. 28. Schoenfeld, B.J. (2012) Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? Journal of Strength and Conditioning Research. 26(5):1441-53. [DOI:10.1519/JSC.0b013e31824f207e]
29. 29. American College of Sports Medicine. (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports Exercise. 41(3):687-708. [DOI:10.1249/MSS.0b013e3181915670]
30. 30. Bamman, M.M., Shipp, J.R., Jiang, J. (2001). Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. American Journal of Physiology-Endocrinology and Metabolism. 280(3):E383-90. [DOI:10.1152/ajpendo.2001.280.3.E383]
31. 31. Frystyk, J. (2010). Exercise and the growth hormone-insulin-like growth factor axis. Medicine & Science in Sports & Exercise. 42:58-66. [DOI:10.1249/MSS.0b013e3181b07d2d]
32. 32. Adams, G.R. (2002) Autocrine/paracrine IGF-I and skeletal muscle adaptation. Journal of Applied Physiology. 93:1159-67. [DOI:10.1152/japplphysiol.01264.2001]
33. 33. Xing, Y., Jiang, H., He, Y., Li, Y., Liu, H. (2013). Effects of insulin-like growth factor-1 on neurochemical phenotypes of cultured dorsal root ganglion neurons with excitotoxicity induced by glutamate. Pharmazie. 68:63-8.
34. 34. Neto, W.K., Silva, W.A., Ciena, A.P., Anaruma, C.A., Gama, E.F. (2016). Vertical climbing for rodent resistance training: a discussion about training oarameters. International Journal of Sports Science. 6(1A):36-49.
35. 35. Umoh, N.A., Walker, R.K., Millis, R.M., Al-Rubaiee, M., Gangula, P.R., Haddad, G.E. (2014). Calcitonin gene-related peptide regulates cardiomyocyte survival through regulation of oxidative stress by PI3K/Akt and MAPK signaling pathways. Annals of Clinical and Experimental Hypertension. 2(1):1007.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by: Yektaweb