Volume 17, Issue 18 (12-2019)                   jsmt 2019, 17(18): 35-43 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahidi F, Ahmadi A. Comparing professional futsal practice sessions with and without blood restriction on angiogenesis and angiostatin stimulation in active young men. jsmt. 2019; 17 (18) :35-43
URL: http://jsmt.khu.ac.ir/article-1-399-en.html
, Ahmadi.azam@gmail.com
Abstract:   (1619 Views)
The aim of this study was comparing professional futsal practice sessions with and without blood flow restriction on angiogenesis and angiostatin stimulation in active young men. Among physical education students, 12 volunteer selected and randomly divided into two groups of exercise with and without blood restriction. All of the subjects did the 3 vs. 3 professional futsal practice in 6 repetition of two minutes. One minute determined as resting time between the repetitions. In exercise group with blood restriction, a cuff on the thighs with pressure of 140 Mm Hg were applied. The blood samples were collected before and after the exercise sessions to determine the ratio and values of VEGF and endostatin concentration. Elisa method was used to measure the variables. To determine within and between group differences, Paired T test and Independent T test were used respectively at significance level of 0.05. The results showed no significant differences for the measured variables between the groups. However, VEGF significantly decreased in the two groups after exercise session (P=0.002). The ratio of VEGF to endostatin significantly increased in exercise with blood flow restriction group (P=0.002), but not in the Exercise group (P=0.006). Interestingly, the endostatin concentration increased significantly after the trial (BFR: P=0.003, NONBFR: P=0.005). Blood lactate was significantly higher in exercise group with blood restriction(P=0.003). In conclusion, a professional futsal practice session can decrease blood level of VEGF and increase its endostatin. 
Full-Text [PDF 1386 kb]   (375 Downloads)    
Type of Study: Research | Subject: Special
Received: 2020/02/5 | Accepted: 2020/02/5 | Published: 2020/02/5

References
1. 1. Moore, R., Bullough, S., Goldsmith, S., Edmondson, L.A. (2014). Systematic review of futsal literature. American Journal of Sports Science and Medicine. 2(3):108-16. [DOI:10.12691/ajssm-2-3-8]
2. 2. Gorostiaga, E.M., Llodio, I., Ibáñez, J., Granados, C., Navarro, I., Ruesta, M., Bonnabau, H., Izquierdo, M. (2009). Differences in physical fitness among indoor and outdoor elite male soccer players. European Journal of Applied Physiology. 106(4):483-91. [DOI:10.1007/s00421-009-1040-7]
3. 3. Leite, W.S. (2016). Physiological demands in football, futsal and beach soccer: A brief review. European Journal of Physical Education and Sport Science. 2(6):2-10
4. 4. Nunes, R., Almeida, F., Santos, B., Almeida, F., Nogas, G., Elsangedy, H., Krinski, K., Silva, S. (2012). Comparação de indicadores físicos e fisiológicos entre atletas profissionais de futsal e futebol. Revista Motriz. 18(1):104-12. [DOI:10.1590/S1980-65742012000100011]
5. 5. Khaosanit, P., Hamlin, M.J., Graham, K.S., Boonrod, W. (2018). Acute effect of different normobaric hypoxic conditions on shuttle repeated sprint performance in futsal players. Journal of Physical Education and Sport‌.18(1): 210-6.
6. 6. Abe, T., Fujita, S., Nakajima, T., Sakamaki, M., Ozaki, H., Ogasawara, R., Sugaya, M., Kudo, M., Kurano, M.,Yasuda, T., Sato, Y., Ohshima, H., Mukai, C., Ishii, N. (2010). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men. Journal of Sports Science & Medicine. 9(3):452-8.
7. 7. Nagahisa, H., Mukai, K., Ohmura, H., Takahashi, T., Miyata, H. (2016). Effect of high-intensity training in normobaric hypoxia on Thoroughbred skeletal muscle. Oxidative medicine and cellular longevity. Oxidative Medicine and Cellular Longevity. doi:10.1155/2016/1535367 [DOI:10.1155/2016/1535367]
8. 8. Taylor, C.W., Ingham, S.A., Ferguson, R.A. (2016). Acute and chronic effect of sprint interval training combined with postexercise blood‐flow restriction in trained individuals. Experimental Physiology. 101(1):143-54. [DOI:10.1113/EP085293]
9. 9. Pope, Z.K., Willardson, J.M., Schoenfeld, B.J. (2013). Exercise and blood flow restriction.The Journal of Strength & Conditioning Research. 27(10):2914-26. [DOI:10.1519/JSC.0b013e3182874721]
10. 10. Larkin, K.A., MacNeil, R.G., Dirain, M., Sandesara, B., Manini, T.M., Buford, T.W. (2012). Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Medicine and Science in Sports and Exercise. 44(11):2077-83. [DOI:10.1249/MSS.0b013e3182625928]
11. 11. Olenich, S.A., Gutierrez‐Reed, N., Audet, G.N., Olfert, I.M. (2013).Temporal response of positive and negative regulators in response to acute and chronic exercise training in mice. The Journal of Physiology. 591(20):5157-69. [DOI:10.1113/jphysiol.2013.254979]
12. 12. Rullman, E., Rundqvist, H., Wågsäter, D., Fischer, H., Eriksson, P., Sundberg, C.J., Jansson, E., Gustafsson, T. (2007). A single bout of exercise activates matrix metalloproteinase in human skeletal muscle. Journal of Applied Physiology. 102: 2346-2351. [DOI:10.1152/japplphysiol.00822.2006]
13. 13. Gu, J.W., Gadonski, G., Wang, J., Makey, I., Adair, T.H. (2004). Exercise increases endostatin in circulation of healthy volunteers. BioMedCentral Physiology. 4(1):1-6 [DOI:10.1186/1472-6793-4-2]
14. 14. Suhr, F., Rosenwick, C., Vassiliadis, A., Bloch, W., Brixius, K. (2010). Regulation of extracellular matrix compounds involved in angiogenic processes in short‐and long‐track elite runners. Scandinavian Journal of Medicine & Science in Sports. 20(3):441-8. [DOI:10.1111/j.1600-0838.2009.00960.x]
15. 15. Sponder, M., Sepiol, K., Lankisch, S., Priglinger, M., Kampf. S., Litschauer, B., Fritzer-Szekeres, M., Strametz-Juranek, J. (2014). Endostatin and physical exercise in young female and male athletes and controls. International Journal of Sports Medicine. 35(13):1138-42. [DOI:10.1055/s-0034-1375692]
16. 16. Motahari Rad, M., Attarzadeh Hosseini, S.R. (2017). Response of vascular endothelial growth factor and endostatin to a session activity before and after a period of L-arginine supplementation in active men. Journal of Arak University of Medical Sciences. 20(2):78-88.
17. 17. Fujita, S., Abe, T., Drummond, M.J., Cadenas, J.G., Dreyer, H.C., Sato. Y., Volpi E., Rasmussen, B.B. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology. 103(3):903-10. [DOI:10.1152/japplphysiol.00195.2007]
18. 18. Burgomaster, K.A., Moore, D.R., Schofield, L.M., Phillips, S.M, Sale, D.G., Gibala, M.J. (2003). Resistance training with vascular occlusion: metabolic adaptations in human muscle. Medicine and Science in Sports and Exercise. 35(7):1203-8. [DOI:10.1249/01.MSS.0000074458.71025.71]
19. 19. Scott, B.R., Loenneke, J.P., Slattery, K.M., Dascombe, B.J. (2016). Blood flow restricted exercise for athletes: A review of available evidence. Journal of Science and Medicine in Sport. 19(5):360-7. [DOI:10.1016/j.jsams.2015.04.014]
20. 20. Dzelebdzic, U., Tammen, V. (2014). Effects of blood flow restriction via KAATSU AQUA on speed and endurance in young water polo players.1-19
21. 21. Hoier, B., Nordsborg, N., Andersen, S., Jensen, L., Nybo, L., Bangsbo, J., Hellsten, Y. (2012). Pro‐and anti‐angiogenic factors in human skeletal muscle in response to acute exercise and training. The Journal of Physiology. 590(3):595-606. [DOI:10.1113/jphysiol.2011.216135]
22. 22. Park, S., Kim, J.K., Choi, H.M., Kim, H.G., Beekley, M.D., Nho, H. (2010). Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. European Journal of Applied Physiology. 109(4):591-600. [DOI:10.1007/s00421-010-1377-y]
23. 23. Nakajima, T., Takano, H., Kurano, M., Iida, H., Kubota, N., Yasuda, T., Kato, M., Meguro, K., Sato, Y., Yamazaki, Y., Kawashima, S., Ohshima, H., Tachibana, S., Nagata, T., Abe, T., Ishii, N., Morita, T. (2007). Effects of KAATSU training on haemostasis in healthy subjects. International Journal of KAATSU Training Research. 3(1):11-20. [DOI:10.3806/ijktr.3.11]
24. 24. Hill-Haas S.V., Dawson, B., Impellizzeri, F.M., Coutts, A.J. (2011). Physiology of small-sided games training in football. Sports Medicine. 41(3):199-220. [DOI:10.2165/11539740-000000000-00000]
25. 25. Jensen, L., Pilegaard, H., Neufer, P.D., Hellsten, Y. (2004). Effect of acute exercise and exercise training on VEGF splice variants in human skeletal muscle. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 287(2):397-402. [DOI:10.1152/ajpregu.00071.2004]
26. 26. Hu, Y., Hu, M-m., Shi, G-l., Han, Y., Li, B-l. (2014). Imbalance between vascular endothelial growth factor and endostatin correlates with the prognosis of operable non-small cell lung cancer. European Journal of Surgical Oncology (EJSO). 40(9):1136-42. [DOI:10.1016/j.ejso.2014.05.014]
27. 27. Suhr, F., Brixius, K., de Marées. M., Bölck, B., Kleinöder, H., Achtzehn, S., Bloch, W., Mesterl, J. (2007). Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans. Journal of Applied Physiology. 103(2):474-83. [DOI:10.1152/japplphysiol.01160.2006]
28. 28. Høier, B., Rufener, N., Bojsen‐Møller, J., Bangsbo, J., Hellsten, Y. (2010). The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. The Journal of Physiology. 588(19):3833-45. [DOI:10.1113/jphysiol.2010.190439]
29. 29. Hoier, B., Passos, M., Bangsbo, J., Hellsten, Y. (2013). Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle. Experimental Physiology. 98(2):585-97. [DOI:10.1113/expphysiol.2012.067967]
30. 30. Jensen, L., Bangsbo, J., Hellsten, Y. (2004). Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. The Journal of Physiology. 557(2):571-82. [DOI:10.1113/jphysiol.2003.057711]
31. 31. Wahl, P., Jansen, F., Achtzehn, S., Schmitz, T., Bloch, W., Mester, J., Werner, N. (2014). Effects of high intensity training and high volume training on endothelial microparticles and angiogenic growth factors. PLoS One. 9(4):e96024. [DOI:10.1371/journal.pone.0096024]
32. 32. O'Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., Folkman, J. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 88(2):277-85. [DOI:10.1016/S0092-8674(00)81848-6]
33. 33. Ferreras, M., Felbor, U., Lenhard, T., Olsen, B.R., Delaissé, J. (2000). Generation and degradation of human endostatin proteins by various proteinases. FEBS Letters. 486(3):247-51. [DOI:10.1016/S0014-5793(00)02249-3]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by : Yektaweb