Volume 5, Issue 4 (3-2019)                   NBR 2019, 5(4): 449-457 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholipoor K, Roshandel P. Effects of seed pretreatment with 24-brassinolide on physiological and biochemical characters in tomato plants under salt stress. NBR 2019; 5 (4) :449-457
URL: http://nbr.khu.ac.ir/article-1-2900-en.html
Shahrekord University , roshandelparto@gmail.com
Abstract:   (5463 Views)

In order to study the diverse effects of seed priming with 24-epibrassinolide (EBL) (0, 0.1, 1 mg/l) to increase tolerance of tomato plants (Lycopersicon esculentum Mill.) to salinity (0, 70 and 140 mM NaCl), the experiments were conducted as factorial based on completely randomized design at greenhouse condition. Results showed that salt stress significantly decreased the growth of tomato plants. However, priming with EBL (1 mg/l) significantly decreased the negative effects of NaCl (particularly at 140 mM). At this case, EBL increased the fresh and dry weights (<2 folds), total chlorophyll (+72%), carotenoids (+ 2 folds), free proline (+3 folds), electrolyte leakage (-18.6%), Na+/K+ in the roots (-57.5%) and shoots (-62%) compared to salinity control. Generally, it could be concluded that priming with epibrassinolide resulted in enhanced salt tolerance in tomato plants via increment in free proline, photosynthetic pigments and decrease in electrolyte leakage and Na+/K+ ratio in the tissues.
 

Full-Text [PDF 776 kb]   (1218 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2017/07/13 | Revised: 2019/04/6 | Accepted: 2018/07/15 | Published: 2019/03/18 | ePublished: 2019/03/18

References
1. Abbas, S., Latif, H.H. and Elsherbiny, E.A. 2013. Effect of 24-epibrassinolide on the physiological and genetic changes on two varieties of pepper under salt stress conditions. – Pak. J. Bot. 45: 1273-1284.
2. Anuradha, S. and Rao, S.S.R. 2007. Effect of 24-epibrassinolide on the growth and antioxidant enzyme activities in radish seedlings under lead toxicity. – Indian J. Plant Physiol. 12: 396-400.
3. Ashraf, M. and Foolad, M.R. 2007. Roles of glycine, betaine and proline in improving plant abiotic stress resistance. – Environ. Exp. Bot. 59: 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
4. Bajguz, A. and Hayat, S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. – Plant Physio. Biochem. 47: 1-8.
5. Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. – Plant and soil 39: 205-207. [DOI:10.1007/BF00018060]
6. Ding, H.D., Zhu, X.H., Zhu, Z.W., Yang, S.J., Zha, D.S. and Wu, X.X. 2012. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. – Biol. Planta. 56: 767-770. [DOI:10.1007/s10535-012-0108-0]
7. Divi, U.K., Rahman, T. and Krishna, P. 2010. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. – BMC Plant Biol. 10-151. [DOI:10.1186/1471-2229-10-151]
8. Farooq, M., Wahid, A., Basra, S.M.A. and Din, I.U. 2009. Improving the water relations and gas exchange with brassinosteroids in rice under drought stress. – J. Agro. Crop Sci. 195: 262-269. [DOI:10.1111/j.1439-037X.2009.00368.x]
9. Fedina, E.O. 2013. Effect of 24-epibrassinolide on pea protein tyrosine phosphorylation after salinity action. – Russian J. Plant Physiol. 60: 351-358. [DOI:10.1134/S1021443713020088]
10. Gomes, M.M.A. 2011. Physiological effects related to brassinosteroid application in plants. In Brassinosteroids: A Class of plant hormone (pp. 193-242). Springer Netherlands. [DOI:10.1007/978-94-007-0189-2_7]
11. Hayat, S., Hasan, S.A., Yusuf, M., Hayat, Q. and Ahmad, A. 2010. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. –Environ. - Exp. Bot. 69: 105-112. [DOI:10.1016/j.envexpbot.2010.03.004]
12. Janeczko, A. and Swaczynova, J. 2010. Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. – Biol. Planta. 54: 477-482. [DOI:10.1007/s10535-010-0084-1]
13. Khripach, V., Zhabinskii, V. and de Groot, A. 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. – Ann. Bot. 86: 441-447. [DOI:10.1006/anbo.2000.1227]
14. Kumar, M., Sirhindi, G., Bhardwaj, R., Kumar, S. and Jain, G. 2010. Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress. – Indian J. Biochem. Biophys. 47: 378-382.
15. Lichtenthaler, H.K. and Buschmann, C. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. In: Current protocols in food analytical chemistry, F4.3.1-F4.3.8. John Wiley and Sons, Inc. New York. [DOI:10.1002/0471142913.faf0403s01]
16. Lu, X., Chen, Y., Gong, W. and Chen, Y. 2006. Effect of brassinolide on the seedling growth and waterlogging resistance of soybean. – Chinese Agri. Sci. Bul. 23: 37-38.
17. Mahesh, B., Parshavaneni, B., Ramakrishna, B. and Rao, S.S.R. 2013. Effect of brassinosteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water stress. – American J. Plant Sci. 4: 2305-2313. [DOI:10.4236/ajps.2013.412285]
18. Rady, M.M. 2011. Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. – Sci. Hort. 129: 232-237. [DOI:10.1016/j.scienta.2011.03.035]
19. Ramakrishna, B., and Rao, S.S.R. 2015. Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. –Protoplasma 252: 665- 677. [DOI:10.1007/s00709-014-0714-0]
20. Shahid, M.A., Pervez, M.A., Balal, R.M., Mattson, N.S., Rashid, A. and Ahmad, R. 2011. Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). – Australian J. Crop Sci. 5: 500-510.
21. Sharma, I., Ching, E., Saini, S., Bhardwaj, R. and Pati, P.K. 2013. Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. – Plant Physiol. Biochem. 69: 17-26. [DOI:10.1016/j.plaphy.2013.04.013]
22. Tuna, A.L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S. and Girgin, A.R. 2008. Silicon improves salinity tolerance in wheat plants. – Environ. Exp. Bot. 62: 10-16. [DOI:10.1016/j.envexpbot.2007.06.006]
23. Xi, Z., Wang, Z., Fang, Y., Hu, Z., Hu, Y. and Deng, M. 2013. Effects of 24-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V. vinifera L.) under chilling stress. – Plant Growth Regul. 71: 57-65. [DOI:10.1007/s10725-013-9809-4]
24. Xiao Jian, X., Zhang, Y., Wu, J.X., Wang, J.T., Zhou, Y.H., Shi, K., Yu, Y.L. and Yu, J.Q. 2009. Brassinosteroids Promote Metabolism of Pesticides in Cucumber. – J. Agri. Food Chem. 57: 8406-8413. [DOI:10.1021/jf901915a]
25. Xiao-min, L.U. and Wei, Y.A.N.G. 2013. Alleviation effects of brassinolide on cucumber seedlings under NaCl stress. – Yingyong Shengtai Xuebao 24: 24-30.
26. Zhang, S., Hu, J., Zhang, Y., Xie, X.J. and Knapp, A. 2007. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. – Crop and Pasture Sci. 58: 811-815. [DOI:10.1071/AR06253]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb