Volume 6, Issue 1 (5-2019)                   NBR 2019, 6(1): 106-115 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi R, Roshandel P. The effects of magnetopriming on the growth, physiology and antioxidant systems in hyssop. NBR 2019; 6 (1) :106-115
URL: http://nbr.khu.ac.ir/article-1-2920-en.html
, roshandelparto@gmail.com
Abstract:   (3863 Views)

In order to study the effects of magnetopriming on the physiological and phytochemical characteristics of Hyssopus officinalis plants, this research was conducted as a factorial experiment in a completely randomized design. Results showed that magnetopriming (particularly at 200mT/5 min) increased the level of shoot dry weight (82.6 percent), root dry weight (86.5 percent), total chlorophyll (32.8 percent), carotenoids concentration (32.4 percent) and polyphenols content (2 folds) in 60-day-old Hyssopus officinalis. Also, electrolyte leakage and lipid peroxidation decreased by 27.6 and 45 percent, respectively. In addition, reducing power, DPPH and superoxide anion scavenging activities significantly augmented. However, higher activities of superoxide dismutase (76 percent), catalase (4.2 folds), ascorbate peroxidase (2.4 folds) and guaiacol peroxidase (48 percent) were found at 90 mT. Results suggested that the application of magnetopriming promoted growth in H. officinalis through augmentation of cellular membrane integrity as well as biomass and photosynthetic pigments content. Furthermore, it was found to enhance the antioxidative system. Magnetopriming might apparently improve the medicinal properties via increasing the level of polyphenols and antioxidant capacity in H. officinalis.

Full-Text [PDF 1499 kb]   (1045 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2017/07/23 | Revised: 2019/05/6 | Accepted: 2018/07/15 | Published: 2019/04/30 | ePublished: 2019/04/30

1. Alemán, E.I., Mbogholi, A., Boix, Y.F., González-Olmedo, J. and Chalfun-Junior, A. 2014. Effects of EMFs on some biological parameters in coffee plants (Coffea arabica L.) obtained by in vitro propagation. - Development 8: 14.
2. Anand, A., Nagarajan, S., Verma, A.P.S., Joshi, D.K., Pathak, P.C. and Bhardwaj, J. 2012. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). -Indian J. Biochem. Biophys. 49: 63-70.
3. Ashraf, M. and Rauf, H. 2001. Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: Growth and ion transport at early growth stages. -Acta Physiol. Plant. 23: 407- 414. [DOI:10.1007/s11738-001-0050-9]
4. Azimian, F. and Roshandel, P. 2015. Magnetic field effects on total phenolic content and antioxidant activity in Artemisia sieberi under salinity. -Indian J. Plant Physiol. 20: 264-270. [DOI:10.1007/s40502-015-0174-3]
5. Baser Kouchebagh S, Rasouli P, Hossein Babaiy A, Khanlou A.R. 2015. Seed germination of pot marigold (Calendula officinalis L.) as affected by physical priming techniques. - Int. J. Biosci. 6: 49-54. [DOI:10.12692/ijb/6.5.49-54]
6. Bhardwaj, J., Anand, A. and Nagarajan, S. 2012. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. -Plant Physiol. Biochem. 57: 67-73. [DOI:10.1016/j.plaphy.2012.05.008]
7. Campos, P.S., nia Quartin, V., chicho Ramalho, J. and Nunes, M.A. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. - J. plant physiol. 160: 283-292. [DOI:10.1078/0176-1617-00833]
8. Cakmak, T., Cakmak, Z.E., Dumlupinar, R. and Tekinay, T. 2012. Analysis of apoplastic and symplastic antioxidant system in shallot leaves: Impacts of weak static electric and magnetic field. - J. Plant Physiol. 169: 1066-1073. [DOI:10.1016/j.jplph.2012.03.011]
9. Çelik, Ö., Büyükuslu, N., Atak, Ç. and Rzakoulieva, A. 2009. Effects of magnetic field on activity of superoxide dismutase and catalase in Glycine max (L.) Merr. roots. - Pol. J. Environ. Stud. 18: 175-182.
10. Chen, Y.P., Li, R. and He, J.M. 2011. Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. - Ecotoxicology 20: 760-769. [DOI:10.1007/s10646-011-0620-6]
11. Flórez, M., Carbonell, M.V. and Martínez, E. 2007. Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. - Environ. Exp. Bot. 59: 68-75. [DOI:10.1016/j.envexpbot.2005.10.006]
12. Flórez, M., Martinez, E. and Carbonell, M.V. 2012. Effect of magnetic field treatment on germination of medicinal plants Salvia officinalis L. and Calendula officinalis L. - Pol. J. Environ. Stud. 21: 57.
13. Haghighat, N., Abdolmaleki, P., Ghanati, F., Behmanesh, M. and Payez, A. 2014. Modification of catalase and MAPK in Vicia faba cultivated in soil with high natural radioactivity and treated with a static magnetic field. - J. Plant Physiol. 171: 99-103. [DOI:10.1016/j.jplph.2013.10.019]
14. Javed, N., Ashraf, M., Akram, N.A. and Al‐Qurainy, F. 2011. Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment. - Photochem. Photobiol. 87: 1354-1362. [DOI:10.1111/j.1751-1097.2011.00990.x]
15. Kavi, P.S. 1977. The effect of magnetic treatment of soybean seed on its moisture absorbing capacity. - Sci. Cult. 43: 405-406.
16. Khazaie, H.R., Nadjafi, F. and Bannayan, M. 2008. Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (Thymus vulgaris) and hyssop (Hyssopus officinalis). - Ind. Crops Prod. 27: 315-321. [DOI:10.1016/j.indcrop.2007.11.007]
17. Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C. and Abdelly, C. 2007. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. - Plant Physiol. Biochem. 45: 244-249. [DOI:10.1016/j.plaphy.2007.02.001]
18. Kumaran, A. and Joel Karunakaran, R. 2007. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. - Food Chem. 97: 109-114. [DOI:10.1016/j.foodchem.2005.03.032]
19. Lichtenthaler, H.K. and Buschmann, C. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. In: Current protocols in food analytical chemistry, F4.3.1-F4.3.8. - John Wiley and Sons, Inc., New York. [DOI:10.1002/0471142913.faf0403s01]
20. Maffei, M.E. 2014. Magnetic field effects on plant growth, development, and evolution. - Front. Plant Sci. 5: 1-15. [DOI:10.3389/fpls.2014.00445]
21. Martínez, E., Carbonell, M.V., Flórez, M., Amaya, J.M. and Maqueda, R. 2009. Germination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. - Int. Agrophys. 23: 45-49.
22. Narwal, S., Bogatek, R., Zagdanska, B.M., Sampietro, A.D. and Vattuone, M.A. 2009. Plant Biochemistry. -Studium Press Lcc, Texas, pp: 413-432.
23. Radhakrishnan, R., Leelapriya, T. and Kumari, B.D.R. 2012. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress. - Bioelectrom. 33: 670-681. [DOI:10.1002/bem.21735]
24. Radhakrishnan, R. and Kumari, B.D.R. 2013. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population. - Indian J. Biochem. Biophys. 50: 312-317.
25. Reichling, J., Schnitzler, P., Suschke, U. and Saller, R. 2009. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties-an overview. - Forschende Komple-mentärmedizin/Res.in Complemen. Med. 16: 79-90. [DOI:10.1159/000207196]
26. Roshandel, P. and Azimian, F. 2015. Effects of magnetic field on growth and antioxidant capacity of Artemisia aucheri in normal or saline conditions. - Biol. Forum 7: 1095-1103.
27. Shine, M.B., Guruprasad, K.N. and Anand, A. 2012. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. - Bioelectromagnetics 33: 428-437. [DOI:10.1002/bem.21702]
28. Thomas, S., Anand, A., Chinnusamy, V., Dahuja, A. and Basu, S. 2013. Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. - Acta Physiol. Plant 35: 3401-3411. [DOI:10.1007/s11738-013-1375-x]
29. Vinson, J.A., Hao, Y., Su, X. and Zubik, L. 1998. Phenol antioxidant quantity and quality in foods: vegetables. - J. Agri. Food Chem. 46: 3630-3634. [DOI:10.1021/jf980295o]
30. Yinan L, Yuan L, Yongquing Y, Chunyang L. 2005. Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation. - Environ. Exp. Bot. 54: 286-294. [DOI:10.1016/j.envexpbot.2004.09.006]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb