Volume 6, Issue 1 (5-2019)                   NBR 2019, 6(1): 70-78 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khezri M. Effects of biofilm formation in bacteria from different perspectives . NBR 2019; 6 (1) :70-78
URL: http://nbr.khu.ac.ir/article-1-3044-en.html
Urmia University , ma_khezri@yahoo.com
Abstract:   (5436 Views)
Bacterial communities are able to form complex and three-dimensional biofilm structures. Biofilm formation is an ancient and integral component of the prokaryotic life cycle and a key factor for survival in diverse niches. In biofilms, bacterial lifestyle changes from free-floating cells to sessile cells. Presence in biofilms gives new traits to bacteria, which distinguish them from free cells. The presence of bacteria in biofilms results in high resistance to antimicrobial treatments and oxygen deficiency. Biofilms are formed in response to different environmental signals and many genes are involved in their production. Biofilms can be problematic in fluid transfer pipelines, on medical devices, as well as implants in the patients’ bodies. However, they can be applied for useful purposes such as treating industrial and agricultural wastewater, bioremediation of heavy metals and in air pollution biofilter systems. The potential of forming biofilms in pathogenic bacteria is an advantage for their survival in unfavorable conditions, and cause a lot of problems in their removal as the bacteria show more resistant to antibiotics and chemical pesticides in biofilms compared with free living cells. The ability to form biofilms in plant-beneficial rhizobacteria used for plant disease biocontrol, plant growth promotion and the improvement of agricultural products quality is an important advantage especially in their mass production and commercializing process. Considering the importance of bacterial biofilms in human life, this paper evaluated the importance of biofilms from different aspects.
 
 
Full-Text [PDF 951 kb]   (2708 Downloads)    
Type of Study: Review | Subject: Microbiology
Received: 2018/01/2 | Revised: 2019/05/6 | Accepted: 2018/04/24 | Published: 2018/05/9 | ePublished: 2018/05/9

References
1. Abee, T., Kovacs, A.T., Kuipers, O.P. and Van der Veen, S. 2011. Biofilm formation and dispersal in Gram-positive bacteria. - Curr. Opin. Biotech. 22: 172-179. [DOI:10.1016/j.copbio.2010.10.016]
2. Ahmadzadeh, M. 2013. Biological control of plant diseases, plant probiotic bacteria. - University of Tehran Press, pp: 479.
3. Anand, S., Singh, D., Avadhanula, M. and Marka, S. 2014. Development and control of bacterial biofilms on dairy processing membranes. - Compr. Rev. Food Sci. F. 13: 18-33. [DOI:10.1111/1541-4337.12048]
4. Bais, H.P., Fall, R. and Vivanco, J.M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. - Plant Physiol. 134: 307-319. [DOI:10.1104/pp.103.028712]
5. Barahona, E., Navazo, A., Martinez-Granero, F., Zea-Bonilla, T., Perez-Jimenez, R.M., Martin, M. and Rivilla, R. 2011. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. - Appl. Environ. Microb. 77: 5412-5419. [DOI:10.1128/AEM.00320-11]
6. Barahona, E., Navazo, A., Yousef-Coronado, F., Aguirre de Carcer, D., Martinez-Granero, F., Espinosa-Urgel, M., Martin, M. and Rivilla, R. 2010. Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. - Environ. Microbiol. 12: 3185-3195. [DOI:10.1111/j.1462-2920.2010.02291.x]
7. Bardin, M., Ajouz, S., Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M. and Nicot, P.C. 2015. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? - Front. Plant Sci. 6: 566, doi: 10.3389/fpls.2015.00566. [DOI:10.3389/fpls.2015.00566]
8. Bedran, T.B.L., Azelmat, J., Spolidorio, D.P. and Grenier, D. 2013. Fibrinogen-induced streptococcus mutans biofilm formation and adherence to endothelial cells. - BioMed Res. Int. doi: 10.1155/2013/431465. [DOI:10.1155/2013/431465]
9. Boyd, C.D., Smith, T.J., El-Kirat-Chatel, S., Newell, P.D., Dufrêne, Y.F. and O'Toole, G.A. 2014. Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation and cell surface localization. - J. Bacteriol. 196: 2775-2788. [DOI:10.1128/JB.01629-14]
10. Buttner, H., Mack, D. and Rohde, H. 2015. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. - Front. Cell. Infect. Mi. 5: 14, doi: 10.3389/fcimb.2015.00014. [DOI:10.3389/fcimb.2015.00014]
11. Carvalhais, L.C., Dennis, P.G., Fedoseyenko, D., Hajirezaei, M.R., Borriss, R. and Von Wiren, N. 2011. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. - J. Plant Nutr. Soil Sc. 174: 3-11. [DOI:10.1002/jpln.201000085]
12. Cercado, B., Auria, R., Cardenas, B. and Revah, S. 2012. Characterization of artificially dried biofilms for air biofiltration studies. - J. Environ. Sci. Heal. A. 47: 940-948. [DOI:10.1080/10934529.2012.667292]
13. Danhorn, T. and Fuqua, C. 2007. Biofilm formation by plant-associated bacteria. - Annu. Rev. Microbiol. 61: 40-422. [DOI:10.1146/annurev.micro.61.080706.093316]
14. Das, N., Geetanjali Basak, L.V., Abdul Salam, J. and Abigail, M.E.A. 2012. Application of biofilms on remediation of pollutants- an overview. - J. Microbiol. Biotech. Res. 2: 783-790.
15. De Vos, E.M. 2015. Microbial biofilms and the human intestinal microbiome. - N. P. J. Biofilms and Micro- biomes. 1: 15005, doi:10.1038/npjbiofilms.2015.5. [DOI:10.1038/npjbiofilms.2015.5]
16. Edwards, S.J. and Kjellerup, B.V. 2013. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. - Appl. Microbiol. Biot. 79: 9909-9921. [DOI:10.1007/s00253-013-5216-z]
17. Fan, B., Borriss, R., Bleiss, W. and Wu, X. 2012. Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. - J. Microbiol. 50: 38-44. [DOI:10.1007/s12275-012-1439-4]
18. Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A. and Kjelleberg, S. 2016. Biofilms: an emergent form of bacterial life. - Nat. Microbiol. 14: 563, doi:10.1038/nrmicro.2016.94. [DOI:10.1038/nrmicro.2016.94]
19. Flemming, H.C. and Wingender, J. 2010. The biofilm matrix. - Nat. Rev. Microbiol. 8: 623-633. [DOI:10.1038/nrmicro2415]
20. Fouladynezhad, N., Afsah-Hejri, L., Rukayadi, Y., Nakaguchi, Y., Nishibuchi, M. and Son, R. 2013. Efficiency of four Malaysian commercial disinfectants on removing Listeria monocytogenes biofilm. - Int. Food Res. J. 20: 1485-1490.
21. Ghods, S., Sims, I.M., Moradali, M.F. and Rehm, B.H.A. 2015. Plant pathogen Pseudomonas syringae pv. actinidiae forms biofilms composed of a novel exopolysaccharide: Growth control by bactericidal compounds. - Appl. Environ. Microbiol. 81: 4026-4036. [DOI:10.1128/AEM.00194-15]
22. Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J. and He, Y. 2010. Bioremediation of heavy metals by growing hyper accumulator endophytic bacterium Bacillus sp. L14. - Bioresource Technol. 101: 8599-8605. [DOI:10.1016/j.biortech.2010.06.085]
23. Hiriart-Baer, V.P., Fortin, C., Lee, D.Y. and Campbell P.G. 2006. Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: Influence of thiosulphate. - Aquat. Toxicol. 78: 136-148. [DOI:10.1016/j.aquatox.2006.02.027]
24. Hofmann, A., Fischer, D., Hartmann, A. and Schmid, M. 2014. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production. - Front. Microbiol. 5:191, doi: 10.3389/fmicb.2014.00191. [DOI:10.3389/fmicb.2014.00191]
25. Jamil, B., Hasan, F., Hameed, A. and Ahmed, S. 2007. Isolation of Bacillus subtilis MH-4 from soil and its potential of polypeptidic antibiotic production. - Pak. J. Pharm. Sci. 20: 26-31.
26. Kamilova, F., Kravchenko, L.V., Shaposhnikov, A.I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. - Mol. Plant-Microbe Int. 19: 250-256. [DOI:10.1094/MPMI-19-0250]
27. Kang, C.H., Kwon, Y.J. and So, J.S. 2016. Bioremediation of heavy metals by using bacterial mixtures. - Ecol. Eng. 89: 64-69. [DOI:10.1016/j.ecoleng.2016.01.023]
28. Kearns, D.B. 2008. Division of labour during Bacillus subtilis biofilm formation. - Mol. Microbiol. 67: 229-231. [DOI:10.1111/j.1365-2958.2007.06053.x]
29. Khelissa, S.O., Abdallah, M., Jama, C., Faille, C. and Chihib, N.E. 2017. Bacterial contamination and biofilm formation on abiotic surfaces and strategies to overcome their persistence. - J. Mate. Environ. Sci. 8: 3326-3346.
30. Khezri, M., Ahmadzadeh, M., Salehi Jouzani, Gh., Behboudi, K., Ahangaran, A., Mousivand, M. and Rahimian, H. 2011. Characterization of some biofilm-forming Bacillus subtilis and evaluation of their biocontrol potential against Fusarium culmorum. - J. Plant Pathol. 93: 373-382.
31. Khezri, M. 2015. Biofilm formation in probiotic bacterium Bacillus subtilis. - Plant Pathol. Sci. 5: 52-62.
32. Khezri, M. 2016. Influence of some environmental and nutritional conditions on biofilm formation of probiotic Bacillus subtilis strains. - Biol. Cont. Pes. Plant Dis. 4: 157-165.
33. Khezri, M., Ahmadzadeh, M. and Salehi-Jouzani, Gh. 2016a. Fusarium culmorum affects expression of biofilm formation key genes in Bacillus subtilis. - Braz. J. Microbiol. 47: 47-54. [DOI:10.1016/j.bjm.2015.11.019]
34. Khezri, M., Ahmadzadeh, M., Salehi Jouzani, Gh. and Sharifi, R. 2016b. A new gene involving in biofilm formation of Bacillus subtilis. - Mod. Genet. J. 11: 245-259.
35. Khezri, M. 2017. Effect of biofilm by plant probiotic rhizobacteria on root colonization and growth of wheat. - Biol. Cont. Pes. Plant Dis. 6: 93-102.
36. Kobayashi, K. 2007. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. - J. Bacteriol. 189: 4920-4931. [DOI:10.1128/JB.00157-07]
37. Koczan, J.M., McGrath, M.J., Zhao, Y. and Sundin, G.W. 2009. Contribution of Erwinia amylovora exop-olysaccharides amylovoran and levan to biofilm form-ation: implications in pathogenicity. - Phytopathology. 99: 1237-1244. [DOI:10.1094/PHYTO-99-11-1237]
38. Kong, H.G., Kim, N.H., Lee, S.Y. and Lee, S.W. 2016. Impact of a recombinant biocontrol bacterium, Pseudomonas fluorescens pc78, on microbial commu- nity in tomato rhizosphere. - Plant Pathol. J. 32: 136-144. [DOI:10.5423/PPJ.OA.08.2015.0172]
39. Kroupitski, Y., Golberg, D., Belausov, E., Pinto, R., Swartzberg, D., Granot, D. and Sela, S. 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. - Appl. Environ. Microbiol. 75: 6076-6086. [DOI:10.1128/AEM.01084-09]
40. Li, Y.H. and Tian, X. 2012. Quorum sensing and bacterial social interactions in biofilms. - Sensors 12: 2519-2538. [DOI:10.3390/s120302519]
41. Madsen, J.S., Burmolle, M., Hansen, H.L. and Sorensen, S.J. 2012. The interconnection between biofilm formation and horizontal gene transfer. - FEMS Immun. Med. Mic. 65: 183-195. [DOI:10.1111/j.1574-695X.2012.00960.x]
42. Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M. and Herman, L. 2012. Biofilm form- ation in milk production and processing environments; influence on milk quality and safety. - Compr. Rev. Food Sci. F. 11: 133-147. [DOI:10.1111/j.1541-4337.2011.00183.x]
43. Meliani, A. and Bensoltane, A. 2015. Review of Pseudomonas attachment and biofilm formation in food industry. - Poult. Fish. Wild. Sci. 3: 1, doi:10.4172/2375-446X.1000126. [DOI:10.4172/2375-446X.1000126]
44. Mhatre, E., Monterrosa, R.G. and Kovacs, A.T. 2014. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. - J. Basic Microb. 54: 616-632. [DOI:10.1002/jobm.201400175]
45. Mohite, B.V., Jalgaonwala, R.E., Pawar, S. and Morankar, A. 2010. Isolation and characterization of phenol degrading bacteria from oil contaminated soil. - Inn. Rom. Food Biotech. 7: 61-65.
46. Morikawa, M. 2006. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. - J. Biosci. Bioeng. 101(1): 1-8. [DOI:10.1263/jbb.101.1]
47. Moustaine, M., Elkahkahi, R., Benbouazza, A., Benkirane, R. and Achbani, E.H. 2017. Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. - Int. J. Environ. Agri. Biotech. 2: 590-596. [DOI:10.22161/ijeab/2.2.5]
48. Niu, D., Xia, J., Jiang, C., Qi, B., Ling, X., Lin, S., Zhang, W., Guo, J., Jin, H. and Zhao, H. 2016. Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis. - J. Integr. Plant Biol. 58: 426-439. [DOI:10.1111/jipb.12446]
49. O'Toole, G.A. and Kolter, R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple convergent signaling pathways: a genetic analysis. - Mol. Microbiol. 28: 449-461. [DOI:10.1046/j.1365-2958.1998.00797.x]
50. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. - Environ. Microbiol. 9: 1084-1090. [DOI:10.1111/j.1462-2920.2006.01202.x]
51. Prigent-Combaret, C., Vidal, O., Dorel, C. and Lejeune, P. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. - J. Bacteriol. 181: 5993-6002.
52. Ramey, B.E., Koutsoudis, M., von Bodman, S.B. and Fuqua, C. 2004. Biofilm formation in plant-microbe associations. - Curr. Opin. Microbiol. 7: 602-609. [DOI:10.1016/j.mib.2004.10.014]
53. Santhanam, R., Luu, V.T., Weinhold, A., Goldberg, J., Oh, Y. and Baldwin, I.T. 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. - PNAS. 112: 36. doi: 10.1073/pnas.1505765112. [DOI:10.1073/pnas.1505765112]
54. Shirtliff, M.E. and Leid, J. 2009. The role of biofilms in device-related infections. - Springer Series in Biofilm. doi: 10.1007/978-3-540-68119-9. [DOI:10.1007/978-3-540-68119-9]
55. Smith, A.L., Skerlos, S.J. and Raskin, L. 2015. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment. - Microb. Biothecnol. 8: 883-894. [DOI:10.1111/1751-7915.12311]
56. Tancos, M.A., Chalupowicz, L., Barash, I. and Manulis-Sasson, S. 2013. Tomato fruit and seed colonization by Clavibacter michiganensis subsp. michiganensis through external and internal routes. - Appl. Environ. Microbiol. 79: 6948-6957. [DOI:10.1128/AEM.02495-13]
57. Unosson, E. 2015. Antibacterial strategies for titanium biomaterials. Doctoral Thesis. - Acta Universitatis Upsaliensis, Uppsala, Sweden. pp: 72.
58. Vijay kumar, K., Sridevi, V., Harsha, N., Chandana lakshmi, M.V.V. and Rani, K. 2013. Biofiltration and its application in treatment of air and water pollutants-A review. - IJAIEM 2: 226-231.
59. Wendt, C., Ives, R., Hoyt, A.L., Conrad, K.E., Longstaff, S., Kuennen, R.W. and Rose, J.B. 2015. Microbial removals by a novel biofilter water treatment system. - Am. J. Trop. Med. Hyg. 92: 765-772. [DOI:10.4269/ajtmh.14-0001]
60. Wu, H., Moser, C., Wang, H.Z., Hoiby, N. and Song, Z.J. 2015. Strategies for combating bacterial biofilm infections. - Int. J. Oral Sci. 7: 1-7. [DOI:10.1038/ijos.2014.65]
61. Yao, J. and Allen, C. 2007. The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. - J. Bacteriol. 189: 6415-6424. [DOI:10.1128/JB.00398-07]
62. Yi, H.S., Ahn, Y.R., Song, G.C., Ghim, S.Y., Lee, S., Lee, G., Ryu, C.M. and Song, G.C. 2016. Impact of a bacterial volatile 2, 3-butanediol on Bacillus subtilis rhizosphere robustness. - Front. Microbiol. 7: 993, doi: 10.3389/fmicb.2016.00993. [DOI:10.3389/fmicb.2016.00993]
63. Zeriouh, Z., de Vicente, A., Perez-Garcia, A. and Romero, D. 2014. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. - Environ. Microbiol. 16: 2196-2211. [DOI:10.1111/1462-2920.12271]
64. Zhao, Y., Selvaraj, J.N., Xing, F., Zhou, L., Wang, Y., Song, Y., Tan, X., Sun, L., Sangare, L., Folly, Y.M.E. and Liu, Y. 2014. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. - PLOS ONE 9: 92486, doi:10.1371/journal.pone.0092486. [DOI:10.1371/journal.pone.0092486]
65. Zijnge, V., van Leeuwen, M.B.M., Degener, J.E., Abbas, F., Thurnheer, T., Gmur, R. and Harmsen, H.J.M. 2010. Oral biofilm architecture on natural teeth. - PLOS ONE 5: 9321, doi:10.1371/journal.pone.0009321. [DOI:10.1371/journal.pone.0009321]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb